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1 Introduction

Many of the consumption expenditure decisions we make every day are made implicitly,

following habitual routines, often due to inattention, without active choice. While this

category of habitual consumption includes the foods we eat, the brands we buy at the

supermarket, the various grooming tasks of our morning routine, one particularly good

example is the temperature settings for our home thermostats. The temperature settings

on thermostats tend to remain the same from day to day; changing them often requires

special attention. In this paper, we use high-frequency (minute by minute) data obtained

from an ongoing relationship with a smart thermostat company from over 60,000 smart

thermostats in households distributed across the United States to see the determinants of

home heating and cooling expenditures and how they respond to external shock and stimuli.

Smart thermostats have programmable temperature settings that control the heating and

cooling in a home. We observe when people adjust their program settings and when they

override the temperature settings of their program.

Our analysis seeks to ask three questions, 1) how do thermostat choices respond in the

short run to shocks such as weather; 2) what does it take to effect persistent long run changes

in behavior; 3) what triggers consumers to make an active choice, rather than an implicit

one. Specifically, we analyze the short-run and long-run persistence of energy choices in

response to external shocks. In particular, we consider the impact of shocks such as weather

events, local energy prices, news coverage of energy-related stories on how people set their

thermostats. We will also estimate the impulse-response function of these shocks over time.

The analysis will help to develop a model of habitual behavior, as well as allow us measure the

responsiveness of consumer energy-use behavior to external stimuli. Such analysis has direct

policy implications on how conservation policies impact energy use, and how changing trends

in climate, energy prices, news coverage and political action, impact consumer behavior.

The study of habituation is important to energy policy because most policy analyses rely

on static assumptions about supply and demand, and therefore may overestimate the short-
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term impact of policy interventions to change consumption behavior, but underestimate the

long-term impact of small behavior shifts, if such small shifts (like turning off the lights, or

switching light bulbs) lead to long run changes in habit.

The theoretical foundations of habit date back to Becker and Murphy (1988)’s Theory of

Rational Addiction, as an extension of the standard economics utility model to account for

how repeated consumption of a some goods can lead to habituation through the accumulation

of addiction capital. Recent work in economics has focused on clarifying the theoretical

formalism (see Rozen (2010)) and in bringing attention to the importance of timing on

habitual choices. Bernheim and Rangel (2004) develop a model of how habitual behavior

can be triggered by external cues in the environment that shifts consumers between a hot

and cold state. More recently, Landry (2013) develops a model of how decision making is

costly and develops an endogenous model of when decision points arise for addictive goods.

Recent empirical work on habit formation has focused primarily on small scale lab psy-

chology studies (see Duhigg (2012) for citations). What has remained largely unstudied is

evidence of habit formation in a consumption decision in the field. What has been lacking

is high frequency data for a choice that people make every day. This is the gap we hope to

address (see Allcott and Rogers (2014) for a similar paper in this area that looks at long

term impacts of the oPower smiley face on electricity bill intervention).

Using high frequency thermostat data, we consider three questions 1) how do people’s

temperature preferences adapt to external shocks like the outside weather patterns in the

short run; 2) what stimuli prompts people to reconsider their temperature settings; 3) what

kinds of stimuli lead to long term change.

We find that temperature choices do respond to external temperature shocks in both

short run and long run. We find evidence for both habituation–long periods of abnormally

hot weather lead to eventual increases in our set points–but also for compensation or home-

ostasis–our immediate response to a warm day is to lower the set point. These impacts

are short lasting, nearly all impacts fade after three days. We find that salience matters.
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Extreme temperatures (in the 75th or 99th percentile) show greater (and faster) responses.

Long run results are generally similar in magnitude and there is evidence that consumers do

respond to both price and non-price external nudges in the long run, though the response

may vary greatly across different geographical regions.

These questions are only a start however. We find some evidence of heterogeneity in

response between positive and negative changes, and between different regions of the country.

We will consider the heterogeneity in nudge responses between Democrat and Republicans

as noted in Costa and Kahn (2013). We will also explore the role of emotion in explaining

heterogeneity by including the performance of local sports team as a proxy for emotion in

the flavor of Agarwal et al. (2012).

The data will also allow us to test other behavioral economic models such as 1) projection

bias (Loewenstein et al., 2003) which predicts that people over-react to current conditions,

2) procrastination (O’Donoghue and Rabin, 2001) and 3) reference dependence (Tversky and

Kahneman, 1991), which predicts that people respond more to changes rather than absolute

levels. We also will be able to compare how people program their future set points, versus

how they set the current set point, as a way to look at time consistency of preferences.

We can exploit dynamic panel data techniques to estimate the real time impulse response

to external events, and answer questions about whether such shocks have persistent effects

on habits, or if the impact is transient and disappears over what period of time.

Finally, we are working to gather location specific news data, in order to follow work

by Kahn and Kotchen (2010) who find that higher unemployment makes people believe in

climate change less, and Brown and Minty (2008) who use instrumental variable analysis to

find a causal effect of media coverage on charitable giving after the 2004 Tsunami.

The paper is organized as follows. Section 2 provides a brief background on smart

thermostats. Section 3 presents the theoretical framework. Section 4 discusses the data

used in the study, followed by an outline of empirical strategy in Section 5. Section 6

presents the main estimation results as well as policy implications. Concluding remarks are
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offered in Section 7.

2 Smart Thermostats

The data consists of minute-by-minute thermostat and external weather readings for

over 60,000 households across the country from February 2012 to March 2014, totaling

approximately 50 billion observations. Thermostats work based on a set-point. When the

thermostat is on, it will turn on the air conditioning unit to cool the house until the set point

is reached during summer months, or heat the house until the desired set point is reached

in winter months. Programmable smart thermostats adjust these set points automatically,

allowing for example users to raise or lower the set points when people are asleep or away in

order to save energy. Units typically have different programs for weekdays and weekends. At

any time, if users are unhappy with the temperature, they can either change the program,

or override the program temporarily. In our data, we find overrides are quite frequent; the

typical user overrides on average, once a week.

The smart thermostats in question are Wi-Fi enabled programmable thermostats, capable

of either four or seven unique temperature set points per day. The thermostat can be easily

programmed via its companion web and mobile applications, which can also be used to

make remote adjustments to the thermostat settings when the user is not at home. These

thermostats report a significant amount of data related to their operation to their remote

management platform (approximately 50,000 data points per thermostat per month).

Past research on smart thermostats and smart electricity metering in general have shown

that providing users more information about their usage tends to reduce demand (Faruqui

and Sergici (2010); Dulleck and Kaufmann (2000)). Smart thermostats are popular with

utility companies as it gives utility companies more control for Demand Side Management

(DSM)-reducing energy usage at times of peak demand-and to help meet federal guidelines.

Such programs that gave users temporal information about their demand reduced long run
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demand by 7% though they had little impact in the short run.

3 A Theoretical Framework

The standard Becker and Murphy (1988) model of rational addiction has time consistent

consumers making consumption decisions over a good characterized by reinforcement-more

consumption in the past increases the marginal utility for consumption today-and tolerance-

more consumption in the past decrease the absolute utility from consuming today. In other

words, given utility defined over the time path of consumption of an addictive good c(t),

the ”addictive stock of past consumption” S(t) which is increasing in past consumption, and

consumption over a non-addictive good y(t), such that U(t) = u[c(t), S(t), y(t)], tolerance is

defined as ∂u
∂S
< 0, and reinforcement is defined as ∂c

∂S
> 0.

Building on Becker-Murphy, Rozen (2010) axiomatizes the class of time consistent linear

models of intrinsic habit formation and derives the following representation:

Uh(c) =
∞∑
t=0

δtu

(
ct −

∞∑
k=1

λkh
(t)
k

)
(1)

Where h
(t)
k represents different histories of consumption and λk ∈ (0, 1), represents the

weights of past consumption on the addictive capital stock.

Our analysis of thermostats here departs from these models in a few key ways. One is

that in the case of temperature, reinforcement may be negatively autocorrelated. Brager

and deDear (1998) document through survey evidence that people experience homeostasis

when it comes to ambient temperature. The body has a preferred internal set point, and

prolonged exposure to temperatures away from that set point, can increase the desire to

return to this internal preference.

Furthermore, Becker-Murphy and Rozen, like most economic models, presume an active

choice is made for every time period. However, in our data, we are interested in how external

cues (like Bernheim and Rangel (2004)) affect choice. Conceptually, our notion of habitual
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choice is akin to Landry (2013) for which the interval between when we make choices about

consumption varies endogenously. Making a choice temporarily satiates the desire to make

more choices, but the longer you wait between making a choice, the greater the desire

increases.

In the simplest version of our framework, people have finite attention. Making an active

choice is costly (Peffer et al. (2011) finds that a big determinant of how smart thermostats are

used depends on the ease of use of the design), and therefore, changes in thermostat setting

are only made when the benefits outweigh the choice cost.1 The benefits to making a choice

increase as the stock of habit or homeostatic reversion accumulates, or when conditions

change that force consumers to re-optimize, such as household composition, information

about global warming, or changes in prices.

This model still implicitly assumes that consumers are now choosing to make a choice,

which in itself requires costly attention. Therefore, we will look at whether a model of cues,

where choices are only made when cued by some external stimuli, might be a better fit for

the data. External temperature will be the primary cue of interest, but the salience of the

cue will be of particular importance (e.g.?).

Another departure from rational addiction is that we want to allow for the possibility of

time inconsistency. Users of a smart thermostat make program settings for the future, but

in the future, they may either temporarily override these program settings, or completely

change these settings . What should we make of these changes?

Part of this must be explainable by projection-bias (Loewenstein et al., 2003) where

people assume their set point preferences on an unusually warm day should apply to all

future days as well. Alternatively, people may underestimate the evolution of their habit

stock, leading to re-evaluations in the future. Separating out these explanations for changes

to the program (overrides or program changes), from structural changes (price changes for

1The fact that people adjust their settings so often suggests maybe that people who own smart ther-
mostats might actually enjoy playing with their new toy, using the phone app, and therefore adjustment
might be a pleasure rather than a cost. We will look for evidence of this, but hope that over the two year
time span of data, the novelty wears off.
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example), require thinking about time inconsistent utility.

One final set of factors that might influence changes in set point is psychological. The

Hawthorne effect suggests that we are more attentive to changes than to levels, and that

one motive for changes in the set point is simply to experience the temperature changes.

At the same time, cognitive dissonance reverses the economic notion that preferences leads

to choice, and suggests that choice leads to preferences. Perhaps the act of setting the set

point, changes peoples preferences about the set point they would most enjoy.

4 Data

The data used in this paper come from multiple sources, including proprietary smart ther-

mostat usage data, energy prices from the Energy Information Administration (EIA), and

weather data from the National Oceanic and Atmospheric Administration (NOAA). We also

utilize Google Trends and the Bureau of Labor Statistics to match state level environment,

energy or thermostat related internet searching data and MSA level monthly unemployment

data, respectively.

4.1 Thermostat Usage Data

The proprietary smart thermostat usage data provide extremely detailed minute-by-

minute panel observations on households’ thermostat set points, ambient temperature read-

ings, outdoor temperature readings, and actual utilization of different HVAC modes, such

as heating and cooling as well as a combination of different fan modes. The raw dataset

contains more than 50 billion minute-level observations for over 60,000 households across

the country. We then aggregate the minute-by-minute observations to daily level, resulting

in over 25 million daily observations. The thermostat usage data also contain the 5-digit zip

codes of households’ residences. This allows us to conveniently match the thermostat data

with data on external shocks as well as aggregate measures of the economy in the neighbor-
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hood. The thermostat readings are ongoing, and for the purpose of this project, we consider

a two-year sample period from February 2012 to March 2014. Due to computational burden,

we restrict our attention to households who reside in one of the top 100 major Metropolitan

Statistical Areas (MSA) around the country that has population over 500,000 people2. In

addition, we drop households with less than 25 observations in the sample period, leading

to a final sample of approximately 42,000 households and 16.5 million observations.

Table 1 outlines the main descriptive statistics of our assembled dataset. The average

daily ambient temperature reading is very close to the average set point temperature, sug-

gesting that the average HVAC units are effective in helping reach the target temperature.

The small variations of ambient and target temperatures also imply a relatively stable zone

of comfort temperatures that do not vary a lot with respect to outdoor conditions. We di-

vide the sample based on Census regions and find 40% of the sample live in the South while

the rest of the sample is distributed fairly evenly across the Northeast, Midwest, and West.

The average durations of running heating or cooling units are about 90 and 120 minutes,

respectively, though as suggested by the standard deviations, there are large variations of

how and when consumers operate these units.

In addition, since the smart thermostats in this study are programmable, we have in-

formation on the programmed operations of thermostat at different times of the day. This

allows us to deduce whether consumers choose to override existing thermostat settings by

comparing the actual number of set point changes against the programmed number of set

point changes. We find that a household in the sample would on average override its ther-

mostat setting every week. And as suggested in Table 1, an average household changes the

thermostat set points far more frequently than the programmed changes. This suggests that

consumers may not always have the patience to wait for the programmed adjustments from

the smart thermostats, and they may choose to adjust the temperature set points themselves

2Due to limited availability of data on gasoline prices, we also perform a sub-sample analysis with the
top 10 MSAs only, including Boston, Chicago, Cleveland, Denver, Houston, Los Angeles, Miami, New York,
San Francisco, and Seattle.
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if the room temperatures are not ideal. It is also interesting to note that the majority of

the overriding takes place during the morning and evening hours when consumers are pre-

sumably at home even though the smart thermostats can be controlled remotely via mobile

apps or wi-fi.

4.2 Energy Price and Weather Data

The main residential energy sources we consider are natural gas and electricity, which

account for over 83% of household heating system in the U.S.. The Energy Information

Administration (EIA) offers monthly average residential electricity and natural gas prices at

state level3. The EIA also provides public data on the weekly retail gasoline prices sorted

by major metropolitan areas4. The energy price data are then matched to household based

on their MSAs or state of residence. The energy prices are admittedly quite aggregated, but

they still provide reasonable proxies to the actual energy price shocks that consumers face

in their everyday life. We will also collect heating oil price fluctuations as some households

may be using heating oil for their heating units.

Weather data are from the National Oceanic Atmospheric Administration (NOAA). The

data contain daily accounts of precipitation, snowfall and snow depths from the airport

closest to the MSA of interest5. As expected, the weather data contain large variations.

Additional weather measures, such as forecast temperatures, windchill, frozen days etc, will

be collected in the next stage of the study.

4.3 Google Trends Data

Google Trends data track Google search traffic based on specific keywords entered. We

utilize Google Trends to track inquiries related to the economy, environment and disasters,

3Electricity prices are measured in cents per kilowatt-hour (KWH), and natural gas prices are measured
in dollars per thousand cubic feet.

4Gaosline data are used for a subgroup analysis that involves only residents in 10 MSAs
5Precipitation is measured in tenths of millimeters while snowfall and snow depths are measured in

millimeters.
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energy, weather, and thermostat 6 and group monthly inquiry volumes on different topics

based on the states where the inquires are originated from. We then consider the natural

logarithm of search inquiry volumes in our estimation.

5 Empirical Strategy

We are interested in exploring consumers’ thermostat usage patterns in both short run

(daily) and long run (monthly). In the short run, we consider a function of thermostat set

points in terms of a series of past and present cues. Specifically, we estimate the thermostat

set points as a function of lagged thermostat set points, current and lagged outdoor temper-

atures and various temperature patterns, a series of external shocks such as weather, time

fixed effects, and household specific fixed effects. To fix ideas, we have the following baseline

specification for household i on day t with a one-period lag:

tempit = β1 + δ1tempi,t−1 + γ1outdoori,t + γ2outdoori,t−1 + λ1Zi,t + λ2Zi,t−1 + τt + ξi + εit

(2)

where tempit is consumer’s (average) set point decision at time t, outdoori,t is the outdoor

temperature patterns, Zit is a vector of external shocks, faced by household i, τt is the time

fixed effect, ξi is the household fixed effect.

Intuitively and given the behavioral hypotheses we seek to test, there are reasons to

believe that set points yesterday would influence the set point decision today, e.g. due to

projection bias. However, econometrically, adding a lagged dependent variable to the list

of independent variables brings in a series of complications when estimating panel data.

Nickell (1981) shows that the demeaning process in fixed effect estimation can potentially

6Keywords related to economy include ”job search”, ”unemployment”, and ”economy”. Environment
related keywords include ”pollution”, ”coral”, ”BP”, ”dolphin”, ”crisis”, ”oil”, ”disaster”, ”environment”,
”epa”, and ”global warming”. Keywords related to energy include ”solar”, ”energy”, and ”electric”. Weather
keywords include ”sunny”, ”temperature”, ”heat”, ”rain”, and ”forecast”. Keywords related to thermostat
usage include ”Honeywell”, ”thermometer”, ”thermostat”, and ”Nestlabs”.
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lead to biased estimators in dynamic panel data (DPD) as the demeaned error may still be

correlated with the regressors. Since the inconsistency of the estimator is of order 1/T in

asymptotic, the bias can be especially acute in a “small T, large N” context, such as the

long run (monthly) analysis in our study (T = 27). Thus, given the dynamic nature of the

monthly panel, we resort to dynamic panel techniques such as the Arellano-Bond GMM style

estimator in order to obtain a consistent estimator in our long run analysis as suggested in

Roodman (2009).

On the other hand, because of the high frequency nature of the our dataset, we face

“large T, large N” problem in our short run study (T = 767) and employing Arellano-Bond

estimator would be computationally infeasible since it would create an enormous set of

lagged variable-based instruments. Roodman (2009) shows that in the context of dynamic

panel, OLS estimates tend to overestimate and fixed effects tend to underestimate while

consistent estimates (such as Arellano-Bond estimates) should be between OLS and fixed

effects estiamtes. Since the asymptotic bias of the estimator is approximately −(1+β)/(T −

1), with T = 767 in our sample and an assumed approximate |β| < 1, the magnitude of the

bias will be less than 0.3% 7. Therefore, given that the purpose of this study is to provide first

evidence toward and discuss policy implications of the responsiveness of consumer energy

usage behavior to various stimuli, we adopt one-way fixed effect model to estimate the data

to provide intuition for short run analysis.The Wooldridge test for autocorrelation in panel

data reveals a strong indication of serial correlation (p < 0.0001). With large T and N in

the short run analysis, we can however cluster standard errors at household level to ensure

standard errors to be robust to serial correlations and heteroskedasticity particularly since

non-stationarity is rejected by the panel unit-root test (p < 0.0001).

Building upon the baseline specification as in equation (2), we introduce multiple lags of

independent variables to further explore short run patterns of changes in set points. We also

include various outdoor temperature measures, including distributions as well as historical

7In fact, when we compare estimates between OLS and fixed effects estimates for various specifications
in our short run study, we find the gap between the estimates to be less than 0.2%
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temperature patterns. In addition, we consider variables such as current and past difference

between ambient and target temperatures to control for the effectiveness of thermostat and

HVAC units. Thus, a general specification for household i on day t would take the following

form:

tempit = β1 +
T∑

k=1

δktempi,t−k−1 +
T∑

k=0

γkoutdoori,t−k +
T∑

k=0

λtZi,t−k + τt + ξi + εit (3)

Since theory does not offer a clear-cut prediction on the signs of key parameters in the

set point specification above, we will also consider other dimensions of energy consumption

as the dependent variable such as durations of heating or cooling and set point change

frequencies. We adopt a model similar to equation (3) but with different dependent variables

corresponding to different energy usage measures. Finally, we also consider temporal and

spatial variations of energy usage by testing the above specification for different seasons and

regions. In our long run analysis, we estimate a model at monthly level similar to that in

equation (3) and introduce a rich set of external price and non-price shocks such as energy

prices, local unemployment rates, and Google search intensity on topics related to energy,

environment and thermostats. To address the potential dynamic panel bias due to “large N

small T” problem, we resort to the Arellano-Bond GMM-style dynamic panel method.

To gain more insights toward thermostat setting behaviors, in addition to fixed effects

models outlined above, we borrow time series techniques and employ panel data vector

autoregression (VAR) techniques to investigate the interdependencies of various endogenous

variables in our model since panel VAR assumes endogeneity of all variables involved and

at the same time allows for unobserved individual endogeneity. Given the purpose of the

paper, we apply existing panel VAR techniques and consider the following standard panel

VAR model similar to that in Love and Zicchino (2006):

xit = A0i(t) + Ai(L)xt−1 + ξi + uit (4)
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where Xt is a D × 1 vector of variables such as set points and ambient temperatures and

Xt = (x′1t, x
′
2t...x

′
Nt)
′, Ai(L) is a polynomial in lag operators, and ut ∼ iid(0,Σu) with

ut = (u′1t, u
′
2t...u

′
Nt)
′. We then derive a impulse response function to further quantify how

consumers respond to various endogenous and external stimuli, e.g. testing the homeostasis

about the relationship between ambient and target temperatures.

6 Results and Discussions

In this section, we present results from fixed effects estimates, dynamic panel estimates,

and panel VAR estimates based on the empirical strategies outlined in Section 5.

6.1 Short Run Findings

6.1.1 Set Point Changes

One of the key questions we want to address in this study is on the determinants of

consumer’s short run set point change decisions when facing various temperature and weather

shocks. For this analysis, we restrict the sample to those who make individual decisions of

thermostat set points by overriding the scheduled thermostat settings. This results in a

sample of approximately 38,500 households. We adopt the general fixed effects estimation

strategy with clustered standard errors as outlined in Section 5 but include a 3-period lag

for most of the shocks to explore the potential of short run memory. A total of twelve

specifications are included and results are shown in Table 2, Table 3, and Table 4.

We explore how set point decisions are related to various external shocks in Table 2). Set

points are unsurprisingly positively correlated with yesterday’s set point decision but such

dependence fades away in just two days; this result is consistent across all specifications.

The magnitude of one-period lagged outdoor temperature is almost twice as large as that

of the current period. Yet, earlier outdoor temperatures have a negative effect on the set

point choices. Present and past perceptions of outdoor temperatures seem to have contradic-
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tory effects - increases in yesterday or current outdoor temperature will make the consumer

increase set points (habituation) whereas increases in previous days will make consumers

decrease set points (homeostasis). In addition, there is also support for long run memory

as the average set points and outdoor temperature for the past week and past month are

negatively correlated with set points.

Snowfalls generally lead to higher set points while rain leads to lower set points (except

for the current period). Note that snowfalls are measured in millimeters and precipitation

is in tenths of millimeters, which means the magnitudes of these shocks are actually more

comparable than they seem to be. Snowfalls have a more consistent impact on set points

across all lags, e.g. a large storm of 10 inches, whether it happened three days ago or today,

would on average lead to approximately the same 0.25 degree increase in set points.

Table 3 documents the distributional impact of outdoor temperatures on target set points.

Besides the similar patterns of the effects of past and present target and outdoor tempera-

tures, consumers generally respond to extreme weather patterns as they become closer and

their response is larger as the weather becomes more extreme, suggesting the importance of

salience. For example, when the outdoor temperature reading is in the 75th percentile of

the year (top 25% of hot days), consumers only seem to respond if the extreme temperature

happens today or yesterday. When outdoor temperature reaches 99 percentile, consumers

adjust present set points to even lower degree. A general similar trend (except for top 25

percent cold days) is observed for winter weather where consumers increase today’s set points

by as much as six times when experiencing a top one percent cold days compared to a top

10 percent cold day. In Specification 5, we explore the impact of consecutive days of ex-

treme weather. The results suggest that when experiencing consecutive days of extremely

hot weather, consumers respond by lowering temperatures and the magnitude increases as

temperature becomes more extreme. On the other hand, there seems to be evidence for ther-

mal comfort under consecutive days of cold weather though the pattern is not consistent.

.
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Finally, we also investigate how temporal and spatial differences influence set point de-

cisions in Table 4. Summer coefficients generally appear to be comparable to those from

winter months except for response to weather shocks. In terms of regional differences, signs

and coefficients appear to be similar across regions with the exception that households in

the southern and western states are much more sensitive to adverse winter weather.

6.1.2 Overriding Decisions

Another empirical exercise we conduct is about when and why consumers decide to

override the existing thermostat temperature settings. We use the same fixed effects model

as in Section 5 but employ a dichotomous dependent variable “override” that is equal to 1 if

the household overrides the thermostat settings. We also include a variable “d override” that

captures the number of days since last override. We consider three specifications involving

different combinations of outdoor weather patterns and document the results in Table 5.

The results suggest that similar to set point decisions, the coefficients on past overriding

decisions are positive but declining with respect to lags, and the time since the last override

is negatively correlated with the override decision, both of which suggest evidence against

choice satiation.

Current outdoor temperature negatively affect overriding decisions, though extreme out-

side temperature patterns, such as extremely hot or cold days or consecutive days of ex-

treme temperatures, make the consumer more likely to override the thermostat settings.

Furthermore, consumers tend to override quicker to recent episodes of extremely weathers.

Consecutive days of hot weather make consumers more likely to override thermostat settings

while we do not find similar evidence under consecutive days of cold weather. Overall, all

the evidence seems to suggest against choice satiation.
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6.2 Long Run Findings

In the long run analysis, we explore how consumers adjust monthly average set points as

a response to shocks from outdoor temperatures, weather patterns, energy prices, unemploy-

ment, and social norm measured by keyword search intensity. We adopt the Arellano-Bond

dynamic panel estimation strategy as outlined in Section 5. Long run results are reported in

Table 6 including comparisons across different Census regions and Table 7 shows keywords

search trend results.

Long run lagged set point results are similar to those in the short run - current month’s

set points are positively correlated with last month’s average set point decision but such

dependence becomes minimal past first lag. Present month and past months’ perceptions

of outdoor temperatures seem to have similar contradictory effects as we see in the short

run outcomes - increases in current month’s outdoor temperature will make the consumer

increase set points (habituation) whereas increases in previous months will make consumers

decrease set points (homeostasis).

In terms of energy price shocks, we find that consumers respond more to natural gas price

shocks than electricity price shocks8. Current energy price shocks impose a larger effect than

shocks in the past. On the other hand, there is no consistent trend of impact across different

energy price shocks. In a subgroup analysis, we find it interesting that consumers seem to

be more sensitive to electricity prices in the summer while they respond more to gasoline

and natural gas prices in the winter. This would intuitively makes sense since AC units are

electrically powered while many heating units use natural gas or heating oil, but also shows

that these are real responses to price changes rather than some spurious correlation.

Different from the short run findings, precipitation leads to higher set points in the long

run while snowfall leads to lower set points in the long run. In particular, current month’s

snowfall does not seem to affect set point decision but snowfalls from the past are negatively

8We also conduct a subgroup analysis of residents from top ten MSAs using similar specifications on
responses to gasoline price shocks and do not find evidence that consumers adjust set points to reflect
gasoline price fluctuations.
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correlated with set points. Such pattern is also supported by a similar finding on snow depth.

Economy related keywords do not seem to affect long run set points in a consistent way,

but recent local unemployment rates would lead to lower set points. Overall, internet searches

related to energy/weather/thermostat do seem to correlate with set points. However, unlike

other external shocks, the effect of keyword search intensity vary tremendously in magnitudes

or signs across different geographic regions.

6.3 Panel VAR Findings

We also derive panel VAR estimates and impulse response functions at both daily and

monthly levels 9. Figures 1 to 5 presents graphs of lagged impulse response functions of set

points in terms of various cues and the associated 5% error bands generated by Monte Carlo

simulations. The cues we consider here include temperature variations, energy price shocks,

weather shocks, and Google search trends.

At daily level, set points generally have a positive impulse response to outdoor temper-

ature shocks. The impact is largest from the previous day and the impact dissipates as

shocks become less recent with increasing margin of errors. This confirms the findings from

the fixed effects estimates that consumers tend to respond most to recent temperature shocks

and there is limited support for long run addiction. Interestingly, target temperature only

negatively responds to ambient temperature shocks within one lag, and the impact dissipates

almost immediately beyond the first lag with large error bands. We also observe a recip-

rocal response of ambient temperature to set point shocks. These facts would imply that

the HVAC units are quite effective in achieving the target temperatures set by the smart

thermostats.

At monthly level, Consumers seem to respond to energy price shocks in a consistent

way, though the response to natural gas price has a smaller margin of errors. On the other

hand, the results do not exhibit clear impulse responses to external energy price and weather

9We utilize the Stata’s built-in panel VAR command pvar to implement the estimation.
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shocks. As for weather shocks, snowfall presents a positive impulse to set points whereas the

impact of precipitation is generally negative with a larger margin of error. Among the search

intensity cues, searches on environment and disaster related topics present a clear negative

impulse while consumers do not have clear impulse responses to other search cues.

7 Discussions and Conclusions

To get a sense of magnitudes of these effects, analysis with a small subset of the data (90

households) where we have access to electricity meter readings, tells us that each degree of

set point change in summer months saves approximately 8Wh of electricity each hour (by

comparison the households in this sample used approximately 1300 Wh each hour). Over

the course of a year, 8Wh translates into approximately 70kWh. For a marginal electricity

price of 30 cents/kWh, this works out to approximately $20 per year.

Clearly more needs to be done to disentangle this data, but hopefully we have provided

here evidence for the determinants of how we make (or don’t make) passive consumption de-

cisions, how we develop habit, how we respond to external cues, and the relative importance

of factors such as habituation, homeostasis, choice satiation, and salience.

Beyond providing a better sense of how such choices are made, we also provide guid-

ance on the impact of government nudges, and toward providing lasting solutions to shape

household energy use.
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Figures

Figure 1 - Impulse Responses for 7 lag VAR of Daily Temperature Shocks

Figure 2 - Impulse Responses for 6 lag VAR of Monthly Price Shocks
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Figure 3 - Impulse Responses for 6 lag VAR of Monthly Weather Shocks

Figure 4 - Impulse Responses for 6 lag VAR of Keyword Searches
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Figure 5 - Impulse Responses for 6 lag VAR of Keyword Searches (Continued)
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Tables

Table 1: Summary statistics

Variable Mean Std. Dev.
outdoor 59.19 19.91
ambient 71.24 5.98
target 70.89 7.69
heating duration(minutes) 89.84 178.46
cooling duration(minutes) 120.83 220.76
morning target change freq 1.52 3.31
afternoon target change freq 1.29 3.25
evening target change freq 1.54 3.22
midnight target change freq 1.11 3.27
precipitation 24.72 82.87
snowfall 1.76 14.32
snow depth 8.08 42.89
monthly unemployment 7.27 1.54
monthly electricity price 12.86 2.73
monthly natural gas price 13.71 4.64
northeast 0.20 0.40
midwest 0.17 0.17
west 0.23 0.42
south 0.40 0.49
program target freq 1.91 1.28
total user target change freq 5.45 11.81
days since last override 6.68 21.20
Number of Observations 16,586,753
Number of Households 41,897
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Table 2: Short Run Baseline Results

(1) (2) (3) (4)
VARIABLES target target target target

L.target 0.737*** 0.679*** 0.679*** 0.678***
(0.00227) (0.00235) (0.00235) (0.00235)

L2.target 0.0462*** 0.00843*** 0.00849*** 0.00836***
(0.00239) (0.00236) (0.00236) (0.00236)

L3.target 0.124*** 0.0197*** 0.0197*** 0.0197***
(0.00140) (0.00164) (0.00164) (0.00164)

target mean7 0.189*** 0.188*** 0.189***
(0.00266) (0.00266) (0.00266)

target mean30 0.0426*** 0.0427*** 0.0420***
(0.00101) (0.00101) (0.00101)

outdoor 0.00767*** 0.00794*** 0.00791*** 0.00841***
(0.000255) (0.000250) (0.000252) (0.000255)

L.outdoor 0.0146*** 0.0165*** 0.0166*** 0.0169***
(0.000269) (0.000292) (0.000292) (0.000295)

L2.outdoor -0.00198*** -0.00114*** -0.00118*** -0.000813***
(0.000233) (0.000229) (0.000229) (0.000230)

L3.outdoor -0.00782*** -0.00170*** -0.00177*** -0.00169***
(0.000187) (0.000189) (0.000189) (0.000190)

outdoor mean7 -0.00479*** -0.00465*** -0.00493***
(0.000316) (0.000315) (0.000318)

outdoor mean30 -0.0102*** -0.0103*** -0.00957***
(0.000291) (0.000291) (0.000296)

precipitation 3.37e-05***
(9.58e-06)

L.precipitation -0.000192***
(9.67e-06)

L2.precipitation -6.66e-05***
(9.44e-06)

L3.precipitation -1.31e-05
(9.74e-06)

snowfall 0.00170***
(5.86e-05)

L.snowfall -2.14e-06
(6.51e-05)

L2.snowfall 0.000934***
(6.40e-05)

L3.snowfall 0.000730***
(6.25e-05)

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 2: Short Run Baseline Results - Continued

(1) (2) (3) (4)
VARIABLES target target target target

snowdepth 0.00148***
(6.69e-05)

L.snowdepth -0.000460***
(8.34e-05)

L2.snowdepth -0.000299***
(8.41e-05)

L3.snowdepth -0.000290***
(5.65e-05)

Day of Week Fixed Effects Yes Yes Yes Yes

Month Fixed Effects Yes Yes Yes Yes

Year Fixed Effects Yes Yes Yes Yes

Observations 5,502,945 5,502,945 5,502,945 5,502,945
Households 37,921 37,921 37,921 37,921

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 3: Short Run Impact of Outdoor Temperature Distributions

(5) (6)
VARIABLES target target

L.target 0.679*** 0.678***
(0.00235) (0.00235)

L2.target 0.00846*** 0.00859***
(0.00236) (0.00236)

L3.target 0.0197*** 0.0198***
(0.00164) (0.00164)

target mean7 0.189*** 0.189***
(0.00266) (0.00266)

target mean30 0.0427*** 0.0427***
(0.00101) (0.00101)

outdoor 0.00798*** 0.00892***
(0.000252) (0.000309)

L.outdoor 0.0165*** 0.0199***
(0.000293) (0.000411)

L2.outdoor -0.00116*** -0.00214***
(0.000229) (0.000312)

L3.outdoor -0.00180*** -0.00362***
(0.000190) (0.000261)

outdoor mean7 -0.00472*** -0.00479***
(0.000324) (0.000316)

outdoor mean30 -0.0102*** -0.0114***
(0.000295) (0.000316)

temp 75 -0.0291***
(0.00337)

L.temp 75 -0.0188***
(0.00372)

L2.temp 75 0.00353
(0.00336)

L3.temp 75 0.0287***
(0.00310)

temp 90 -0.0595***
(0.00357)

L.temp 90 -0.0625***
(0.00385)

L2.temp 90 0.000295
(0.00353)

L3.temp 90 0.0385***
(0.00332)

temp 99 -0.111***
(0.00908)

L.temp 99 -0.103***
(0.00958)

L2.temp 99 0.00344
(0.00866)

L3.temp 99 0.0489***
(0.00812)

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 3: Short Run Impact of Outdoor Temperature Distribution - Continued

(5) (6)
VARIABLES target target

temp 25 -0.0568***
(0.00436)

L.temp 25 0.00153
(0.00480)

L2.temp 25 -0.0262***
(0.00411)

L3.temp 25 -0.00643
(0.00392)

temp 10 0.0267***
(0.00497)

L.temp 10 0.0917***
(0.00510)

L2.temp 10 -0.0222***
(0.00439)

L3.temp 10 -0.0365***
(0.00421)

temp 1 0.137***
(0.0110)

L.temp 1 0.132***
(0.0103)

L2.temp 1 -0.0112
(0.00933)

L3.temp 1 -0.0155*
(0.00885)

hot5 75 -0.00610**
(0.00282)

hot5 90 -0.0361***
(0.00523)

hot5 99 -0.137***
(0.0427)

cold5 25 -0.0306***
(0.00358)

cold5 10 0.0231***
(0.00659)

cold5 1 0.0369
(0.0475)

Day of Week Fixed Effects Yes Yes

Month Fixed Effects Yes Yes

Year Fixed Effects Yes Yes

Observations 5,502,945 5,502,945
Households 37,921 37,921

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 4: Short Run Subgroup Results

Summer Winter Northeast South West Midwest
VARIABLES target target target target target target

L.target 0.556*** 0.584*** 0.662*** 0.665*** 0.695*** 0.672***
(0.00417) (0.00443) (0.00528) (0.00308) (0.00588) (0.00527)

L2.target 0.0452*** 0.00831* 0.0436*** -0.0101*** 0.0154** 0.0254***
(0.00339) (0.00440) (0.00447) (0.00260) (0.00681) (0.00502)

L3.target 0.0352*** 0.0149*** 0.0287*** 0.0122*** 0.0288*** 0.0194***
(0.00257) (0.00322) (0.00304) (0.00194) (0.00466) (0.00356)

target mean7 0.189*** 0.142*** 0.188*** 0.179*** 0.180*** 0.177***
(0.00481) (0.00549) (0.00547) (0.00342) (0.00719) (0.00556)

target mean30 0.0267*** 0.0444*** 0.0251*** 0.0756*** 0.0245*** 0.0367***
(0.00237) (0.00296) (0.00187) (0.00190) (0.00186) (0.00219)

outdoor -0.00458*** 0.000966*** -0.00266*** 0.0203*** 0.00243*** 0.00242***
(0.000562) (0.000331) (0.000368) (0.000497) (0.000551) (0.000401)

L.outdoor 0.00577*** 0.0138*** 0.0103*** 0.0250*** 0.0146*** 0.0104***
(0.000632) (0.000367) (0.000460) (0.000513) (0.000689) (0.000529)

L2.outdoor 0.00426*** 8.77e-05 0.00198*** -0.00494*** 0.00311*** 0.00102**
(0.000524) (0.000288) (0.000392) (0.000399) (0.000584) (0.000404)

L3.outdoor 0.000305 -0.000742*** -0.000973*** -0.00158*** 0.000128 -0.00114***
(0.000470) (0.000259) (0.000334) (0.000326) (0.000543) (0.000358)

outdoor mean7 0.00165** -0.00134*** 0.00209*** -0.0101*** -0.00282*** -0.00104*
(0.000732) (0.000418) (0.000564) (0.000567) (0.000814) (0.000578)

outdoor mean30 0.00192** -0.00203*** -0.00280*** -0.00892*** -0.0126*** -0.00132**
(0.000773) (0.000610) (0.000676) (0.000595) (0.000654) (0.000654)

precipitation 2.26e-05* 0.000226*** 0.000106*** 8.22e-05*** 4.67e-05 0.000215***
(1.25e-05) (2.79e-05) (1.96e-05) (1.17e-05) (4.90e-05) (3.36e-05)

L.precipitation 1.14e-05 -0.000407*** -0.000193*** -3.90e-05*** -0.000402*** -0.000216***
(1.27e-05) (2.67e-05) (2.20e-05) (1.16e-05) (5.45e-05) (3.33e-05)

L2.precipitation 5.60e-05*** -0.000349*** -5.69e-07 3.67e-05*** -0.000499*** -8.73e-05**
(1.23e-05) (2.81e-05) (2.02e-05) (1.14e-05) (5.64e-05) (3.40e-05)

L3.precipitation 2.67e-05** -1.95e-05 5.75e-05*** 5.97e-05*** -0.000365*** -1.53e-05
(1.28e-05) (2.81e-05) (2.09e-05) (1.20e-05) (5.06e-05) (3.37e-05)

snowfall 0.00120*** 0.00137*** 0.00220*** 0.00207*** 0.000504***
(6.32e-05) (8.43e-05) (0.000166) (0.000265) (9.59e-05)

L.snowfall 4.37e-05 -0.000290*** 0.000332 1.80e-05 -0.000533***
(7.30e-05) (9.11e-05) (0.000220) (0.000346) (0.000113)

L2.snowfall 0.000738*** 0.000116 0.00233*** 0.000705** 0.000240**
(7.14e-05) (8.89e-05) (0.000195) (0.000292) (0.000111)

L3.snowfall 0.000296*** -0.000143 0.00196*** 0.000985*** 0.000370***
(6.76e-05) (8.86e-05) (0.000165) (0.000282) (0.000110)
Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

31



Table 4: Short Run Subgroup Results - Continued

Summer Winter Northeast South West Midwest
VARIABLES target target target target target target

snowdepth 0.00114*** 0.000675*** 0.00308*** 0.00243*** 0.00119***
(7.21e-05) (9.25e-05) (0.000219) (0.000323) (0.000115)

L.snowdepth -0.000450*** -0.000519*** -0.000925*** 0.000494 -0.000285**
(8.80e-05) (0.000123) (0.000234) (0.000363) (0.000136)

L2.snowdepth -0.000119 0.000178 -0.00129*** -9.41e-05 -0.000245*
(8.80e-05) (0.000124) (0.000224) (0.000316) (0.000144)

L3.snowdepth -0.000276*** -0.000171** 0.000762*** -0.000535** -0.000409***
(6.12e-05) (8.20e-05) (0.000176) (0.000239) (9.20e-05)

Day of Week Fixed Effects Yes Yes Yes Yes Yes Yes

Month Fixed Effects Yes Yes Yes Yes Yes Yes

Year Fixed Effects Yes Yes Yes Yes Yes Yes

Observations 1,435,988 1,595,689 1,018,949 2,306,330 1,377,124 800,542
Households 32,759 32,196 6,982 15,397 9,131 6,411

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 5: Short Run Determinants of Thermostat Override Decisions

(7) (8) (9)
VARIABLES override override override

L.override 0.337*** 0.336*** 0.337***
(0.000986) (0.000986) (0.000986)

L2.override 0.119*** 0.120*** 0.119***
(0.000808) (0.000807) (0.000809)

L3.override 0.113*** 0.113*** 0.113***
(0.000729) (0.000729) (0.000729)

d override -0.00339*** -0.00339*** -0.00339***
(8.73e-05) (8.73e-05) (8.73e-05)

outdoor -0.000652** -0.000375* -0.000650**
(0.000284) (0.000224) (0.000279)

L.outdoor 0.000194 6.35e-05 0.000177
(0.000160) (8.50e-05) (0.000158)

L2.outdoor 0.000278*** 9.90e-05 0.000261***
(9.32e-05) (7.20e-05) (9.62e-05)

L3.outdoor 8.93e-05*** 5.56e-05 5.95e-05***
(1.02e-05) (3.94e-05) (1.17e-05)

temp 75 0.0116***
(0.00146)

L.temp 75 0.00516***
(0.000514)

L2.temp 75 -0.00294***
(0.000704)

L3.temp 75 -0.00725***
(0.000469)

temp 90 0.00389***
(0.00110)

L.temp 90 0.00619***
(0.000551)

L2.temp 90 -0.000430
(0.000605)

L3.temp 90 -0.00511***
(0.000470)

temp 99 -0.0257***
(0.00180)

L.temp 99 0.0151***
(0.00122)

L2.temp 99 -0.00236*
(0.00125)

L3.temp 99 0.00602***
(0.00110)

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 5: Short Run Determinants of Thermostat Override Decisions - Continued

(7) (8) (9)
VARIABLES override override override

temp 25 0.0180***
(0.00209)

L.temp 25 -0.00350***
(0.000581)

L2.temp 25 -0.00537***
(0.000932)

L3.temp 25 -0.00472***
(0.000638)

temp 10 0.0139***
(0.00172)

L.temp 10 -0.00479***
(0.000669)

L2.temp 10 -0.00365***
(0.000805)

L3.temp 10 -0.00493***
(0.000591)

temp 1 0.0121***
(0.00224)

L.temp 1 -0.00460***
(0.00125)

L2.temp 1 -0.00702***
(0.00127)

L3.temp 1 0.00343***
(0.00116)

hot5 75 0.00109**
(0.000520)

hot5 90 0.00585***
(0.000771)

hot5 99 0.0115**
(0.00504)

cold5 25 -0.00552***
(0.000803)

cold5 10 -0.00108
(0.000878)

cold5 1 0.00666
(0.00784)

Day of Week Fixed Effects Yes Yes Yes

Month Fixed Effects Yes Yes Yes

Year Fixed Effects Yes Yes Yes

Observations 15,563,611 15,563,611 15,563,611
Households 40,535 40,535 40,535

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 6: Long Run Results

All All Northeast South West Midwest
VARIABLES target target target target target target

L.target 0.712*** 0.725*** 0.632*** 0.719*** 0.673*** 0.585***
(0.00454) (0.00480) (0.00987) (0.00794) (0.00839) (0.0116)

L2.target -0.0631*** -0.0418*** -0.0210*** -0.0201*** -0.0656*** -0.0137*
(0.00300) (0.00305) (0.00586) (0.00487) (0.00621) (0.00704)

L3.target 0.0191*** 0.0175*** -0.0145*** 0.0330*** 0.00583 -0.0198***
(0.00267) (0.00272) (0.00548) (0.00426) (0.00569) (0.00630)

outdoor 0.117*** 0.104*** 0.0947*** 0.115*** 0.158*** 0.0992***
(0.00216) (0.00224) (0.00855) (0.00333) (0.00549) (0.00394)

L.outdoor -0.0697*** -0.0851*** -0.0616*** -0.0775*** -0.121*** -0.0642***
(0.00181) (0.00204) (0.00610) (0.00300) (0.00503) (0.00408)

L2.outdoor -0.00293** -0.0116*** 0.00376 -0.00950*** -0.0240*** 0.000544
(0.00128) (0.00147) (0.00398) (0.00241) (0.00436) (0.00330)

L3.outdoor -0.00885*** -0.0140*** -0.000773 0.00150 -0.00366 -0.00101
(0.00137) (0.00152) (0.00354) (0.00246) (0.00458) (0.00319)

p eletricity 0.114*** 0.0417** 0.481*** 0.0600 -0.0352
(0.0138) (0.0195) (0.0371) (0.0396) (0.0396)

L.p eletricity 0.0351*** 0.101*** -0.241*** 0.00826 -0.187***
(0.0133) (0.0206) (0.0352) (0.0357) (0.0383)

L2.p eletricity -0.0131 0.0502*** -0.0739** -0.187*** 0.186***
(0.0126) (0.0185) (0.0337) (0.0356) (0.0343)

L3.p eletricity 0.147*** 0.120*** 0.270*** 0.0940** 0.0329
(0.0145) (0.0243) (0.0374) (0.0401) (0.0390)

p ngas 0.282*** 0.0396* 0.261*** 0.506*** -0.0304**
(0.00663) (0.0212) (0.00941) (0.0308) (0.0144)

L.p ngas -0.102*** -0.103*** -0.0189* -0.212*** 0.112***
(0.00707) (0.0197) (0.00972) (0.0292) (0.0154)

L2.p ngas -0.154*** -0.0124 -0.194*** -0.121*** -0.0967***
(0.00588) (0.0179) (0.00896) (0.0259) (0.0119)

L3.p ngas 0.117*** 0.0396*** 0.0954*** 0.263*** 0.0504***
(0.00482) (0.0153) (0.00783) (0.0260) (0.00980)

unemp -0.109*** 0.101 -0.0898** -0.162* -0.0999**
(0.0276) (0.0912) (0.0411) (0.0864) (0.0466)

L.unemp -0.0638** -0.229** 0.0755* -0.109 0.0276
(0.0270) (0.0958) (0.0447) (0.0744) (0.0461)

L2.unemp 0.130*** 0.335*** 0.154*** 0.370*** -0.230***
(0.0301) (0.107) (0.0497) (0.0810) (0.0574)

L3.unemp 0.140*** -0.0205 0.994*** 0.192** 0.180***
(0.0337) (0.104) (0.0543) (0.0817) (0.0674)

precipitation 0.000455* -0.00230*** 0.00145*** 0.000802 0.00112
(0.000273) (0.000714) (0.000333) (0.00130) (0.000710)

L.precipitation 0.000335 -0.00206*** 0.00195*** -0.00243* 0.000629
(0.000253) (0.000718) (0.000307) (0.00130) (0.000786)

L2.precipitation 0.000512** -0.000664 0.00116*** 0.00563*** -0.00133**
(0.000224) (0.000633) (0.000276) (0.00118) (0.000655)

L3.precipitation 0.000159 -0.00215*** -2.22e-05 0.0137*** 0.000270
(0.000203) (0.000582) (0.000249) (0.00121) (0.000545)

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 6: Long Run Results - Continued

VARIABLES target target target target target target

snowfall 0.000833 0.00536** -0.00493* -0.0149*** 0.00276
(0.00122) (0.00209) (0.00284) (0.00453) (0.00207)

L.snowfall -0.0203*** -0.00305 -0.0119** -0.000989 -0.0128***
(0.00168) (0.00258) (0.00513) (0.00703) (0.00225)

L2.snowfall -0.0282*** 0.000478 -0.000104 0.00735 -0.000775
(0.00191) (0.00248) (0.00694) (0.00574) (0.00276)

L3.snowfall -0.00486** -0.00364 0.0770*** -0.0203*** -0.00523
(0.00232) (0.00345) (0.0134) (0.00622) (0.00352)

snowdepth 0.000979*** -0.000193 0.00935*** 0.0316*** 0.00154***
(0.000230) (0.000412) (0.00205) (0.00246) (0.000389)

L.snowdepth -0.00332*** 0.000409 -0.0143*** -0.0236*** -0.000693
(0.000310) (0.000446) (0.00252) (0.00262) (0.000492)

L2.snowdepth -0.00364*** 3.23e-05 0.000728 -0.00555** -0.00287***
(0.000511) (0.000822) (0.00346) (0.00282) (0.000776)

L3.snowdepth -0.00135* -0.000290 -0.0111 -0.0131*** -0.00340***
(0.000780) (0.00140) (0.00704) (0.00290) (0.000961)

Month Fixed Effects Yes Yes Yes Yes Yes Yes

Year Fixed Effects Yes Yes Yes Yes Yes Yes

Observations 338,523 338,523 62,509 143,905 73,367 58,742
Households 35,788 35,788 6,563 14,627 8,452 6,146

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 7: Long Run Keywords Search Results

All Northeast South West Midwest
VARIABLES target target target target target

key economy 0.0999 -0.685*** -0.686*** 0.247 1.052***
(0.0733) (0.164) (0.146) (0.214) (0.177)

L.key economy 0.201*** -0.0850 -1.017*** 3.083*** 0.972***
(0.0675) (0.150) (0.135) (0.211) (0.169)

L2.key economy -0.704*** -0.150 -0.0392 -1.623*** 0.0283
(0.0682) (0.148) (0.138) (0.254) (0.180)

L3.key economy 0.0462 0.247 0.0963 1.393*** 0.233
(0.0776) (0.184) (0.145) (0.252) (0.192)

key environment 1.078*** 2.646*** -0.163 4.929*** 1.409***
(0.119) (0.359) (0.179) (0.329) (0.330)

L.key environment -0.0459 0.133 0.658*** 3.608*** -1.444***
(0.107) (0.307) (0.170) (0.335) (0.302)

L2.key environment 1.935*** 0.351 -0.940*** 3.821*** 1.300***
(0.112) (0.335) (0.157) (0.285) (0.391)

L3.key environment 1.300*** 0.993*** 1.922*** -0.287 1.260***
(0.111) (0.339) (0.172) (0.322) (0.336)

key energy 1.165*** -0.0364 0.694*** -0.789** -1.041***
(0.0787) (0.222) (0.139) (0.327) (0.224)

L.key energy 0.300*** -1.207*** -1.188*** -1.102*** 1.236***
(0.0778) (0.194) (0.125) (0.325) (0.215)

L2.key energy 0.712*** 0.478** -0.555*** -1.850*** -0.698***
(0.0773) (0.223) (0.115) (0.270) (0.236)

L3.key energy 0.584*** -0.187 0.270** 1.177*** -1.986***
(0.0748) (0.189) (0.116) (0.279) (0.228)

key weather -0.188*** 0.361 -0.680*** -0.539** 0.111
(0.0549) (0.277) (0.0914) (0.224) (0.210)

L.key weather -0.270*** 0.528** 0.00309 -3.226*** -0.118
(0.0475) (0.240) (0.0660) (0.221) (0.164)

L2.key weather 0.422*** -0.494** 0.0849 0.936*** 0.264
(0.0449) (0.227) (0.0675) (0.190) (0.173)

L3.key weather -0.714*** -0.263 -0.335*** -0.811*** 0.106
(0.0483) (0.230) (0.0632) (0.207) (0.182)

key thermostat 0.599*** 1.232*** 0.120 -0.770*** 1.863***
(0.0874) (0.325) (0.155) (0.274) (0.282)

L.key thermostat 1.643*** -0.502 0.00460 4.034*** 0.788***
(0.0822) (0.346) (0.156) (0.271) (0.242)

L2.key thermostat 2.086*** -0.216 0.754*** 5.422*** -0.569**
(0.0781) (0.292) (0.137) (0.279) (0.237)

L3.key thermostat -0.633*** 0.621* -1.799*** 0.233 0.601***
(0.0882) (0.338) (0.166) (0.246) (0.227)

Month Fixed Effects Yes Yes Yes Yes Yes

Year Fixed Effects Yes Yes Yes Yes Yes

Observations 289,316 53,421 122,060 63,273 50,562
Households 34,887 6,381 14,207 8,264 6,035

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

37


	Introduction
	Smart Thermostats
	A Theoretical Framework
	Data
	Thermostat Usage Data
	Energy Price and Weather Data
	Google Trends Data

	Empirical Strategy
	Results and Discussions
	Short Run Findings
	Set Point Changes
	Overriding Decisions

	Long Run Findings
	Panel VAR Findings

	Discussions and Conclusions

