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Abstract

This paper develops a nonparametric test of endogeneity without the need of in-
strumental variables. The test ensues from the novel observation that the potentially
endogenous variable x is often of a nature such that the distribution of the unobserv-
able q conditional on x and covariates z is discontinuous in x at a known value in its
range. This relationship arises, for example, when x is subject to corner solutions,
default contracts, social norms or law imposed restrictions, and may be argued using
both economic theory and empirical evidence. If also x has a continuous effect on the
dependent variable y, any discontinuity of y that is not accounted by the discontinu-
ities in the covariates z is evidence that q and y are dependent conditional on z, i.e.
it is evidence of the endogeneity of x. The analysis develops the test statistics and
derives the asymptotic distribution for three versions of the test: linear, partially lin-
ear (nonparametric only on x but not on covariates) and non-parametric. Finally, the
partially linear version of the test is applied to the estimation of the effect of maternal
smoking on birth weight and on the probability of low birth weight (LBW). For the
most detailed specification in the literature (Almond, Chay, and Lee (2005)), the test
finds strong evidence of endogeneity in the case of birth weight, and very weak evidence
in the case of the probability of LBW.
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1 Introduction

A test of endogeneity is in general a test of a condition satisfied by the data generating
process under the assumption of exogeneity. A rejection in such test can only be
interpreted within the assumptions made for the data generating process. A typical
concern is when the data is modeled in a parametric framework and the test statistic
derived in that context. In that case, the problem of endogeneity is indistinguishable
from the problem generated by the wrong choice of model. Though the test perceives
both issues in the same way, the solutions are entirely different. Endogeneity requires
that a specific effort be made either to account for such unobservables with proxy
variables, fixed effects in panel data sets, etc., or to eliminate their influence by the use
of instrumental variables (IV). Wrong choice of model is solved by searching and testing
different specifications. Nonparametric tests of endogeneity allow the interpretation of
the rejection to mean exclusively the problem of endogeneity, and from that follows
their importance.

Nonparametric tests of endogeneity are not abundant in the literature. This is in
part due to the recency of the research on nonparametric IV estimators. Blundell and
Powell (2003) and Hall and Horowitz (2005) discuss the difficulties involved in such
undertaking, due to the fact that the identifying condition is an “ill-posed inverse prob-
lem.” Nonparametric IV estimators of the structural function have been proposed in
Darolles, Florens, and Renault (2003), Blundell, Chen, and Kristensen (2007), Newey
and Powell (2003), and Hall and Horowitz (2005). The available tests of endogeneity
suppose either that the potentially omitted variables are observed (see Fan and Li
(1996), Chen and Fan (1999) and Li and Racine (2007)), or that an instrumental vari-
able exists and is observed (see Blundell and Horowitz (2007) and Horowitz (2009)).
In both cases, the effects are identified and can be consistently estimated, and the test
is useful in the decision of which estimation strategy to pursue. This is no small con-
cern in nonparametric estimation, because the rates of convergence of the estimators
decrease considerably if irrelevant covariates are included, and even more if an instru-
mental variable approach is used where unrequited. The potential efficiency losses are
therefore much more substantial than in the parametric cases. The test presented in
this paper does not require that the omitted variables be observable, nor that an instru-
mental variable exist. Since most omitted variables are so because of being unobserved
and since good instrumental variables are often not readily available, a test of endo-
geneity with no such requirements is of considerable interest. Its usefulness is twofold:
first, the researcher can use the test for guidance in choosing an appropriate model,
even with a selection on observables assumption. Second, in case the research finds
evidence of endogeneity for any model with the selection on observables assumption,
the researcher is alerted that another measure needs to be taken (search for IVs, search
for another data set with more observable variables, etc.). To the author’s knowledge,
the discontinuity test is the first nonparametric test of endogeneity in the structural
function without instrumental variables and where the omitted variables may be truly
unobservable.
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The discontinuity test ensues from the new observation that the presence of endoge-
nous variables often generates discontinuities in the data generating process. Such is the
case when the distribution of the unobservable variable conditional on the potentially
endogenous variable (referred hereafter as the “running variable”) is discontinuous at
a certain value of the latter. This relationship between the running variable and other
variables arises naturally, for example, when a selected part of the population concen-
trates at a point of the running variable. Examples of such phenomena include when
the running variable is censored, in the sense that it cannot be chosen at a value above
or below a certain threshold. The group that chose exactly the threshold point may be
discontinuously different from the groups that chose immediately above the threshold.
This is commonly observed when the running variable is a consumption good, which
cannot be chosen in negative amounts. The argument in this case is that the observa-
tions at zero are discontinuously different from the observations at positive amounts.
The discontinuity may exist because among everyone who chose zero there are not only
those who would have optimally chosen zero in an unconstrained problem (who could
indeed be similar to those who chose immediately positive amounts), but also those
whose would have chosen negative amounts if they could (which can presumably be
very different from those who chose immediately positive amounts). Other examples
can be found in law imposed restrictions, such as minimum age required to drop out of
school when the running variable is years of education, or minimum salary when the
running variable is hourly wage.

Censored running variables are just one example where selected concentration hap-
pens. Another example is when the running variable is a choice variable for which
default values are specified. For example, if the running variable is a level of insurance
coverage and there exists a standard contract which can be tailored, the observations
at the standard level may be discontinuously different from the observations at the
tailored levels near the standard level. A very different example of the same nature
is when the default value is not a result of the existence of a standard contract, but
rather of a social norm. If the running variable is a continuous measure of inequality in
the distribution of inheritance among the progeny, the observations where the division
was perfectly equal may be discontinuously different from the observations at small
levels of inequality.

There are other running variables for which selected concentration at a given point
is present which are not of the types described above. An example is the running
variable “weekly hours worked.” The group that reports exactly forty hours may be
discontinuously more likely to contain individuals in professions or positions with a
fixed workload, such as the typical “9 to 5” worker. This phenomenon may generate a
discontinuity in the distribution of many variables related to the choice of profession,
industry or position conditional on the number of weekly hours worked at the exact
level of forty hours.1

The discontinuity of the distribution of the unobservable variable at a given value

1Evidence of this can be found using Current Population Survey (CPS) data and is available from the
author by request.
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of the running variable cannot be proved, but it can be argued by showing that the
observable covariates are discontinuous at the same value.2 In the application section,
the running variable “average cigarettes smoked per day” among pregnant women is
studied, and it can be shown that the levels of education, marriage status, race distri-
bution, prenatal visits, age, etc. are all discontinuous at zero cigarettes. Such discon-
tinuities may be assumed to also hold for at least one unobserved variable. Examples
of unobservable variables that may be discontinuous at zero cigarettes are whether the
pregnancy was planned (or desired), how responsible or talented is the mother, etc.

For the applicability of the test, two conditions are necessary (and, given other
regularity conditions, sufficient): that the distribution of the unobservable variables
conditional on the running variable be discontinuous at a given point, and that the
true structural function be continuous on the running variable. Take the example
of maternal smoking, and suppose that the child’s birth weight is explained by the
average daily cigarettes and other observed and unobserved variables. The requirement
is that cigarettes alone cannot explain a discontinuous change in birth weight. If this
is accepted, then if the expected birth weight conditional on smoking and covariates
is discontinuous in cigarettes at zero, it cannot be due to the effect of cigarettes on
birth weight. The discontinuity is then attributed to the discontinuous change in the
unobservable variables when comparing positive and zero cigarettes.

In principle, such a test could be performed by a nonparametric regression of the
dependent variable on the running variables and covariates, and testing whether the
resulting relationship is discontinuous at a given point for a given value of the covariates.
The rate of convergence of such regressions is typically very slow, and hence such
test would have little power. A much higher rate of convergence can be achieved
through aggregation, i.e. by estimating, for example, the average discontinuity, or the
correlation between the discontinuities and a function of the covariates, etc. For a
wide variety of such tests, this paper shows that the rate of convergence is the same
as that of a univariate nonparametric regression. Therefore, the aggregation allows
for controlling the influence of the observable covariates without loss of power due to
slower rates of convergence. This is a property observed in the literature of partial
means (see Newey (1994)), or marginal integration (see Linton and Nielsen (1995)).

The discontinuities will be estimated in a similar fashion to what is done in the
regression discontinuity literature, by estimating the one sided limits of the conditional
expectation at a point. This entails nonparametric estimation at the boundary, which
must be considered carefully due to the high boundary bias of the most commonly used
estimators, such as Nadaraya-Watson, or series estimators using orthogonal bases like
B-splines. Specifically, the bias at the boundary of the Nadaraya-Watson estimator
is of the order of the bandwidth h, which is very large compared to the order h2 of
the bias at interior points (see Fan and Gijbels (1996) for a discussion). The results
in this paper use local polynomial regression instead, which has bias of order at most
hp+1, where p is the degree of the polynomial, irrespective of the position of the point

2An analogous argument is made in the Regression Discontinuity Design literature. See Lee (2008).
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in the support. Moreover, the local polynomial estimator adapts automatically to the
estimation at the boundary, and therefore requires no more discretion from the applied
researcher than for the estimation at an interior point. Local polynomial estimators
are the preferred nonparametric approach in the regression discontinuity literature, as
can be seen in Imbens and Lemieux (2008) and Porter (2003).

Following up on the parallel with regression discontinuity, it can be argued that
the discontinuity test arises from an inversion of the identification assumptions in the
regression discontinuity design. In the latter, the distribution of the unobservables
conditional on the running variable has to be continuous at the threshold point, but
the treatment has to be discontinuous at that point. In the discontinuity test setup,
it is the treatment that has to be continuous at the threshold while the distribution of
the unobservables is discontinuous at that point.

This paper is divided in the following way. It begins by detailing the test strategy
and essential requirements somewhat informally in the context of a regression with no
covariates in section 2.1. The intention is to provide a restrictive framework where the
test is intuitively understood, so that no reader is lost on the details of the general case.
To better illustrate the point, this section is written explicitly within the example of the
effects of maternal smoking in birth weight. The following section (section 2.2) formally
defines endogeneity and develops conditions for the identification of a parameter which
equals zero if the running variable is exogenous. This parameter aggregates over some
measure of the covariates the potential discontinuities of the conditional expectation
of the dependent variable for each value of the covariates.

Section 2.3 focuses on the estimation of the parameter which identifies the endo-
geneity. If the researcher is willing to make assumptions about the functional form
of the expectation of the dependent variable conditional on the running variable and
covariates, more accurate test statistics can be developed. In the interest of applied
research, section 2.3.1 provides the test statistic and asymptotic distribution when the
conditional expectation is linear in both the running variable and the covariates, and
section 2.3.2 does the same when the conditional expectation is partially linear, i.e.
separably linear in the covariates and nonparametric in the running variable. These
tests are naturally sensitive to the wrong choice of model, but they are easy to im-
plement. The partially linear case is particularly flexible, because it allows for the
inclusion of a very large number of covariates, which in practice is not always possible
in fully nonparametric specifications. Section 2.3.3 presents the fully nonparametric
test, which has the same rates of convergence as the partially linear case.

The assumptions are all expressed in terms of conditional expectations and probabil-
ity distributions. However, inside of a specific model it is possible to propose primitive
conditions that may be more interesting from the applied researcher’s point of view.
Throughout all the theory sections, an example is carried out of a model where the
discontinuity in the distribution of the unobservable variable is created by censoring in
the running variable. For example, the identification section has a subsection (2.2.1)
where the identification strategy is explicitly shown in a model with censoring. Ex-
amples 1, 2 and 3 propose specific shapes of the functions in the censored model that
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imply that the conditional expectation is linear, partially linear or nonparametric re-
spectively. Finally, the application section 3 presents a practical example of a problem
that can be modeled within the censoring framework. It is an implementation of the
test in the partially linear case to the effects of maternal smoking in both birth weight
and in the probability of low birth weight (LBW), defined as birth weight lower than
2500 grams.

The test is not hard to implement. The linear case is trivial, and for the partially
linear and fully nonparametric cases, all that is required for the estimation of the test
statistic and its variance is the computation of some local polynomial regressions at
the threshold point and some sample averages. The discretion requirements are only
the choice of bandwidth, kernel type and the degree of the polynomial.

Section 3 discusses the difficulties involved in experimentation in the study of the
effects of maternal smoking in birth weight, which justifies the need of careful studies
using non-experimental data, even with the assumption of selection on observables.
In this context, an IV-free test of endogeneity is of particular interest. Almond et al.
(2005) is to the author’s knowledge the most exhaustive of these studies, and in section
3 the partially linear version of the discontinuity test is applied to the most complete
specification of that paper.3 For all bandwidths, the discontinuity test shows strong
evidence of endogeneity in the birth weight equation at the 95% confidence level. In
the equation of the probability of LBW, Almond et al. (2005)’s specification is weakly
rejected at the 95% confidence level when the optimal bandwidth according to the
cross-validation method is used, and not rejected at the 99% confidence level. For all
the other bandwidths, their specification is not rejected at the 95% confidence level. If
this is taken as evidence of none or low endogeneity in the probability of LBW equation,
Almond et al. (2005)’s specification can be used to estimate how the probability of low
birth weight is affected by smoking each additional daily cigarette, that is, the effect
of smoking one cigarette versus none, two versus one, and so on.4

2 The modeling framework and the test statistic

Notation 1. Throughout the paper, P refers to the probability function defined for
events in a probability space. For example, P(u 6 c) is the probability of u 6 c. F (c) =
P(u 6 c) refers to the cumulative distribution function, and dF = F (x + dx) − F (x),
which is the probability density function when F is differentiable. If u = (x, z) is
multivariate, define Zx as the closure of the set {z ; dF (x, z) > 0} (i.e. Zx is the
support of dF (z | x)), F (x) =

∫ x
−∞

∫
dF (x, z) the marginal distribution of x, and

3It should be noted that the specification used in this paper is the same as in Almond et al. (2005)
with respect to the covariates. A crucial difference in the approaches is that Almond et al. (2005)’s main
explanatory variable is a binary variable for whether the mother smoked during pregnancy, while in the
application in this paper the main explanatory variable is the daily number of cigarettes smoked, which is
allowed to enter non parametrically in the structural equation.

4See Cattaneo (2009) for a study of the effects on birth weight of smoking 1-5 cigarettes versus none,
6-10 cigarettes versus 1-5 and so on, using the same specification as Almond et al. (2005) under the selection
on observables assumption.
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X is the closure of the set {x ; dF (x) > 0} (i.e. it is the support of dF (x)). If
u = (u1, . . . , ul), ||u|| =

»
u2

1 + · · ·+ u2
l , and uT is the transpose of u. E denotes

the expectation operator, Cov(u, u′) = E(uu′T )− E(u)E(u′)T , and Var(u) = Cov(u, u)
when these expectations exist. For derivatives, g(r)(u) means the rth-derivative of the
function g with respect to u, which can also be expressed as d r

dur g(u). If g is a vector,
the derivative of the vector is the vector of the derivatives. The notation u ↑ c implies
that u converges to c and u > c, and u ↑ c means the same when u > c. The notation
u ∼ N (µ, v) means that the random variable u is distributed as a gaussian with mean
µ and variance v. If v = 0, then u = µ with probability one. Where omitted, assume
all written moments exist.

2.1 A simple model

This section presents an (informal) account of the main identification idea in a model
with no covariates. The formal exposition in the next section will of course account for
covariates and a more complex model structure. To help make the exposition clearer,
an example where birthweight is modeled as a function of maternal smoking is carried
over in this section as the motivation for the model.

Let birth weight be represented by the random variable y, and maternal smoking
by the continuous random variable x. Smoking and birth weight have a structural
relationship expressed in the model

y = f(x, q) + ε,

where q and ε are unobservable, ε is independent of both x and q, and f is continuous
in x. The interest is to determine whether birth weight is also affected by a variable
q that is dependent of x. To keep this preliminary section on an intuitive level, q
will be referred to as the mother’s “type.” The mother type can be related to the
level of smoking and the birth weight of her offspring, but assume that the relation
between smoking and the type is of a discontinuous nature, more specifically that the
distribution of the type conditional on the level of smoking be discontinuous at zero
and continuous for positive levels of smoking. In more mundane words, assume that
the mothers that didn’t smoke are of discontinuously different types from the mothers
that smoke positive amounts, even if small. This condition can be understood within
the context of censored variables: suppose there are types of mothers that would choose
negative amounts of smoking, but the restriction to non negative values would force this
group to smoke only zero. This way of understanding why the unobservables would be
discontinuously different at zero cigarettes may be helpful, but it is not necessary. Many
justifications can be offered for this phenomenon, and in the application section (3) it
is shown that the discontinuity at zero cigarettes in fact exists for several observable
covariates. What remains of this section will model smoking as a real-valued censored
variable, and its relation to the mother type, q, as continuous and invertible (and
therefore monotonic), which will make all the equations explicit.
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Suppose that mothers could choose how much to smoke in positive and negative
levels. This latent variable is expressed by x∗, so that x = max{0, x∗}, and it is related
to the mother type, q, through the function g, which is continuous and invertible (and
therefore monotonic), hence

x∗ = g(q)

which is to say that there is a one-to-one relation between the mother type and how
much she would smoke in case she could choose any amount in the real line. Assume
that a mother who would choose to smoke zero or a positive amount will actually do so,
and a mother who would chose to smoke negative amounts will smoke zero. Suppose
g is decreasing, so higher types smoke less. Then, mothers who smoked a positive
amount x are in fact of the type g−1(x), and the mothers that did not smoke are of the
types Q(0) = {q; q > g−1(0)}. If the set of mothers who would choose to smoke strictly
negative amounts has positive probability, then the expected type of the mothers that
did not smoke is higher than g−1(0), and therefore, there is a discontinuity in the
distribution of the types conditional on the smoking level at zero cigarettes.

This discontinuity can be used to gauge whether birth weight is affected by the
mother type. The expected birth weight conditional on the smoking level is given by

E(y |x) =

®
f(x, g−1(x)), if x > 0
E
(
f(0, g−1(x∗)) | x∗ 6 0

)
, if x = 0

If the mother’s type does not affect birth weight (i.e. q is independent of y), then f

is constant in q with probability one, and therefore E(y | x) = f(x, g−1(0)). Hence,
since f is continuous in x, E(y | x) will be continuous in x at x = 0. In other words,
if birth weight is a continuous function of smoking, a discontinuity at zero is reflecting
the presence of something else that affects birth weight and is discontinuous at zero, an
unobservable variable correlated with smoking which here is called the mother’s type.
In that case, x is endogenous. Moreover, the test derives its power from the fact that

y

x∗

E(y|x∗)

E(y|x∗ 6 0)

Figure 1: Here, f varies in q, and hence E(y | x) = E(y | x∗) = f(x∗, g−1(x∗)) when x > 0, but

E(y | x = 0) = E(f(0, x∗ | x∗ 6 0) < f(0, g−1(0)), and hence E(y | x) is discontinuous at x = 0.
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the more birth weight is affected by the mother’s type, the larger the discontinuity of
E(y | x) at x = 0 (see figure 1).

The discontinuity test of endogeneity consists of estimating the discontinuity of
E(y | x) at zero and testing whether it is significant. If covariates are added to the
model, the discontinuity in figure 1 would exist for the expected birth weight conditional
on cigarette number for each value of the covariates. The discontinuity test in this more
complex context requires that these discontinuities be aggregated somehow, which is
done in the following section.

The fundamental assumption for identification of the test is that birthweight is a
continuous function of smoking (f is continuous in x). For the test to have power,
the two fundamental assumptions are that there are mothers of the highest types
(P(q > g−1(0)) > 0, or P(x∗ < 0) > 0) and that the mothers that did not smoke are of
discontinuously different types than the mothers that smoked (E(q | x) is discontinuous
at x = 0). The driving assumptions in the general case with covariates are similar to
these.

2.2 Identification

Assumption 2.1. Let x be a continuous observable random variable X ⊂ R such that
x̄ ∈ X . Let z be a vector of observable random variables, and q be a scalar unobservable
variable. Then

1. E(y |x, z, q) is continuous in x at x = x̄ for all the values of z and q.

2. limx↓x̄ dF (q |x, z) and limx↑x̄ dF (q |x, z) exist for all the values of z.

3. There exists a neighborhood N of x̄ such that N ⊂ X . Also, the sets Zx are
identical, ∀x ∈ N .

Define the quantity

∆(z) = E(y |x = x̄, z)−
Å
α lim
x↓x̄

E(y |x, z) + (1− α) lim
x↑x̄

E(y |x, z)
ã
,

where if x̄ is a lower boundary point in X (as in the maternal smoking example),
α = 1, and if x̄ is at the upper boundary, α = 0. ∆(z) is the weighted right and left
discontinuity of E(y |x, z) at x = x̄. Let θ be the aggregation of the ∆(z) defined as

θ =
∫
G(∆(z), z)dν(z) (1)

for a known function G and a measure ν on the range of the z.

Definition 1. Let y be the dependent variable, and x and z be observable explanatory
variables. Then x is said to be exogenous if

P(E(y |x, z, q) = E(y |x, z)) = 1.
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for any variable q such that q and x are not independent conditional on z. Otherwise,
x is endogenous.

This paper presents a test of the null hypothesis H0, that x is exogenous, against
the alternative hypothesis, H1, that x is endogenous. The test will depend on the
estimation of the parameter θ. The following result states that x exogenous implies
θ = 0. This is a fundamental result in establishing that a test based on θ is well defined,
in the sense that it has the correct asymptotic size under H0.

Theorem 1. If ν is identified, G(0, z) = 0, ∀z and assumptions 2.1 and A.1 (see
remark 2.2.2) are satisfied, then θ is identified and is equal to zero if x is exogenous.

The proof is in appendix A.1.1. Section 2.3 shows that θ is in fact estimable
(pending more conditions), and its estimator is the discontinuity test statistic. An
example of an identified ν is the distribution of z, which yields θ = E(∆(z), z)). Another
possibility would be to measure the average square of the discontinuities, θ = E(∆(z)2),
using G(a, b) = a2.

Of particular interest is the case when G(a, b) = a g(b), for a given real valued
function g in the domain of z, and ν(z) = F (z |x = x̄). In this case,

θ = E(∆(z)g(z) |x = x̄)

= E(y g(z) |x = x̄)− (2)

−
ï
αE

Å
lim
x↓x̄

E(y |x, z) g(z)
∣∣∣x = x̄

ã
+ (1− α)E

Å
lim
x↑x̄

E(y |x, z) g(z)
∣∣∣x = x̄

ãò
,

because of the law of iterated expectations. This parameter is useful because its esti-
mation does not require the estimation of E(y |x = x̄, z), and because E(y g(z) |x = x̄)
can be estimated at the rate

√
n if P (x = x̄) > 0.

The following assumption determines in which cases the discontinuity has power.

Assumption 2.2. Let limx↓x̄ dF (q |x, z) exist if x̄ is an interior point or the left
boundary point in X , and limx↑x̄ dF (q |x, z) exist if x̄ is an interior point or the right
boundary point in X . If x̄ 6 x, ∀x ∈ X , let α = 1, and if x̄ > x, ∀x ∈ X , then α = 0.
Define

ζ(q, z) := dF (q |x = x̄, z)−
Å
α lim
x↓x̄

dF (q |x, z) + (1− α) lim
x↑x̄

dF (q |x, z)
ã
, for α ∈ [0, 1].

Then, P(ζ(q, z) 6= 0 |x) > 0, for all the values of x in a neighborhood of x̄.

Assumption 2.2 implies that dF (q |x, z) discontinuous at x̄. The discontinuity may
be different from the right or left hand side, or even exist in only one of the sides. The
assumption also stipulates that the discontinuity is one sided if x̄ is at the boundary
of X . If x̄ is an interior point, previous knowledge of the process can be used to choose
α more effectively. If the right and left limits of dF (q |x, z) are the same, the choice of
α is irrelevant, and ζ(q, z) := dF (q |x = x̄, z)− limx→x̄ dF (q |x, z).

Assumption 2.2 defines x̄ implicitly. In other words, the situations where the dis-
continuity test has power are those where a value x̄ in X can be found such that
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assumption 2.2 is believed to hold. The following result will be useful in proving that
the asymptotic power of the test converges to one under H1 as the sample size increases.

Result 1. If assumptions 2.1, 2.2 and A.1 hold, then in general, if x is endogenous,
θ 6= 0.

It will be said that the result is true whenever x endogenous implies θ 6= 0. To
understand this result, observe that by assumption A.1,

θ =
∫
G

Å[ ∫
E(y |x = x̄, z, q)dF (q |x = x̄, z)−

− α
∫

E(y |x = x̄, z, q) lim
x↓x̄

dF (q |x, z)

− (1− α)
∫

E(y |x = x̄, z, q) lim
x↑x̄

dF (q |x, z)
]
, z

ã
dν(z)

=
∫
G

Å∫
E(y |x = x̄, z, q)ζ(q, z), z

ã
dν(z) (3)

Assumption 2.2 guarantees that ζ(q, z) 6= 0 with positive probability. However, it
cannot be guaranteed that θ 6= 0 unless stronger requirements are made in all G, ν,
E(y | x, z) and even the shape of ξ(q, z). Such requirements can easily be made, and
section 2.2.1 presents an example where primitive conditions are derived such that
result 1 holds always instead of only in general. This paper refrains from presenting
such conditions in the general case because they would be unnecessarily restrictive. In
other words, the cases where θ = 0 even though x is endogenous have zero measure in
the functional spaces where the estimators will be defined, and are of no concern. If
such a possibility is feared, different choices of G and ν should be attempted. Hence,
the results concerning the power of the test will hold if result 1 holds.

Remark 2.2.1. The discontinuity test could simply consist on the estimation of ∆(z)
for some value of z and then testing whether it is equal to zero. However, such a test
may have little power because ∆(z) can in general be estimated only at very low rates of
convergence. In the interest of the accuracy of the estimation, and to avoid the problem
that a wrong choice of z could occasion, it is preferable to aggregate the discontinuities
somehow, and from this derives the interest of the parameter θ.

Remark 2.2.2. Condition A.1 in appendix A.1.1 requires the interchangeability of
the integral and the limits in the following non-trivial specification. Let a sequence
xn ↓ x̄, define fn(q) = E(y |xn, z, q), f(q) = E(y | x̄, z, q), µn(q) = F (q |xn, z) and
µ(q) = d limn→∞ F (q |xn, z). By assumption 2.1 (1), fn → f pointwise on q. Observe
that by the definition of the Riemann-Stieltjes integral,

lim
n→∞

∫
fn dµn = lim

n→∞
lim

∆q→0

∑
fn(qc)µn(∆q),

where qc is any point in the intervals of size ∆q. Then, assumption A.1 can be ex-
pressed as limn→∞

∫
fn dµn =

∫
f dµ. Though primitive conditions for this are not

11



specified here, they can be established with measure theory convergence theorems, and
by changing the order of the limits and requiring that the support of dF (q) be compact.

Remark 2.2.3. The parameter used in the case with no covariates z cannot be used in
the case where the z are present. In that case, E(y |x = x̄) is compared with the limit
limx→x̄ E(y |x). Observe that the parameter θ controls the distribution of z, because
it uses the fixed measure ν to weight the different z. In the simple comparison of
limx→x̄ E(y |x) and E(y |x = x̄), the distribution of z, which is often discontinuous at
x = x̄ can be responsible for a difference even when x is exogenous. To see this, notice
that if x is exogenous, E(y |x, z, q) = E(y |x, z), and provided the limit can exchange
places with the integral sign,

lim
x→x̄

E(y | x) = lim
x→x̄

∫
E(y |x, z)dF (z | x)

=
∫

E(y | x̄, z) lim
x→x̄

dF (z | x)

and
E(y |x = x̄) =

∫
E(y | x̄, z) dF (z |x = x̄)

Since limx→x̄ dF (z | x) and dF (z |x = x̄) can be and often are different, E(y |x) can be
discontinuous at x̄ even when x is exogenous, and therefore this comparison is useless
for the detection of endogeneity.

Remark 2.2.4. Generalization for multivariate q is straightforward. It is enough
to understand dF (q |x, z) as a multivariate probability distribution, and the limits
limx↓x̄ dF (q |x, z) and limx↑x̄ dF (q |x, z) as multivariate limits. All conditions and the-
orems remain the same.

Remark 2.2.5. Theorem 1 allows for random variables to enter the model in very
flexible ways. Suppose

y = f(x, z, q, ε)

where ε is independent of x, z and q. Provided f is continuous in x at x̄, it is easy to
show that E(y |x, z, q) will also be continuous at x̄. See proof of this in appendix A.1.2.

2.2.1 An example in censoring

Primitive conditions for assumptions 2.1 and 2.2 can be established in a more intuitive
setup inside a model where x is censored. Such situations could naturally develop, for
example, when x is the result of a cornered optimization problem. This is the case
in the smoking example, where smoking is a choice variable that cannot be chosen in
negative values. This model and the suggested assumptions are not the weakest for
identification of θ; they just illustrate the point in an intuitive way.

Suppose an unobservable variable x∗ is only observed in its censored form x =
max{x∗, 0}, ε is independent of the variables x, z and q, and the variables y, x, x∗, z,

12



q and ε are related in the structural equations

y = f1(x, z, q) + ε and x∗ = f2(z, q).

Then

=⇒ E(y |x, z) =

{
f1(x, z, f−1

2 (x; z)), if x > 0,
E(f1(0, z, f−1

2 (x∗; z)) |x∗ 6 0, z), if x = 0.
(4)

In this model, instead of assumptions 2.1 and 2.2, consider the following assumption:

Assumption 2.3.

1. f1 is continuous in x at 0, and if f1 varies on q, it is continuous and increasing
in q.

2. f2 is strictly decreasing in x∗, and f2(·; z)−1 is continuous in x∗, ∀z.

3. F (x∗ | z) > 0, for some value x∗ < 0, ∀z.

Given the model and assumption 2.3,

∆(z) = E(f1(0, z, f−1
2 (x∗; z)) |x∗ 6 0, z)− f1(0, zi, f−1

2 (0, zi)) > 0

if and only if f1 varies in q. Hence, if G(∆(z), z) = ∆(z)g(z), for a strictly positive
function g, and suppose ν is not zero everywhere, then θ =

∫
∆(z)g(z) dν(z) > 0 if and

only if x is endogenous.
In the smoking example, if birthweight is y, smoking is x, x∗ is “intended” smoking,

and the z are a set of covariates, assumption 2.3 implies that even if the covariates
are held constant, the average birthweight of babies born to nonsmoker mothers will
be discontinuously higher than the birthweight of babies born to mothers that smoked
positive amounts if and only if smoking is endogenous.

2.3 The discontinuity test of endogeneity

The discontinuity test consists of the estimation of θ and testing whether it is equal to
zero. A natural approach would be to adopt

θ̂ =
∫
G(∆̂(z), z)dν̂(z),

where ∆̂(z) = Ê(y |x = x̄, z) −
Ä
αÊ(y | x̄, z)↓ + (1− α)Ê(y | x̄, z)↑

ä
, Ê(y | x̄, z)↓ is an

estimator of limx↓x̄ E(y |x, z) and Ê(y | x̄, z)↑ is an estimator of limx↑x̄ E(y |x, z).
As explained in section 2.2, the tests whereG(∆(z), z) = ∆(z) g(z) and µ(z) = F (z |

x = x̄) are of particular interest, because they eliminate one step in the estimation of
θ. The rest of this section will develop the discontinuity test for such choices of G and
µ. Let the data satisfy
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Assumption 2.4.

1. The observations (yi, xi, zi), i = 1, ..., n are i.i.d., zi = (z1
i , . . . , z

d
i )T . Define

εi = yi − E(yi | xi, zi).

2. 0 < P(xi = x̄) < 1.

3. E(|∆(zi) g(zi)|2+ξ11(xi = x̄)) < ∞ for some ξ1 > 0. VA := Var(∆(zi) g(zi) |
xi = x̄).

Define p̂x̄ = 1
n

∑n
i=1 1(xi = x̄), the estimator of P (xi = x̄). The suggested estimator

of θ is, from equation (2),

θ̂ =
1
p̂x̄

1
n

n∑
i=1

î
yi − αÊ(yi | x̄, zi)↓ − (1− α)Ê(yi | x̄, zi)↑

ó
g(zi) 1(xi = x̄). (5)

Define E(yi | x̄, zi)↓ := limx↓x̄ E(yi | xi = x, zi), E(yi | x̄, zi)↑ := limx↑x̄ E(yi | xi =
x, zi), and also define Γ̂(z)+ := Ê(y | x̄, z)↓ − E(y | x̄, z)↓, and Γ̂(z)− := Ê(y | x̄, z)↑ −
E(y | x̄, z)↑. then it is possible to write

θ̂ − θ = An −Bn

where

An =
1
p̂x̄

1
n

n∑
i=1

∆(zi)g(zi)1(xi = x̄)− E(∆(zi)g(zi) |xi = x̄) (6)

Bn =
1
p̂x̄

1
n

n∑
i=1

[αΓ̂(zi)+ + (1− α)Γ̂(zi)−]g(zi)1(xi = x̄). (7)

Under the null hypothesis that xi is exogenous, ∆(zi) = 0, and therefore An = 0,
though results are shown when An 6= 0 for power consideriations. The asymptotic
distribution of An does not depend on the choice of estimators. Assumption 2.4 item (1)
and the LLN imply that p̂x̄

p−→ P(xi = x̄), and items (1) and (3) and the CLT imply that
√
n
(

1
n

∑n
i=1 ∆(zi)g(zi)1(xi = x̄)− E(∆(zi)g(zi)1(xi = x̄)

)
is asymptotically normally

distributed. Finally, item (2), the Continuous Mapping theorem and Slutsky’s theorem
imply that

√
nAn

d−→ N (0, VA) (8)

The asymptotic behavior of Bn, and hence of θ̂, depends on the assumptions one is
willing to make on the nature of E(yi | x̄, zi)↓ and E(yi | x̄, zi)↑, and the related choice of
estimators. The following sections propose increasingly complex models of E(yi|xi, zi)
and corresponding estimators, and derive the asymptotic distributions of the test under
appropriate assumptions. Section 2.3.1 presents the linear case, the partially linear case
is developed in section 2.3.2, and finally section 2.3.3 presents the fully non-parametric
case. The three sections are written so they stand alone. No assumption or result is
shared across the sections, and therefore they can be read and consulted independently.
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2.3.1 The linear case

Suppose that for x > x̄, the conditional expectation satisfies

E(y |x, z) = β+x+ zT γ+, (9)

and for x < x̄, the conditional expectation satisfies

E(y |x, z) = β−x+ zT γ−.

If x̄ is the left boundary of X , then β− = 0 and γ− = 0. If x̄ is the right boundary of
X , then β+ = 0 and γ+ = 0.

Example 1. (Censoring) Equation (9) can be derived inside the censoring model pre-
sented in section 2.2.1. Suppose

f(x, z, q) = αxx+ zTαz + αqq

g(z, q) = zTπz + q

then, substituting into equation (4) for x > 0,

E(y |x, z) = (αx + αq)x+ zT (αz − αqπz),

which translates into equation (9) if β+ := αx + αq and γ+ := αz − αqπz.

In the linear case, E(yi | x̄, zi)↓ = β+x̄ + zTi γ
+, and E(yi | x̄, zi)↑ = β−x̄ + zTi γ

−.
β+ and γ+ can be estimated by simply regressing yi on xi and zi using only the
observations for which xi > x̄, so that Ê(yi | x̄, zi)↓ = β̂+x̄+ zTi γ̂

+, and analogously for
Ê(yi | x̄, zi)↑.

Let Xi = (xi, zTi )T , δ+ = (β+, γ+T )T and δ− = (β−, γ−T )T , then if x̄ is an interior
point,

δ̂+ =

(
n∑
i=1

XiX
T
i 1(xi > x̄)

)−1 n∑
i=1

Xi yi 1(xi > x̄),

δ̂− =

(
n∑
i=1

XiX
T
i 1(xi < x̄)

)−1 n∑
i=1

Xi yi 1(xi < x̄).

If x̄ is the left boundary of the X , then δ̂− = 0. If x̄ is the right boundary of the X ,
then δ̂+ = 0. Let Ê(g(zi) | xi = x̄) := 1

p̂x̄
1
n

∑n
i=1 1(xi = x̄)g(zi) and Ê(g(zi)zi | xi =

x̄) := 1
p̂x̄

1
n

∑n
i=1 1(xi = x̄)g(zi)zi, then from equation (7),

Bn =

ñ
Ê(g(zi) | xi = x̄) x̄
Ê(g(zi)zi | xi = x̄)

ôT Ä
α(δ̂+ − δ+) + (1− α)(δ̂− − δ−)

ä
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Assumption 2.5.

1. E(|g(zi)| | xi = x̄) <∞ and E(||g(zi)zi|| | xi = x̄) <∞.

2. Var(εi | xi, zi) = σ2 <∞. (See below remark 2.3.1 about relaxing this condition.)

3. E(XiX
T
i 1(xi > x̄)) < ∞ is positive definite, and E(XiX

T
i 1(xi < x̄)) < ∞ is

positive definite.

4. If x̄ is the left boundary of X , then then α = 1, and if x̄ is the right boundary of
X , then α = 0.

Theorem 2. If assumptions 2.1, 2.4 and 2.5 hold, then

√
n(θ̂ − θ) d−→ N (0, VA + VB) (10)

where

VB = σ2

ñ
E(g(zi) | xi = x̄) x̄
E(g(zi)zi | xi = x̄)

ôT[
α2E(XiX

T
i 1(xi > x̄))−1+

+ (1− α)2E(XiX
T
i 1(xi < x̄))−1

]ñ E(g(zi) | xi = x̄) x̄
E(g(zi)zi | xi = x̄)

ô
.

The proof is similar to the classical proofs of the asymptotic properties of the OLS
estimator. The absence of a term to account for the correlation of An and Bn follows
because

Ä
α(δ̂+ − δ+) + (1− α)(δ̂− − δ−)

ä
is independent of An and of Ê(g(zi)zi | xi =

x̄), since the two latter only use observations for which xi = x̄, while the former has
zero mean and only uses observations for which xi 6= x̄. The absence of a cross term in
VB happens because δ̂+ and δ̂+ are built using different parts of the sample, and are
therefore independent. See the proof in detail in the appendix A.2.1.

Theorem 3. Under H0: xi is exogenous, θ = 0 and
√
nθ̂

d−→ N (0, VB). If assumptions
2.1, 2.4 and 2.5 hold, VB can be consistently estimated by

V̂B = σ̂2

ñ
Ê(g(zi) | xi = x̄) x̄
Ê(g(zi)zi | xi = x̄)

ôT[
α2Ê(XiX

T
i 1(xi > x̄))−1+

+ (1− α)2Ê(XiX
T
i 1(xi < x̄))−1

]ñ Ê(g(zi) | xi = x̄) x̄
Ê(g(zi)zi | xi = x̄)

ô
,

where

Ê(XiX
T
i 1(xi > x̄)) =

1
n

n∑
i=1

XiX
T
i 1(xi > x̄),

Ê(XiX
T
i 1(xi < x̄)) =

1
n

n∑
i=1

XiX
T
i 1(xi < x̄),

σ̂2 =
1

1− p̂x̄

[
α

1
n

n∑
i=1

(yi −XT
i γ̂

+)21(xi > x̄) + (1− α)
1
n

n∑
i=1

(yi −XT
i γ̂
−)21(xi < x̄)

]
.
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The convergence in probability of σ̂2 to σ2 is established by noticing that σ̂2 is sim-
ply a weighted average of two standard estimators of the variance of εi using weighted
least squares. The convergence of V̂B follows from the LLN applied to Ê(g(zi) | xi = x̄),
Ê(g(zi)zi | xi = x̄), Ê(XiX

T
i 1(xi > x̄)) and Ê(XiX

T
i 1(xi < x̄)) (given assumptions

2.4 (1) and 2.5 (1) and (3)) and Slutsky’s theorem. The following theorem gives the
discontinuity test properties in the linear case.

Theorem 4. Let 0 6 λ 6 1, Φ be the standard normal cumulative distribution func-
tion, and cλ = Φ−1(λ). Then if theorems 1, 2 and 3 hold, under H0: x is exogenous,

P

Ñ
√
n

θ̂»
V̂B

6 cλ

é
→ λ as n→∞.

moreover, if result 1 is true, then under H1: x is endogenous,

P

Ñ
√
n

θ̂»
V̂B

> cλ

é
→ 1 as n→∞,

and under the local alternatives θ√
n

,

P

Ñ
√
n

θ̂»
V̂B

6 cλ

é
→ Φ

Ç
cλ
√
VB − θ√

VA + VB

å
as n→∞.

See proof in appendix A.2.2.

Remark 2.3.1. Homoskedasticity can easily be relaxed. Let X be the matrix whose
rows are the XT

i , X+ be the matrix whose rows are the 1(xi > x̄)XT
i , and X− be the

matrix whose rows are the 1(xi < x̄)XT
i . Suppose Var(ε | X) = Σ, then

VB =

ñ
E(g(zi) | xi = x̄) x̄
E(g(zi)zi | xi = x̄)

ôT[
α2V1 + (1− α)2V2

]ñ E(g(zi) | xi = x̄) x̄
E(g(zi)zi | xi = x̄)

ô
,

where

V1 = E(XiX
T
i 1(xi > x̄))−1E

Å
plim
n→∞

X+TΣX+

n

ã
E(XiX

T
i 1(xi > x̄))−1,

V2 = E(XiX
T
i 1(xi < x̄))−1E

Å
plim
n→∞

X−TΣX−

n

ã
E(XiX

T
i 1(xi < x̄))−1,

and plim
n→∞

denotes the limit in probability, supposing the limits exist. V1 can be estimated

using the Eicker-White covariance matrix of an OLS regression of the yi onto xi and
zi using only observations such that xi > x̄, and V2 can be estimated analogously, using
only observations such that xi < x̄.
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2.3.2 The partially linear case

Suppose that for x > x̄, the conditional expectation satisfies

E(yi |xi, zi) = τ+(xi) + zTi γ
+, (11)

and for x < x̄, the conditional expectation satisfies

E(yi |xi, zi) = τ−(xi) + zTi γ
−,

where τ+(x̄)↓ := limx↓x̄ τ
+(x) and τ−(x̄)↑ := limx↑x̄ τ

−(x) exist. If x̄ is the left bound-
ary of X , then τ−(xi) = 0 for all xi and γ− = 0. If x̄ is the right boundary of X , then
τ+(xi) = 0 for all xi and γ+ = 0.

Example 2. (Censoring) Equation (11) can be derived inside the censoring model
presented in section 2.2.1. Suppose

f(x, z, q) = ψ1(x) + z′αz + αqq,

g(z, q) = ψ2(z′πz + q),

where ψ2 is invertible. Then, substituting into equation (4) for x > 0,

E(y |x, z) = (ψ1(x) + αqψ
−1
2 (x))x+ zT (αz − αqπz).

which translates into equation (11) if τ+(x) := ψ1(x) + αqψ
−1
2 (x) ∀x, and γ+ :=

αz − αqπz.

In the partially linear case, E(yi | x̄, zi)↓ = τ+(x̄)↓ + zTi γ
+, and E(yi | x̄, zi)↑ =

τ−(x̄)↑ + zTi γ
−. Hence, Ê(yi | x̄, zi)↓ = τ̂+(x̄)↓ + zTi γ̂

+, and Ê(yi | x̄, zi)↑ = τ̂−(x̄)↑ +
zTi γ̂

−. Define Ê(g(zi) |xi = x̄) = 1
p̂x̄

1
n

∑n
i=1 g(zi)1(xi = x̄) and Ê(g(zi)zi |xi = x̄) =

1
p̂x̄

1
n

∑n
i=1 1(xi = x̄)g(zi)zi, then

Bn = Ê(g(zi) |xi = x̄)
[
α(τ̂+(x̄)↓ − τ+(x̄)↓) + (1− α)(τ̂−(x̄)↑ − τ−(x̄)↑)

]
+ Ê(g(zi)zi |xi = x̄)T

[
α(γ̂+ − γ+) + (1− α)(γ̂− − γ−)

]
(12)

The following discussion refers to the estimation of τ+(x̄)↓ and γ+. τ−(x̄)↑ and γ−

are estimated analogously. The estimation of the parametric component in the partially
linear regression has been widely discussed in the literature. In the later papers, the
generally adopted technique is that of subtracting the conditional expectation of yi
given xi so as to eliminate the nonparametric part. The resulting equation is

yi − E(yi |xi) = (zi − E(zi |xi))T γ+ + εi, for xi > x̄. (13)

The coefficient of the constant term among the covariates is not identified and is elim-
inated in the subtraction, so zi in this equation does not include a constant term.

Robinson (1988) first suggested this approach. He estimated the conditional ex-
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pectations using kernel regression, and peformed an OLS regression of yi − Ê(yi |xi)
on zi − Ê(zi |xi), to obtain γ̂+. Robinson showed that the estimated γ̂+ converges to
γ+ at the rate

√
n, even though the regression includes nonparametric plugins. The

following literature established the same
√
n rate of convergence and the asymptotic

distribution of γ+ for an array of different nonparametric plugins. See for example
Linton (1995) when the nonparametric component is estimated using local polynomial
regression, and Li (2000) when the nonparametric component is estimated using series
or spline orthogonal bases.

The basic technique for the estimation of the nonparametric component is rather
intuitive. It consists of a nonparametric regression of yi − zTi γ̂+ on xi, and the varia-
tions depend on the nature of γ̂+ and the regression technique chosen. Since the rates
of convergence of this component are slower than

√
n, the asymptotic behavior of the

estimated nonparametric component is a simple extension of the results for regular
nonparametric regression, because the estimated parametric component is estimated
at the faster rate

√
n. The case of interest in this paper is more delicate, because

the value of interest is τ+(x̄)↓, which is the limit of the nonparametric component at
a boundary point. There are two difficulties, the first is that nonparametric estima-
tion at boundary points requires especial attention in the choice of the estimator and
in the asymptotic treatment. For this reason τ+(x̄)↓ is estimated using local poly-
nomial regression, since this technique has been shown to possess excellent boundary
properties. Though other techniques could also be used, such as for example a simple
kernel regression using boundary kernels, the local polynomial regression is also desir-
able in that it requires no especial tailoring for the boundaries. Hence, the researcher
needs to apply no extra discretion than for a regular nonparametric regression. Porter
(2003) developed the asymptotic theory for the local polynomial estimator of the dis-
continuity in the regression discontinuity design. His method is to estimate the right
and left limits of the discontinuous function at the point of discontinuity using local
polynomial regression, and he derives results for arbitrary choice of the polynomial
degree. This paper provides the extension of his results to the partially linear case, in
which the dependent variable in the local polynomial regression, yi − zTi γ̂+, contains
a plugin estimator of the parametric component. Though from an asymptotic point
of view the extension is very simple, this paper explicits the variance terms up to the
O(h) magnitude, which requires the careful consideration of the covariances between
the parametric and nonparametric parts of the estimation. Moreover, the results are
presented for a generic nonparametric plugin for Ê(yi | xi) and Ê(yi | xi), so that
the plugins can be estimated with other, sometimes more practical techniques, such as
series estimators.

The second difficulty is that x̄ is a point with positive probability in X . The avail-
able theory on local polynomial estimators relies on the existence of a density function
in a neighborhood of x̄. However, when using local polynomial estimators to estimate
the limit of a function at a point, the observations at the point itself are not used. In
fact, although Porter (2003) requires the existence of a density function, the proofs
do not use the entire support of dF (x) at once, but rather separate the observations
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to the right and to the left of x̄. This paper adapts Porter’s result using distribution
functions conditional on xi 6= x̄, which have a density function by assumption, though
with possibly different right and left limits at x̄. As a consequence the same results
as in Porter (2003) can be derived in terms of limits, therefore generalizing Porter’s
results to allow both for the positive probability of xi = x̄, and also for the density
function of F (xi | xi = x) to have different right and left limits at x̄. It is important
to notice that because the limits may be different, the variance estimator suggested by
Porter in theorem 4 cannot be used in this case. Theorem 6 below proposes a different
estimator which allows for the different right and left limits of the density at x̄.

If x̄ is an interior point, or is at the left boundary of the X , the estimator τ+(x̄)↓

is defined in the following way. Given the kernel function k, the smoothing parameter
h, the polynomial degree p, and let â0, â1, . . . , âp be the solution the problem

min
a0,...,ap

1
n

n∑
j=1

k
(xj − x̄

h

)
1(xj > x̄) [yj − zTj γ̂+ − a0 − a1(xj − x̄)− ...− ap(xj − x̄)p]2,

the local polynomial estimator of τ+(x̄)↓ is given by

τ̂+(x̄)↓ = â0 = eT1 (X̃TW+X̃)−1X̃TW+(Y − Zγ̂+), (14)

where e1 = (1, 0, . . . , 0)T has dimension 1 × (p + 1), X̃ has rows equal to (1, (xj −
x̄), . . . , (xj−x̄)p), for j = 1, ..., n, W+ is a n×n diagonal matrix with diagonal

{
1(x1 >

x̄) k
(
x1−x̄
h

)
, . . . . . . ,1(xn > x̄) k

(
xn−x̄
h

) }
, Y = (y1, . . . , yn)T , and Z = [z1 . . . zn]T .

If x̄ is at the right boundary of X , the estimator τ̂+(x̄)↓ = 0.

The next conditions make it possible to obtain the asymptotic distribution of Bn
given in equation (12). The essence of the proof can be understood by observing that
when τ̂+(x̄)↓ is defined as in (14),

τ̂+(x̄)↓ := eT1 (X̃TW+X̃)−1X̃TW+(Y − Zγ̂+) (15)

= eT1 (X̃TW+X̃)−1X̃TW+(Y − Zγ+)− eT1 (X̃TW+X̃)−1X̃TW+Z(γ̂+ − γ+),

The first term is a simple local polynomial estimator of a boundary point seen, as
discussed, in Porter (2003), but also examined in Fan and Gijbels (1996). Deriving
its asymptotic distribution in this case needs only a small modification to account for
the fact that x does not have a density function, since P(xi = x̄) > 0. It converges
to a normally distributed random variable at the rate

√
nh. The second term can be

considered jointly with the second term in equation (12), which converges at the rate
√
n. For testing in smaller samples, the results consider the effect of the estimation of

γ+ and γ−. However both the bias and variance of τ̂+(x̄)↓ and τ̂−(x̄)↑ dominate the
asymptotic behavior of θ̂.

Assumption 2.6.

1. E(|g(zi)|2+ξ2 | xi = x̄) <∞ and E(||g(zi)zi||2+ξ2 | xi = x̄) <∞, for some ξ2 > 0.
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2. If x̄ is an interior point in X , then the estimators γ̂+ and γ̂− are defined as

γ̂+ = (Z̃T+Z̃+)−1Z̃T+ Ỹ+, γ̂− = (Z̃T−Z̃−)−1Z̃T−Ỹ−,
ỹi+ = (yi − Ê(yi | xi)+)1(xi > x̄), ỹi− = (yi − Ê(yi | xi)−)1(xi < x̄)
z̃i+ = (zi − Ê(zi | xi)+)1(xi > x̄), z̃i− = (zi − Ê(zi | xi)−)1(xi < x̄)
Ê(yi | xi)+ =

∑n
j=1 1(xj > x̄)T+

i,jyj, Ê(yi | xi)− =
∑n
j=1 1(xj < x̄)T−i,jyj,

Ê(zi | xi)+ =
∑n
j=1 1(xj > x̄)T+

i,jzj, Ê(zi | xi)− =
∑n
j=1 1(xj < x̄)T−i,jzj,

for some T+
i,j and T−i,j which are a function exclusively of the observations such

that xi > x̄ and xi < x̄ respectively. Also, supi
∥∥∥∑n

j=1 1(xj > x̄)T+
i,juj − E(ui | xi)

∥∥∥ =
op(1) for ui = zi, ε

2
i ,E(zi | xi)ε2i , ziE(ε2i | xi) and E(zi | xi)E(ε2i | xi). γ̂+ and γ̂−

satisfy

√
n

 γ̂+ − γ+

γ̂− − γ−

An

 d−→ N

Ö 0
0
0

 ,
 V+

γ 0 0
0 V−γ 0
0 0 VA


è

,

and there exist V̂+
γn and V̂−γn, functions exclusively of data for which xi > x̄

and xi < x̄ respectively, and such that V̂+
γn

p−→ V+
γn and V̂−γn

p−→ V−γn. Moreover,
E(‖
√
n(γ̂+−γ+)‖2+ξ3) and E(‖

√
n(γ̂−−γ−)‖2+ξ3) are uniformly bounded for all

n and some ξ3 > 0. If x̄ is the left boundary of X , all is true except that γ̂− = 0,
V−γ = 0, and V̂−γ = 0. If x̄ is the right boundary of X , all is true except that
γ̂+ = 0, V+

γ = 0, and V̂+
γ = 0.

3. There exist x−, x+ ∈ R, with x− < x̄ < x+ such that F (x) is twice continuously
differentiable in [x− , x̄) ∪ (x̄ , x+] with first derivative bounded away from zero
and second derivative uniformly bounded in [x− , x̄) ∪ (x̄ , x+]. Define

φ(x̄)↓ := limx↓x̄
d
dxF (x), φ(x̄)↑ := limx↑x̄

d
dxF (x),

φ′(x̄)↓ := limx↓x̄
d2

dx2F (x), φ′(x̄)↑ := limx↑x̄
d2

dx2F (x),

then all of these quantities exist. Moreover, there exist φ̂(x̄)↓ and φ̂(x̄)↓, consis-
tent estimators of φ(x̄)↓ and φ(x̄)↓ respectively (see remark 2.3.2).

4. The function τ+(x) is at least p + 2 times continuously differentiable in (x̄, x+],
and the function τ−(x) is at least p+2 times continuously differentiable in [x−, x̄).
Define

τ+(m)(x̄)↓ := limx↓x̄
dm

dxm τ
+(x), τ−(m)(x̄)↑ := limx↓x̄

dm

dxm τ
−(x),

then these quantities exist for m = 1, . . . , p+ 2.

5. The variances σ2(x) := E(ε2i | xi = x) are at least p+2 continuously differentiable
in [x−, x̄) ∪ (x̄, x+]. The errors εε

2

i = ε2i − σ2(xi) have moments E(|εε2i |2+ξ4 | xi)
uniformly bounded for some ξ5 > 0. Define

σ2(x̄)↓ := limx↓x̄ σ
2(x), σ2(x̄)↑ := limx↑x̄ σ

2(x),
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then these quantities exist.

6. The kernel k is symmetric and has bounded support. For all j odd integers,∫
kx(u)ujdu = 0. Define υj =

∫∞
0
k(u)ujdu and ωj =

∫∞
0
k2(u)ujdu, then

Υj=


υj
...

υj+p

 Λj=


υj . . . υj+p
...

...
υj+p . . . υj+2p+1

 Ωj=


ωj
...

ωj+p

 Ω=


ωj . . . ωj+p
...

...
ωj+p . . . ωj+2p+1

.

7. limn→∞ h = 0, limn→∞ nh =∞, and limn→∞ hp+1
√
n <∞.

8. The functions E(zdi | xi = x) and E(ε2i z
d
i | xi = x) are at least p + 2 times

continuously differentiable in [x−, x̄) ∪ (x̄, x+]. The εzi := zi − E(zi | xi) have
moments E(||εzi ||2+ξ5 | xi) uniformly bounded for some ξ5 > 0. Define

E(zi | xi = x̄)↓ := lim
x↓x̄

E(zi | xi = x), E(zi | xi = x̄)↑ := lim
x↑x̄

E(zi | xi = x),

E(zizTi | xi = x̄)↓ := lim
x↓x̄

E(zizTi | xi = x), E(zizTi | xi = x̄)↑ := lim
x↑x̄

E(zizTi | xi = x),

E(ziε2i | xi = x̄)↓ := lim
x↓x̄

E(ziσ2(xi, zi) | xi = x),

E(ziε2i | xi = x̄)↑ := lim
x↑x̄

E(ziσ2(xi, zi) | xi = x),

then all of these quantities exist. Finally, define the notation

Σz(x̄)↓ := E(zizTi | xi = x̄)↓ − E(zi | xi = x̄)↓E(zi | xi = x̄)↓T

Σz(x̄)↑ := E(zizTi | xi = x̄)↑ − E(zi | xi = x̄)↑E(zi | xi = x̄)↑T

czε2(x̄)↓ := E(ziε2i | xi = x̄)↓ − E(zi | xi = x̄)↓σ2(x̄)↓

czε2(x̄)↑ := E(ziε2i | xi = x̄)↑ − E(zi | xi = x̄)↑σ2(x̄)↑

9. If x̄ is the left boundary of X , then α = 1, and if x̄ is the right boundary of X ,
then α = 0.

Theorem 5. If assumptions 2.1, 2.4 and 2.5 hold, then

√
nhV−1/2

n (θ̂ − θ − Bn) d−→ N (0, 1),

where

Bn = E(g(zi) |xi = x̄)
[
αB+

n + (1− α)B−n
]
,

B+
n =


hp+1 τ

+(p+1)(x̄)lim

(p+1)! eT1 Λ−1
0 Υp+1 + o(hp+1), if p is odd,

hp+2
[
τ+(p+1)(x̄)lim

(p+1)!
φ′(x̄)↓

φ(x̄)↓

]
eT1 Λ−1

0 (Υp+2 − Λ1Λ0Υp+1)

+
[
τ+(p+2)(x̄)lim

(p+2)!

]
eT1 Λ−1

0 Υp+1 + o(hp+2) if p is even,
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and analogously for B−n , substituting the “+” by “−” in the notation.

Vn =α2
î
V+
τ + 2

√
hCT+C+

τγ + hCT+V+
γ C+

ó
+ (1− α)2

î
V−τ + 2

√
hCT−C−τγ+ hCT−V−γ C−

ó
+ hVA + o(h),

where if x̄ is an interior point or is at the left boundary of X ,

V+
τ = E(g(zi) |xi = x̄)2V+,

V+ =
σ2(x̄)↓

φ(x̄)↓
eT1 Λ−1

0 Ω Λ−1
0 e1,

C+ = E(g(zi)zi |xi = x̄)− E(g(zi) |xi = x̄) E(zi | xi = x̄)↓,

C+
τγ =

(
Σz(x̄)↓

)−1
czε2(x̄)↓,

and if x̄ is an interior point or is at the right boundary of the support of the xi, V−τ ,
V−, C− and C−τγ are defined analogously, substituting the “+” by “−” and ↓ by ↑ in
the notation.

The proof is in section A.3.1 in the appendix. The following definitions concern the
estimation of the variance Vn. Define the operator

P+
t = eTt (X̃TW+X̃)−1X̃TW+.

Then, observe that τ̂(x̄)↓ = P+
1 (Y − Zγ̂+). Whenever x̄ is an interior point or is

the left boundary of X , the quantities Ĉ+, Σ̂z(x̄)↓, czε2(x̄)↓ and σ̂2(x̄)↓ are defined in
equations (16)-(18) below:

Ê(zi | xi = x̄)↓ = (P+
1 Z)T ,

Ĉ+ := α Ê(g(zi)zi |xi = x̄)− Ê(g(zi) |xi = x̄) Ê(zi | xi = x̄)↓. (16)

Let Uls =


zl1z

s
1

...
zlnz

s
n

 , Ê(zizTi | xi = x̄)↓ =


P+

1 U11 . . . P+
1 U1d

...
...

P+
1 Ud1 . . . P+

1 Udd

, then

Σ̂z(x̄)↓ = Ê(zizTi | xi = x̄)↓ − Ê(zi | xi = x̄)↓ Ê(zTi | xi = x̄)↓. (17)

Let R+
z =


(y1 − zT1 γ̂+)2zT1

...
(yn − zTn γ̂+)2zTn

, then

Ê(zi(yi − ziγ̂+)2 | xi = x̄)↓ = P+
1 R

1+
z ,

ĉzε2(x̄)↓ = Ê(zi(yi − ziγ̂+)2 | xi = x̄)↓ − Ê(zi | xi = x̄)↓Ê((yi − ziγ̂+)2 | xi = x̄)↓.
(18)
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Let R+ =


(y1 − zT1 γ̂+)2

...
(yn − zTn γ̂+)2

, then

Ê((yi − ziγ̂+)2 | xi = x̄)↓ = P+
1 R

+

σ̂2(x̄)↓ = E((yi − zTi γ̂+)2 | xi = x̄)↓ − (τ̂(x̄)lim +)2. (19)

Finally, if x̄ is an interior point or is the right boundary of X , then Ĉ−, Σ̂z(x̄)↑,
czε2(x̄)↑ and σ̂2(x̄)↑ are defined analogously, substituting “+” by “-” and “↓” by “↑”
in the notation.

Theorem 6. Under H0: xi is exogenous, θ = 0 and VA = 0. If assumptions 2.1, 2.4
and 2.6 hold, then if

V̂n=α2
î
V̂+
τ + 2

√
hĈT+ Ĉ+

τγ + hĈT+V̂+
γ Ĉ+

ó
+ (1− α)2

î
V̂−τ + 2

√
hĈT−Ĉ−τγ+ hĈT−V̂−γ Ĉ−

ó
,

where
V̂+
τ = Ê(g(zi) |xi = x̄)2V̂+, V̂−τ = Ê(g(zi) |xi = x̄)2V̂−,

V̂+ = σ̂2(x̄)↓

φ̂(x̄)↓
eT1 Λ−1

0 Ω Λ−1
0 e1, V̂− = σ̂2(x̄)↑

φ̂(x̄)↑
eT1 Λ−1

0 Ω Λ−1
0 e1,

Ĉ+
τγ =

Ä
Σ̂z(x̄)↓

ä−1
ĉzε2(x̄)↓ Ĉ−τγ =

Ä
Σ̂z(x̄)↑

ä−1
ĉzε2(x̄)↑,

then V̂n − Vn = op(1).

The proof is in section A.3.2. The following theorem gives the discontinuity test
properties in the partially linear case.

Theorem 7. Let 0 6 λ 6 1, Φ be the standard normal cumulative distribution func-
tion, and cλ = Φ−1(λ). If theorems 1, 5 and 6 hold and

√
nhhp+1 → 0 as n → ∞,

then under H0: x is exogenous,

P

Ñ
√
nh

θ̂»
V̂n

6 cλ

é
→ λ as n→∞.

moreover, if result 1 is true, under H1: x is endogenous,

P

Ñ
√
nh

θ̂»
V̂n

> cλ

é
→ 1 as n→∞,

and under the local alternatives θ√
nh

,

P

Ñ
√
nh

θ̂»
V̂n

6 cλ

é
→ Φ

Ñ
cλ −

θ»
α2V+

τ + (1− α)2V−τ

é
as n→∞.

See proof in section A.3.3. Observe that the variance of the estimation of the
nonparametric terms τ+ and τ+ is the only variance that affects the local power of
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the test in large samples. This occurs because the other components in Vn are o(nh),
more specifically, O(nh3/2).

Remark 2.3.2. The estimation of φ(x̄)↓ and φ(x̄)↑ is not a trivial application of
the literature of density estimation. When estimating limits of densities at boundary
points, the same concerns as with the estimation of conditional expectations at boundary
points arise, so φ̂(x̄)↓ and φ(x̄)↑ must be chosen mindful of their boundary properties.
Although local polynomial estimators have excellent boundary properties, they cannot
be naturally transformed for density estimation, as it can be done with kernels. One
solution is to estimate φ(x̄)↓ with boundary kernels, as in Jones (1993). The application
section uses a different approach, based on the estimator proposed in Lejeune and Sarda
(1992), which consists on the local polynomial regression of the empirical distribution
function F̂ (xi) on xi using only observations such that xi > 0. The coefficient of the
constant term is an estimator of limx↓x̄ F (x), but the coefficient of the linear term is
actually an estimator of limx↓x̄

d
dxF (x), which is exactly φ(x̄)↓. Hence, in this case

φ̂(x̄)↓ = eT2 (X̃TW+X̃)−1X̃TW+F̂ = P+
2 F̂ ,

where F̂ = (F̂1, . . . , F̂n)T , F̂j = 1
n

∑n
i=1 1(xi 6 xj). Analogously for φ̂(x̄)↑.

2.3.3 The nonparametric case

Let the conditional expectation be represented by the function f , so that

f(xi, zi) := E(yi |xi, zi), (20)

and define f(x̄, zi)↓ := limx↓x̄ f(x, zi), f(x̄, zi)↑ := limx↑x̄ f(x, zi), and suppose that
these limits exist for all zi.

Example 3. (Censoring) Equation (20) can be parameterized inside the censoring
model presented in section 2.2.1. From equation (4), observe that for x > 0,

f(x, z) = f1(x, z, f−1
2 (x; z)).

Assumption 2.3 can be modified to serve as a primitive of assumption 2.7 (3).

In this case, E(yi | x̄, zi)↓ = f(x̄, zi)↓, and E(yi | x̄, zi)↑ = f(x̄, zi)↑. Hence, Ê(yi | x̄, zi)↓ =
f̂(x̄, zi)↓, and Ê(yi | x̄, zi)↑ = f̂(x̄, zi)↑. Define Ê(g(zi) |xi = x̄) = 1

p̂x̄
1
n

∑n
i=1 g(zi)1(xi =

x̄) and Ê(g(zi)zi |xi = x̄) = 1
p̂x̄

1
n

∑n
i=1 1(xi = x̄)g(zi)zi, then equation (7) cannot be

simplified as in the previous cases. The present case will assume that the zi are random
variables which can take a finite number of values. Similar results could be derived
when the zi can take a countable number of values, and also when the zi are continuous
or mixed random variables. The decision to present results in the finite case has the
advantage of the simplicity, but is also done for practical reasons, as is explained in
remark 2.3.4 below. The following exposition refers to the estimation of f(x̄, zi)↓, and
f(x̄, zi)↑ is estimated analogously.
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Let the zi ∈ {z1, . . . , zM}, and define the estimator of f(x̄, zm)↓ in the following
way. Given the kernel function k, the smoothing parameter h, the polynomial degree
p, and let â0, . . . , âp be the solution to the problem

min
a0,...,ap

1
n

n∑
j=1

k
(xj − x̄

h

)
1(xj > x̄) [yj − a0 − a1(xj − x̄)− ...− ap(xj − x̄)p]2.

If x̄ is an interior point or is the left boundary of X , the local polynomial estimator of
f(x̄, zm)↓ is given by

f̂(x̄, zm)↓ = â0 = eT1 (X̃TW+
mX̃)−1X̃TW+

mY, (21)

where e1 = (1, 0, . . . , 0)T has dimension 1 × (p + 1), X̃ has rows equal to (1, (xj −
x̄), . . . , (xj − x̄)p), j = 1, ..., n, W+

m is a n× n diagonal matrix with diagonal elements{
1(z1 = zm)1(x1 > x̄) k

(
x1−x̄
h

)
, . . . , 1(zn = zm)1(xn > x̄) k

(
xn−x̄
h

) }
, and Y =

(y1, . . . , yn)T . If x̄ is the right boundary of X , then f̂(x̄, zm)↓ = 0.

Let p̂mx̄ := (
∑n
i=1 1(xi = x̄))−1∑n

i=1 1(zi = zm)1(xi = x̄) be an estimator of pmx̄ :=
P(zi = zm | xi = x̄), hence

Bn = α
M∑
m=1

p̂mx̄ Γ̂(zm)+g(zm) + (1− α)
M∑
m=1

p̂mx̄ Γ̂(zm)−g(zm).

The next assumption provides conditions that allow the derivation of the asymptotic
distribution of Bn.

Assumption 2.7.

1. dF (x, zm) > 0, for all m and x ∈ (x−, x+)∩X (see remark 2.3.4 below for when
this condition fails).

2. There exist x−, x+ ∈ R, with x− < x̄ < x+ such that P(xi 6 x , zi = zm) is
twice continuously differentiable in x with first derivative bounded away from zero
and second derivative uniformly bounded for x in (x− , x̄) ∪ (x̄ , x+) and all m.
Define φ(x̄, zm)↓ := limx↓x̄

d
dx P(xi 6 x , zi = zm), φ(x̄, zm)↑ := limx↑x̄

d
dx P(xi 6

x , zi = zm), φ′(x̄, zm)↓ := limx↓x̄
d2

dx2 P(xi 6 x , zi = zm), and φ′(x̄, zm)↑ :=
limx↑x̄

d2

dx2 P(xi 6 x , zi = zm), then all of these quantities exist. Moreover, there
exist φ̂(x̄, zm)↓ and φ̂(x̄, zm)↑, consistent estimators of φ(x̄, zm)↓ and φ(x̄, zm)↑

respectively (see remark 2.3.3 below).

3. The function f(x, zm) is at least p + 2 times continuously differentiable in x in
(x−, x̄)∩(x̄, x+) for all m. Define f (l)(x̄)↓ := limx↓x̄

d l

dxl
f(x, zm), and f (l)(x̄, zm)↑ :=

limx↓x̄
d l

dxl
f(x, zm), then these quantities exist for l = 1, . . . , p+ 2 and all m.

4. The variances σ2(x, zm) := E(ε2i | xi = x, zi = zm) are continuous in (x− , x̄) ∪
(x̄ , x+), and the limits σ2(x̄, zm)↓ := limx↓x̄ σ

2(x, zm) and σ2(x̄, zm)↑ := limx↑x̄ σ
2(x, zm)

exist for all m. Moreover, the moments E(|ε2i |2+ξ6 | xi = x, zi = zm) are uni-
formly bounded for some ξ6 > 0.
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5. The kernel k is continuous, symmetric and has bounded support. For all j odd
integers,

∫
k(u)ujdu = 0.

6. limn→∞ h = 0, limn→∞ nh =∞, and limn→∞ hp+1
√
nh <∞.

7. If x̄ is the left boundary of X , then α = 1, and if x̄ is the right boundary of X ,
then α = 0.

Theorem 8. If assumptions 2.1, 2.4 and 2.7 hold, then

√
nhV−1/2

n (θ̂ − θ − Bn) d−→ N (0, 1)

where

Bn =
M∑
m=1

p̂mx̄ g(zm)
[
αB+

m,n + (1− α)B−m,n
]

B+
m,n =


hp+1 f

+(p+1)(x̄,zm)lim

(p+1)! eT1 Λ−1
0 Υp+1 + o(hp+1), if p is odd,

hp+2
[
f+(p+1)(x̄,zm)lim

(p+1)!
φ′(x̄,zm)↓

φ(x̄,zm)↓

]
eT1 Λ−1

0 (Υp+2 − Λ1Λ0Υp+1)

+
[
f+(p+2)(x̄,zm)lim

(p+2)!

]
eT1 Λ−1

0 Υp+1 + o(hp+2), if p is even,

and analogously for B−m,n, just substitute the “+” by “−” in the notation. Finally, Λ0,
Λ1, Υp+1 and Υp+2 are defined in assumption 2.6 (6).

Vn = V + hVA + o(h),

V =
M∑
m=1

(pmx̄ )2
g(zm)2

[
α2V+

m + (1− α)2V−m
]
,

V+
m =

σ2(x̄, zm)↓

φ(x̄, zm)↓
eT1 Λ−1

0 Ω Λ−1
0 e1,

and analogously for V−m, just substitute the “+” by “−” in the notation. Finally, Ω is
defined in assumption 2.6 (6).

The proof is in section A.4.1 in the appendix. Its essence can be understood by ob-
serving that, since M is finite, the asymptotic distribution of Bn as defined in equation
(7) can be trivially derived if the convergence of the Γ̂(zm)+ and Γ̂(zm)− is ascertained.
Since each zm has positive probability in a neighborhood of x̄, the results in Porter
(2003) can be applied with the same modifications as in the partially linear case to
account for the fact that x̄ is a mass point.

The estimation of the variance depends on the estimation of σ2(x̄, zm)↓ and σ2(x̄, zm)↓.
This step requires the estimation of the residuals. Define the operator

P+
t,m,x = eTt (X̃T

xW
+
x,mX̃x)−1X̃T

xW
+
x,m.
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where X̃x has rows equal to (1, (xi− x), . . . , (xi− x)p), and W+
x,m is a diagonal matrix

with diagonal elements equal to
{
1(x1 > x̄ , z1 = zm) k

(
x1−x̄
h

)
, . . . ,1(xn > x̄ , zn = zm) k

(
xn−x̄
h

)}
.

Whenever x̄ is an interior point or is the left boundary of X , f̂(x̄, zm)↓ = P s1,m,x̄Y , and
σ̂2(x̄, zm)↓ is defined in equation (22) below. Define

f̂+(xi, zm) = P+
1,m,xY

ε̂+i = yi − f̂+(xi, zi)

R = ((ε̂+1 )2, . . . , (ε̂+n )2)T ,

σ̂2(x̄, zm)↓ = P+
1,m,x̄R (22)

and if x̄ is the right boundary of X , σ̂2(x̄, zm)↓ = 0. Analogously for σ̂2(x̄, zm)↑,
substituting “+” by “-” and “↓” by “↑” in the notation.

Assumption 2.8.

1. The variances σ2(x, zm) are at least p + 2 times continuously differentiable in
(x− , x̄)∪(x̄ , x+) for all m. Moreover, limx↓x̄ d

(l)σ2(x, zm) and limx↓x̄ d
(l)σ2(x, zm)

exist for l = 1, . . . , p+ 2 and all m.

2. The moments E
Ä(
ε2i − σ2

ε (xi, zi)
)2 | xi = x, zi = zm

ä
are continuous and uniformly

bounded in (x− , x̄) ∪ (x̄ , x+), and the right and left limits when x→ x̄ exist for
all m.

3. hn1/3(log n)−1/3 →∞

Theorem 9. Suppose assumptions 2.1, 2.4, 2.7 and 2.8 hold. Under H0: xi is exoge-
nous, θ = 0 and VA = 0. Then

√
nhV̂−1/2

n (θ̂ − Bn) d−→ N (0, 1),

where

V̂n = V̂ :=
M∑
m=1

(p̂mx̄ )2
g(zm)2

î
α2V̂+

m + (1− α)2V̂−m
ó

with

V̂+
m =

σ̂2(x̄, zm)↓

φ̂(x̄, zm)↓
eT1 Λ−1

0 Ω Λ−1
0 e1, and V̂−m =

σ̂2(x̄, zm)↑

φ̂(x̄, zm)↑
eT1 Λ−1

0 Ω Λ−1
0 e1

The proof is in section A.4.2. It relies on Masry (1996)’s result about the uni-
form convergence of the local polynomial estimator applied to the estimated ε̂2i . The
following theorem gives the discontinuity test properties in the partially linear case.

Theorem 10. Let 0 6 λ 6 1, Φ be the standard normal cumulative distribution
function, and cλ = Φ−1(λ). If theorems 1, 8 and 9 hold and

√
nhhp+1 → 0 as n→∞,

then under H0: x is exogenous,

P

Ñ
√
nh

θ̂»
V̂n

6 cλ

é
→ λ as n→∞.
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moreover, if result 1 is true, under H1: x is endogenous,

P

Ñ
√
nh

θ̂»
V̂n

> cλ

é
→ 1 as n→∞,

and under the local alternatives θ√
nh

,

P

Ñ
√
nh

θ̂»
V̂n

6 cλ

é
→ Φ

Å
cλ −

θ√
V

ã
as n→∞.

See proof in section A.4.3. If
√
nhhp+1 → 0,

√
nhB+

m,n → 0 and
√
nhB−m,n → 0.

Hence
√
nhBn → 0. The rest of the theorem is an immediate consequence of the

theorems invoked and Slutsky’s theorem, so no further proof is necessary.

Remark 2.3.3. The estimation of φ(x̄, zm)↓ can be done as in the partially linear
case (see remark 2.3.2), following the approach proposed in Lejeune and Sarda (1992).
The values F̂m(x) = 1

n

∑n
i=1 1(xi 6 x)1(zi = zm) are consistent estimators of P(xi 6

x, zi = zm). The approach consists on the local polynomial regression of the function
F̂m(xi) on xi at x̄, using only observations such that zi = zm and xi > x̄. The
coefficient of the constant term is an estimator of limx↓x̄ P(xi 6 x, zi = zm), but the
coefficient of the linear term is actually an estimator of limx↓x̄

d
dxP(xi 6 x, zi = zm),

which is exactly φ(x̄, zm)↓. Hence, in this case

φ̂(x̄, zm)↓ = P+
2,m,x̄F̂m,

where F̂m = (F̂m(x1), . . . , F̂m(xn))T . Analogously for φ̂(x̄)↑.

Remark 2.3.4. The measure ν in θ =
∫
G(∆(z), z)dν(z) is chosen by the researcher.

The measure chosen for the derivation of the estimators is F (z | xi = x̄), and from that
derives the requirement that if P(zi = zm , xi = x̄) > 0, then for estimation purposes it
is necessary that dF (x, zm) > 0, for all x in a neighborhood of x̄. All the results can be
derived in exactly the same way if the measure chosen is F (z | xi = x̄, z ∈ Ā), where
Ā is a finite subset of A := {z ; dF (x, z) > 0, ∀x ∈ (x−, x+) ∩ X}, as long as Ā is not
empty. Hence, An and Bn in equations (6) and (7) are substituted by

An =
1

p̂x̄,Ā

1
n

n∑
i=1

∆(zi)g(zi)1(xi = x̄, zi ∈ Ā)− E(∆(zi)g(zi) |xi = x̄, zi ∈ Ā)

Bn =
1

p̂x̄,Ā

1
n

n∑
i=1

[αΓ̂(zi)+ + (1− α)Γ̂(zi)−]g(zi)1(xi = x̄, zi ∈ Ā).

where p̂x̄,Ā = 1
n

∑n
i=1 1(xi = x̄, zi ∈ Ā). Assumption 2.1 remains the same, assumption

2.4 remains the same, except for the new definition of VA := Var(∆(zi)g(zi | xi =
x̄, zi ∈ Ā), and assumptions 2.7 and 2.8 remain the same as long as {z1, . . . , zM} = Ā.
The results in theorems 8, 9 and 10 remain unchanged.
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Even when the dF (zi) does not have a finite support, the discontinuity test using
a measure ν that integrates over a finite subset of the support of the dF (zi) may be
valid. For example, the same approach as above can be used when the support of dF (zi)
is countable, on when it is continuous but there exists a subset of values z such that
P(zi = z) > 0. Define A = {z ; dF (x, z) > 0, ∀x ∈ (x−, x+) ∩ X , P(xi = x̄ , zi = z) >
0 , and P(xi ∈ (x−, x+)\{x̄} , zi = z) > 0}. Define Ā = {z1, . . . , zm} ⊂ A. As long as
Ā 6= ∅, the procedure and the results hold exactly as in the case above.

3 An application to the effects of maternal smoking

in birth weight

The effects of smoking during the pregnancy, known as “maternal smoking,” on the
birthweight of the child is an important topic of research in the medical literature, both
because birthweight is seen as the primary measure of the newborn’s health and as an
excellent predictor of infant’s survival and development (see Almond et al. (2005) p.
1032), but also because early studies in the effects of smoking in birthweight claimed
impressive effects in the ballpark of 500 grams (see Sexton and Hebel (1984)).

Let the variable CIG represent the average cigarettes smoked per day by the mother
during pregnancy, BW be the weight of the child at birth, and z represent a set of
d covariates which include detailed information about the mother, the father and the
pregnancy. The interest is to uncover the causal relation between CIG and BW ,
which is expressed in the model

BWi = m(CIGi, zi, qi) + εi. (23)

This relation is identified if m(CIGi, zi, qi) = m(CIGi, zi, 0) with probability one.
Otherwise, further measures must be taken to account for the presence of qi, such as
searching for more complete datasets where hopefully qi can be observed, searching for
instrumental variables, proxy variables etc.

The effect of maternal smoking in birth weight is an example where experiments
that randomly and directly change the quantities smoked by the mothers cannot be gen-
erated for ethical reasons. Randomized trials in the field try to influence the amounts
smoked indirectly through some kind of propaganda5 directed to a randomly selected
part of the sample. A case can be made in favor of the reduced form effect on birth
weight, which consists in that the true parameter of interest is not the effect of smok-
ing on birth weight, but rather the effect of the smoke-related intervention on birth
weight. However, propaganda can be of many different kinds, and may have radically
different effects in different parts of the population depending on its content, way of
transmission and scope. In this case, the effect of one kind of propaganda on birth
weight is not necessarily a good predictor of the effects of other kinds of propaganda,

5The word propaganda will be used here to denote the set of smoke-related interventions that were
randomly provided in such studies, such as informational phone calls, house visits etc.
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and therefore the effects of smoking may constitute a better source of information
to extrapolate between different options of public policy. Additionally, the smoking
rates can be affected not only through public policy, but also through medical rec-
ommendations, which reinforces even further the relevance of knowing the effect of
smoking versus the effect of smoke-related interventions. Moreover, studies that use
propaganda to influence smoking behavior may also affect birthweight through other
means, by providing information or raising health concerns that can make all pregnant
women (including those who did not quit smoking) to change other behaviors. If the
actual direct effect of smoking in birth weight is small although the estimated reduced
form effect is large, then policy and medical attention directed at smoking may have
comparatively less effect than the same resources directed at changing other habits,
such as promoting propaganda for pregnant women to stop drinking, to eat better or
to have more frequent prenatal visits.

According to the Cochrane Review (see Lumley, Chamberlain, Dowswell, Oliver,
Oakley, and Watson (2009)), in randomized trials the smoking cessation interventions
had on average a significant but imprecisely estimated effect on birth weight. On
average 6 out of 100 mothers quit smoking because of the intervention, and the average
reduced-form effect of the intervention is 55 grams, with a 95% confidence interval
between 10 grams and 90 grams, which implies that the effect of smoking cessation on
birth weight is around 915 grams, with a 95% confidence interval between 167 grams
and 1500 grams. Sexton and Hebel (1984), one of the most well-known among such
studies, shows a great effect in smoking cessation (20% people quit smoking because of
the intervention) and a reduced-form effect of 93 grams, with a 95% confidence interval
between 15 and 170 grams, implying an effect of smoking cessation between 77 and 845
grams. These imprecise estimates present an even more ambiguous picture with regard
to the relative importance of smoking cessation and smoke-related interventions.6

Due to the difficulties associated with experimental studies mentioned above, the
literature in the field has focused in non-experimental data sources where large samples
and a wide array of control variables is observed. All these studies rely on an assump-
tion of selection on observables. Therefore, a test of endogeneity without instruments is
more than a convenience, it is a necessity not only because it can help in the detection
of endogeneity, but it can also contribute to validate a certain choice of covariates over
another.

Almond et al. (2005) is, to the author’s knowledge, the most exhaustive analysis
in this question using non-experimental data.7 More specifically, they estimate the

6These imprecise estimates seem to be mostly due to small samples. The Cochrane Review (Lumley
et al. (2009)), a systematic review of the field concerning only experimental studies, analyzes 72 trials, which
amount to a total sample size of just over 25,000 observations, with on average around 350 observations
per study.

7Almond et al. (2005) provide a detailed analysis of the costs of LBW using two independent empirical
approaches, each employing a different source of variation on birthweight. The first approach uses variation
of birthweight across twins in order to control for determinants of birthweight that are constant within a
family, such as maternal smoking and gestation period. The second approach, of interest to this application,
uses only singletons and explores variation on birth weight due to maternal smoking, which vary across
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difference in the birthweight and probability of LBW between women who smoked and
women who did not smoke during pregnancy, using the population of births of single-
tons from Pennsylvania from 1989 to 1991 and controlling for a rich set of covariates.
Almond et al. (2005) directly compare nonsmoking with smoking mothers, disregarding
the actual quantities smoked. They find that the children born of smoking mothers
weigh 200 grams less than those of nonsmoking mothers, with a 95% confidence interval
between 199 and 207 grams. For the case of LBW, they found that children of smoking
mothers are 3.5% more likely to be of LBW than those of nonsmoking mothers, with
a 95% confidence interval between 3.3% and 3.7%.

The remaining of this section will apply the discontinuity test to the full specifica-
tion in Almond et al. (2005), using the same data set as in that paper, which is the
annual, linked birth and infant death micro data produced by the National Center for
Health Statistics (NCHS). This rich data set contains information for every newborn
in Pennsylvania between 1989 and 1991 (488,144 observations, 94,205 smokers) such
as mother’s and father’s demographic characteristics, mother’s behaviors during preg-
nancy, mother’s health history and risk factors, sex of the newborn, birth order of the
newborn and whether the newborn was part of a multiple birth (i.e., whether the new-
born is a singleton). The data also contains relevant information such as mother’s and
father’s age, level of education and race, mother’s marital status, foreign born status,
number of previous live births and number of previous births where the newborn died.
Other information includes maternal risk factors that are believed not to be affected
by pregnancy smoking such as chronic hypertension, cardiac disease, lung disease and
diabetes. Finally, the data has information related to maternal behavior such as num-
ber and timing of prenatal visits, whether the mother drinks and with which frequency,
and number of cigarettes smoked per day.8 In the context of the discontinuity test,
CIG = x, BW = y, and the covariates chosen for each specification are denoted z.

The argument for the applicability of the discontinuity test in the case of the effects
of maternal smoking in birthweight depends on two crucial assumptions. The first is
that the effect of smoking in birthweight is continuous. In equation (23), it means that
m is continuous in CIG .

The second crucial assumption is that any unobservable variable correlated with
CIG conditional on z has a distribution conditional on CIG and z that is discontinuous
in CIG at a certain value of CIG. Since CIG cannot be negative, a candidate to be
such a threshold is CIG = 0. In more empirical terms, the requirement is that the
mothers that did not smoke during pregnancy have to be discontinuously different with
regard to the unobservable variable from the mothers that smoked, even conditional
on the covariates z.

Though this cannot be confirmed for the unobservable variables q, this phenomenon
can be tested for the observable covariates z.9 The test would be essentially the same as

families. The authors use both regression adjusted methods and subclassification on the propensity score
to control for potential endogeneity due to family unobservables.

8 For a full list of the variables used, see note 36 of Almond et al. (2005) in p.1064.
9This heuristic evidence is analogous to the evidence provided in the applied Regression Discontinuity
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the discontinuity test, except that it would be performed in a variable zs, s = 1, . . . , d,
instead of in the dependent variable y, and using the rest of the covariates as controls.
No matter which continuous function of zs is tested in the discontinuity test, if the
distribution of zs conditional on CIG and the rest of the covariates is continuous, so
should be the function. If some of the zs were found to be discontinuous at CIG = 0,
this would be understood as evidence that an unobservable correlated with cigarettes
is also discontinuous at CIG = 0.10

The following figures provide heuristic evidence that the expectation of the observ-
able covariates conditional on CIG is discontinuous at CIG = 0.11 The figures were
cropped at CIG = 40, although the observed CIG goes up to 98. However, CIG = 41
to 98 account for only 0.05% of the full sample, and 0.2% of the mothers that smoked
positive amounts. Table 3 in appendix C shows the number of observations for each
level of CIG . The dots correspond to the averages per CIG level and the lines show
the 95% confidence interval of the mean per CIG level for low levels of CIG only.12

Figures 2, 3, 4 and 5 are examples of covariates referring to the mother’s demographic
variables where there is a clear difference in the averages per level of CIG for zero
versus just above zero cigarettes. Figure 2 shows the mother’s education in years, with
fairly constant averages of a little below 12 years for 0 < CIG < 8 , and increasing
one full year of education for CIG = 0. Figure 3 shows the mother’s age, which av-
erages around 25 years old for low-level smoking mothers, and increases to 27 among
the nonsmoking mothers. The marital status shifts from 50% of unmarried low-level
smoking mothers to only 24% of unmarried nonsmoking mothers. The proportion of
black women among the women surveyed has higher variation, but is constantly above
20%, and often closer to 30% for low-level smokers, and is only 14% for the nonsmokers.

The father’s demographic variables present even higher differences for low-level
smoking mothers relative to nonsmoking mothers. The education level, shown in figure
6, changes from below 11 years among the fathers of

children of low-level smoking mothers to 12.6 years for fathers of children of non-
smoking mothers, increasing more than 1.5 years of education. Figure 7 shows that
the average age of the father is at most 25 years old for 0 < CIG < 10, but increases
to an average of 28 years of age among the fathers of children of nonsmoking mothers.

literature that covariates are continuous at the threshold, suggesting that unobservables are also continuous
at the threshold. See Lee (2008) for an example.

10This is true unless zs is a proxy for such a variable, in which case there is no identification issue in the
first place.

11It is not possible to guarantee from these figures that any of the variables below would still be discon-
tinuous conditional on the rest of the covariates. However, if the figures below are taken as evidence of
discontinuities in the expectation of some of the zs conditional on CIG, then at least one of the zs has to
be discontinuous in CIG conditional on the rest of the covariates.

12The confidence intervals are shown only for small levels of cigarettes for exposition reasons. The
confidence intervals become larger for CIG > 20, which correspond to only 1% of the full sample (6% of the
sample of smokers). As suggested by table 3 of appendix C, the confidence intervals increase as a reflection
of the smaller sample sizes per CIG value. For values of CIG between 26 and 29, 31 and 34 and 36 and
39, sample size are extremely small per level of CIG , rarely above 10 and never above 15 observations.
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Mother’s demographic characteristics.

Figure 2: Education (years)
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Figure 4: Unmarried
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Figure 5: Race: black
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Father’s demographic characteristics.

Figure 6: Education (years)
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Figure 7: Age
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Figures 2 to 7: Dots represent average values referring to the pregnant mothers for each level of daily

cigarette consumption. The vertical lines represent the 95% confidence interval of the mean.
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The behavioral characteristics of the mother also seem to change significantly when
comparing low-level smoking mothers to nonsmoking mothers. Around 10% of the

Mother’s behavior variables.

Figure 8: Consumed alcohol
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Figure 9: Number of prenatal visits
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Figures 8 and 9: Dots represent average values among pregnant mothers for each level of daily

cigarette consumption. The vertical lines represent the 95% confidence interval of the mean.

mothers consumed alcohol during pregnancy for all smoking levels until CIG=20, while
only 2% of the nonsmoking mothers did the same. Low-level smoking mothers on
average visited doctors for prenatal visits around 10 times, which is one less time than
in the case of nonsmoking mothers.

Although the behavior of mothers seem to be discontinuously different at zero

Mother’s behavior covariates.

Figure 10: Gender of Newborn
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Figure 11: Order of Newborn
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Figures 10 and 11: Dots represent average values among pregnant mothers for each level of daily

cigarette consumption. The vertical lines represent the 95% confidence interval of the mean. Order of

Newborn in figure 11 represents the order among live births.
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cigarettes, some contingencies that may have an influence on mother’s behavior during
pregnancy were not found to be discontinuous at zero cigarettes, such as the gender
of the newborn (constant around 50% of males) and the birth order of the newborn
(constant around the average of second birth).

The two outcome variables tested were birthweight and the probability of low birth-
weight (LBW), defined as weight below 2500 grams. However, for simplicity the nota-
tion of the outcome variable in the rest of this section will remain BW . The test was
performed for the dependent variables without the covariates (specification I), and for
the most complete specification provided in Almond et al. (2005).

For the implementation of the test, it is assumed that for CIGi > 0,

E(BWi | CIGi, zi) = τ(CIGi) + zTi γ.

This is equivalent to equation (11) with the superscripts “+” omitted, since in this
application x̄ = 0 is the left boundary point. Though this specification is not as flex-
ible as a fully nonparametric approach, it allows the use of a high number of control
variables, and therefore the immediate comparison with the most complete specifica-
tion of Almond et al. (2005). The test statistic is calculated as in section 2.3.2. The
only step which is not specified in the description is the estimator of E(BWi | CIGi)
and E(zi | CIGi) used in the estimation of γ, though some requirements about this
estimator are made in assumption 2.6 (2). Most kernel based estimators such as the
Nadaraya-Watson or the local polynomial, as well as series estimators satisfy these re-
quirements under roughly the same conditions, but the kernel-based techniques require
one regression per different value of CIGi in the sample, while the series estimators
requires only one regression for the estimation of all the values required in the es-
timation of γ. A series estimator was therefore preferred over the kernel-based for
practical reasons. The basis chosen is that of cubic B-splines, which have better lo-
cal properties than classic global bases such as Fourier or power series. The knots of
the spline basis were chosen to be 0.5, 3.5, 6.5, 9.5, 12.5, 17.5, 27.5, 37.5, 47.5, . . . , 107.5.
Many other combinations of knots were attempted with virtually identical results. Let
the ρj(CIGi) represent the j-th element in the basis evaluated at CIGi , and let ρ be
the matrix whose rows are (ρ1(CIGi)1(CIGi > 0), . . . , ρN (CIGi)1(CIGi > 0)), where
N is the number of elements of the basis used in the regression. Let P+

ρ = ρ(ρT ρ)−1ρT

and I+ be the n × n diagonal matrix with {1(CIG1 > 0), . . . ,1(CIGn > 0)} in the
diagonal. The estimator of the variance matrix of γ̂ is given by

V̂γ = n+ (ZT (I+ − P+
ρ )Z)−1ZT (I+ − P+

ρ )Σ̂(I+ − P+
ρ )Z(ZT (I+ − P+

ρ )Z)−1,

where n+ =
∑n
i=1 1(CIGi > 0). V̂γ is the Eicker-White covariance matrix of an OLS

regression of (I+ −P+
ρ )Y on (I+ −P+

ρ )Z. This can be useful if the researcher intends
to estimate the standard errors using theorem 6 (see Li (2000) for the asymptotic
behavior of the estimator of the parametric term in the partially linear model using
series plugins). This paper reports standard errors acquired instead by a bootstrap
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approach, which will be described later. An important restriction on the covariate list
is that Z does not contain a constant term, because as can be seen in equation (13),
in the partially linear models the constant term cannot be identified separately from
τ(CIG).

For the local polynomial step, as described in equation (15), the choice parameters
are the kernel, the degree of the polynomial, and the bandwidth size. The kernel
used is epanechnikov (rectangular and triangular kernels were also tested) and the
polynomial degree is 3, although degrees 2 and 1 were also tested with very similar
results. The bandwidth was chosen by a cross-validation technique, which consisted
in the estimation of τ(CIG) for CIG = 1, . . . , 20 by a local polynomial regression
of the BWi − zTi γ̂ using only observations for which CIGi > 0, and CIGi 6= CIG,
for each bandwidth h = 2, 3, ..., 20, which yielded the values τ̂h(CIG), h = 1, . . . , 20,
CIG = 1, . . . , 20. The chosen h∗ is the one that satisfies

h∗ = arg min
h=1,...,20

n∑
i=1

(
BWi − zTi γ̂ − τ̂h(CIGi)

)2
1(0 < CIGi 6 20).

The bandwidth that performed the best was h = 2, corresponding to roughly 1.5% of
the observations such that CIC > 0, followed by h = 3, h = 10, h = 11 and h = 6,
corresponding to 5%, 26%, 60% and 19% of the observations such that CIG > 0
respectively.

Tables 1 and 2 show the discontinuity test results for the birth weight and the
probability of LBW equations. As stated previously, the standard errors were estimated
by a bootstrap approach, which consisted in drawing 500 bootstrap samples of the data,
and calculating θ̂ for each of those independently, exactly in the same way described
above. The resulting standard deviations of the 500 values of θ̂ are the standard errors
reported in tables 1 and 2.

The results in table 1 present strong evidence of endogeneity for all specifications of
birth weight and for all bandwidths. Table 2 indicates only weak evidence of endogene-
ity for the main specification of the probability of LBW and the preferred bandwidths
(h = 2 and h = 3), and no evidence of endogeneity for larger bandwidths. For h = 2
and h = 3, specification II is rejected with 95% confidence but not rejected with 99%
of confidence, and for all other bandwidths specification II is not rejected even with
90% confidence.
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Table 1:

Birthweight

C.V. I II

h=2
1

θ̂ 196** 121**
(1.5%) (SE(θ̂)) (14) (14)

h=3
2

θ̂ 194** 121**
(5%) (SE(θ̂)) (17) (17)

h=6
5

θ̂ 199** 145*
(19%) (SE(θ̂)) (52) (62)

h=10
3

θ̂ 178** 140**
(26%) (SE(θ̂)) (30) (32)

h=11
4

θ̂ 176** 122**
(60%) (SE(θ̂)) (25) (25)

Table 2:

P(Birthweight<2500g)

C.V. I II

h=2
1

θ̂ -0.043** -0.016*
(1.5%) (SE(θ̂)) (0.007) (0.007)

h=3
2

θ̂ -0.043** -0.016*
(5%) (SE(θ̂)) (0.008) (0.008)

h=6
5

θ̂ -0.041* -0.019
(19%) (SE(θ̂)) (0.017) (0.027)

h=10
3

θ̂ -0.037** -0.023
(26%) (SE(θ̂)) (0.014) (0.015)

h=11
4

θ̂ -0.040** -0.022
(60%) (SE(θ̂)) (0.012) (0.013)

Tables 1 and 2: In the first column, h is the bandwidth, and the percentage in parenthesis is the proportion

of the sample of smokers used in the local polynomial regression for each value of the bandwidth. C.V.

shows the position of the bandwidth in the cross-validation results. θ̂ is the discontinuity test statistic. The

standard errors are the result of a bootstrap of the original sample with 200 repetitions. Specification I has

no covariates and II is the same specification used in Almond et al. (2005) (see footnote 8). “**” means

that the discontinuity test rejects at the 99% confidence level, “*” means that the test rejects at the 95%

confidence level, but not at the 99% confidence level.

Figures 12 and 13 depict the main results from tables 1 and 2, respectively. Figure
12 shows the average birth weight for each level of CIG (black dots) and two other
marks at zero cigarettes. The hollow dot and the “×” point represent the predicted
birth weight at zero cigarettes using specification I and II respectively. It can be seen
in figure 12 that the covariates of specification II help reduce the discontinuity of actual
birthweight and predicted birthweight, but not enough for it to vanish.

Figure 13, which depicts the results for the probability of LBW analogously to 12,
shows that the covariates of specification II help reduce the discontinuity of actual LBW
and predicted LBW to a third of its original value. The results for the probability of
LBW show that the discontinuity is small, so that if there is endogeneity in specification
II, it is of low importance for LBW.
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Figure 12: Birth Weight, Specification II
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The solid dots in figure 12 represent average birth weights among the pregnant mothers for each level of

daily cigarette consumption. The hollow dot is the local polynomial predictor of the birth weight at zero

cigarettes. The point “×” is the predicted birth weight after the effect of the covariates is removed. The

solid and hollow dots, as well as the “×” point in figure 13 represent the same as in figure 12, but for the

incidence of LBW (birth weight <2500 g) instead of the birth weight itself. In both cases, θ̂ is the difference

between the × and the solid points at CIG = 0.
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4 Conclusion

This paper develops a nonparametric test of endogeneity which does not require in-
strumental variables. The two crucial assumptions for the applicability of the test are
that the distribution of the unobservable conditional on the observable variables be
discontinuous in the running variable at a given threshold, and that the structural
equation relating the dependent variable and the observables be continuous in the run-
ning variable. The test consists in estimating such discontinuities, averaging them over
a given distribution of the covariates, and then testing for whether this average is equal
to zero.

The paper provides test statistics and asymptotic distributions for the average
of the discontinuities interacted with arbitrary functions of the covariates, averaged
over the distribution of the covariates at the threshold. This type of test eliminates
one step in the estimation process. The estimation of the discontinuities is done for
three different specifications of the conditional expectation of the dependent variable
given the covariates when the running variable is different than the threshold. The
first assumes that it is linear, the second that it is partially linear (nonparametric in
the running variable and additively linear in the covariates), and the third that it is
fully nonparametric, although with certain smoothness conditions. The test statistic is
shown to converge at

√
n rates in the linear case, and at the rate

√
nh in the partially

linear and nonparametric cases. This rate is the same as that of a nonparametric
regression with a single right-hand side variable, and this is achieved in spite of the
presence of the covariates due to the aggregation over the measure of the covariates.

The estimation has to be sensible to the boundary nature of the threshold, even
when it is not in fact a boundary point in the domain of the running variable. This
is the case because this paper allows for the functional forms, as well as conditional
distribution functions, variances etc., to be different at the right and left sides of
the threshold. Hence, the threshold is treated as a boundary point in all cases, and
estimation has to be mindful of boundary biases. The nonparametric estimators use the
local polynomial method, known for its automatic boundary carpentry and low bias.
In that regard this paper is in accordance with the regression discontinuity literature,
which uses the same kind of estimator. However that literature also assumes that the
probability densities are continuous across the threshold, while this paper allows for
differences at the different sides of the threshold, which requires different estimators
for the variance of the estimator.

The test was applied to the estimation of the effects of maternal smoking in both
birth weight and the probability of low birthweight, an example where many covariates
are shown to be discontinuous at the threshold of zero cigarettes. The unobservable, if
existent, is assumed to be discontinuous at zero cigarettes conditional on the covariates,
and the effect of smoking on birthweight and on the probability of LBW is assumed to
be continuous. Using the same data set as in Almond et al. (2005), the discontinuity
test was performed on and their most complete specification. For the case of birth
weight, the test shows strong evidence of endogeneity for all bandwidths. For the
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probability of LBW the evidence of endogeneity is weak, only existent at the 95%
confidence level for the optimal bandwidth according to the cross-validation technique,
and not existent for all the other bandwidths or when the confidence level is 99%.

One of the two crucial assumptions of the discontinuity test of endogeneity may not
be valid in the case of maternal smoking: that the effect of smoking on birth weight
or in the probability of LBW is continuous at zero cigarettes. If that is the case, then
one cannot disentangle the part of the discontinuity found in the test that is due to
the discontinuous treatment effect and the part that is due to the endogeneity. In the
results shown in this paper, the discontinuities become smaller when more covariates
are added, which may be an indication that at least part of the discontinuities are due
to endogeneity, hence suggesting the necessity of even better data sets or of the search
for quasi-experimental variations of smoking.
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A Proof of theorems

A.1 Identification theorems

A.1.1 Theorem 1:

The proof requires the following assumption:

Assumption A.1.

lim
x↓x̄

∫
E(y |x, z, q) dF (q |x, z) =

∫
E(y | x̄, z, q) lim

x↓x̄
dF (q |x, z), and

lim
x↑x̄

∫
E(y |x, z, q) dF (q |x, z) =

∫
E(y | x̄, z, q) lim

x↑x̄
dF (q |x, z).

Proof. First, observe that assumption 2.1 (3) assures that E(y | x = x̄, z), limx↓x̄ E(y |x, z)
and limx↑x̄ E(y |x, z) are identified for all z ∈ Zx̄, unless x̄ is a boundary point, in which
case either the right or left limit will not be identified. However, item (2) assures ∆(z)
will be identified, because when one of its parts is not identified, α is such that the
part is null. Identification of θ follows because G is known and ν is identified.

From equation (1),

θ =
∫
G

Å[ ∫
E(y |x = x̄, z, q)dF (q |x = x̄, z)−

− α lim
x↓x̄

∫
E(y |x, z, q)dF (q |x, z)− (1− α) lim

x↑x̄

∫
E(y |x, z, q)dF (q |x, z)

]
, z

ã
dν(z)
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If x is exogenous,
∫

E(y |x, z, q)dF (q |x, z) = E(y |x, z)
∫
dF (q |x, z) = E(y |x, z),

hence θ =
∫
G ([E(y |x = x̄, z)− α limx↓x̄ E(y |x, z)− (1− α) limx↑x̄ E(y |x, z)] , z) dν(z).

From assumption 2.1 (1), E(y |x, z) is continuous, and therefore θ =
∫
G (0, z) dν(z) =

0.

A.1.2 Proof of Remark 2.2.5:

f continuous in x at x̄ implies that ∀ε > 0, ∃ δ > 0 such that |x − x̄| < δ =⇒
|f(x, z, q, ε)− f(x̄, z, q, ε)| < ε. Hence,

|E(y | x, z, q)− E(y | x = x̄, z, q)| =
∣∣∣ ∫ f(x, z, q, ε) dF (ε | x, z, q)

−
∫
f(x̄, z, q, ε) dF (ε | x = x̄, z, q)

∣∣∣
=
∣∣∣∣∫ (f(x, z, q, ε)− f(x̄, z, q, ε)) dF (ε)

∣∣∣∣
6
∫
|f(x, z, q, ε)− f(x̄, z, q, ε)| dF (ε) < ε.

A.2 Estimation in the linear case

A.2.1 Theorem 2:

First, observe that

√
n

ñ
δ̂+ − δ+

δ̂− − δ−

ô
=

ñ [
1
n

∑n
i=1XiX

T
i 1(xi > x̄)

]−1 0
0

[
1
n

∑n
i=1XiX

T
i 1(xi < x̄)

]−1

ô
·

·
√
n

1
n

n∑
i=1

ñ
Xi εi 1(xi > x̄)
Xi εi 1(xi < x̄)

ô
.

Assumptions 2.4 (1), assumption 2.5 (3), the LLN and the continuous mapping theorem
guarantee that

[
1
n

∑n
i=1XiX

T
i 1(xi > x̄)

]−1 p−→ E(XiX
T
i 1(xi > x̄))−1 and[

1
n

∑n
i=1XiX

T
i 1(xi < x̄)

]−1 p−→ E(XiX
T
i 1(xi < x̄))−1. Since the εi are functions of yi,

xi and zi, they are i.i.d. Moreover,

Cov(Xi εi 1(xi > x̄), Xi εi 1(xi < x̄)) = E(Xi εi 1(xi > x̄))E(Xi εi 1(xi < x̄))

= E(Xi E(εi | Xi) 1(xi > x̄))E(Xi E(εi | Xi) 1(xi < x̄)) = 0.

Therefore, assumptions 2.4 (1) and 2.5 (2) and the vector CLT imply that

√
n

1
n

n∑
i=1

ñ
Xi εi 1(xi > x̄)
Xi εi 1(xi < x̄)

ô
d−→

d−→ N
Çñ

0
0

ô
, σ2

ñ
E(XiX

T
i 1(xi > x̄)) 0

0 E(XiX
T
i 1(xi < x̄))

ôå
.
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Finally, Slutsky’s theorem implies that

√
n

ñ
δ̂+ − δ+

δ̂− − δ−

ô
d−→ N

(ñ
0
0

ô
, σ2

ñ
E(XiX

T
i 1(xi > x̄)) 0

0 E(XiX
T
i 1(xi < x̄))

ô−1)
.

By the continuous mapping theorem,

√
nan :=

Ä
α
√
n(δ̂+ − δ+) + (1− α)

√
n(δ̂− − δ−)

ä
d−→ N (0, v),

where

v = σ2
(
α2E(XiX

T
i 1(xi > x̄))−1 + (1− α)2σ2E(XiX

T
i 1(xi < x̄))−1

)
.

By assumption 2.4 item (1), assumption 2.5 item (1) and the strong LLN, Ê(g(zi) |
xi = x̄)

p−→ E(g(zi) | xi = x̄) and Ê(g(zi)zi | xi = x̄)
p−→ E(g(zi)zi | xi = x̄), and since

the limits are scalar, the convergence holds for the vector. By Slutsky’s theorem,

√
nBn

d−→ N (0, VB).

It is easy to establish the joint convergence of An and Bn with the same arguments
as above. Observe that since (δ̂+ − δ+) and (δ̂− − δ−) use only data for which xi 6= x̄,

Cov(An, Bn) = E
Å

1
p̂2
x̄

(∆(zi)g(zi)1(xi = x̄)− θ)[x̄ g(zi)zi1(xi = x̄)]
ã
·

· E
Ä
α(δ̂+ − δ+) + (1− α)(δ̂− − δ−)

ä
= 0 (24)

because the weighted least squares estimators δ+ and δ− are unbiased. Equation (24)
and the continuous mapping theorem imply that

√
n(θ̂ − θ) =

√
nAn −

√
nBn

d−→ N (0, VA + VB).

A.2.2 Theorem 4

The convergence of P
Ä√

n θ̂
V̂B

6 cλ
ä

to λ as n→∞ under H0 is a trivial consequence
of theorem 3. Under H1,

P

Ñ
√
n

θ̂»
V̂B

> cλ

é
= P

Ö
√
n

Ç
θ̂ − θ√
VA + VB

å
−
cλ

(»
V̂B −

√
VB

)
√
VA + VB

>
cλ
√
VB√

VA + VB
−
√
n

θ√
VA + VB

è
From theorem 3 and the continuous mapping theorem,

»
V̂B −

√
VB

p−→ 0, and there-

fore, by the same theorem and Slutsky’s theorem,
√
n
Ä

θ̂−θ√
VA+VB

ä
−

cλ

Ä√
V̂B−

√
VB

ä
√
VA+VB

d−→

N (0, 1). Since−
√
n θ√

VA+VB
→ −∞ as n→∞, it is easy to prove that P

Å√
n
Ä

θ̂−θ√
VA+VB

ä
−
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cλ

Ä√
V̂B−

√
VB

ä
√
VA+VB

> cλ
√
VB√

VA+VB
−
√
n θ√

VA+VB

ã
→ 1 as n→∞.

Under the alternatives θ/
√
n, the same manipulations as above yield

P

Ñ
√
n

θ̂»
V̂B

6 cλ

é
= P

Ö
√
n

Ç
θ̂ − θ/

√
n√

VA + VB

å
−
cλ

(»
V̂B −

√
VB

)
√
VA + VB

6
cλ
√
VB − θ√

VA + VB

è
and since

√
n
(
θ̂−θ/

√
n√

VA+VB

)
−
cλ

Ä√
V̂B−

√
VB

ä
√
VA+VB

d−→ N (0, 1), the result of the theorem follows
immediately.

A.3 Estimation in the partially linear case

A.3.1 Theorem 5:

From equation (15), equation (12) can be rewritten as

Bn = B1
n +B2

n

B1
n := Ê(g(zi) |xi = x̄)

(
α[τ̃+(x̄)lim − τ+(x̄)lim] + (1− α)[τ̃−(x̄)lim − τ−(x̄)lim]

)
B2
n := α

îÄ
Ê(g(zi)zi |xi = x̄)T − Ê(g(zi) |xi = x̄) eT1 (X̃TW+X̃)−1X̃TW+Z

ä
(γ̂+ − γ+)

ó
+

+(1− α)
îÄ

Ê(g(zi)zi |xi = x̄)T− Ê(g(zi) |xi = x̄) eT1 (X̃TW−X̃)−1X̃TW−Z
ä

(γ̂− − γ−)
ó
.

It will be shown that B1
n converges at the rate

√
nh and (An + B2

n) converges at
the rate

√
n, and therefore Var(

√
nhB2

n) = O(h). The consequence of the disparity
between the rates is that only the variance of B1

n will affect the asymptotic variance
of θ̂. However, in order to study the influence of B2

n in small samples, the results will
consider variance terms that are at least O(h), which is the same to say that any term
which is o(h) will be considered irrelevant in the variance calculations and not taken
into account.

For the distribution of B1
n, observe that τ̃+(x̄)lim and τ̃−(x̄)lim are local polynomial

regressions of yi− zTi γ+ and yi− zTi γ− on xi using only observations for which xi > x̄

and xi < x̄ respectively. These are standard local polynomial regressions of the kind
used in Porter (2003) for the estimation of the sides of the discontinuity in the regression
discontinuity design. There is one crucial difference: Porter assumes that the running
variable xi has a density function in a neighborhood of x̄. Since here P(xi = x̄) > 0,
this is no longer possible. However, by assumption 2.6 (3) the distribution function
F (x | x 6= x̄) has a density function in [x−, x̄) ∩ (x̄, x+], and it is equal to

ϕ(x) :=
d
dxF (x)

P(xi 6= x̄)
.

Let the random variables x̃+
i be defined in [x̄,∞) ∩ X with density function ϕ̃(x)+ =

ϕ(x) in (x̄, x+] and ϕ̃(x̄)+ = limx↓x̄ ϕ(x). Then P(x̃+
i = xi1(xi > x̄)) = 1. Define x̃−i

46



analogously. Though in theorem 3 Porter assumes that the xi have a density function
in an open set N 3 x̄, all the equations use either xi1(xi > x̄) or xi1(xi < x̄), and
the results only require that xi1(xi > x̄) has a density in [x̄, x+) and that xi1(xi 6 x̄)
has a density in (x−, x̄]. Hence, theorem 3 in Porter (2003) can be applied to x̃+

i and
x̃−i , and the results will be valid to xi1(xi > x̄) and xi1(xi < x̄) respectively with
probability one. Assumption 2.6 (4)-(7) complete the requirements of the theorem.
Let ñ :=

∑n
i=1 1(xi 6= x̄), Porter shows that

√
hñ

Ç
τ̃+(x̄)lim − τ+(x̄)↓ − B̃+

n

τ̃−(x̄)lim − τ−(x̄)↑ − B̃−n

å
d−→ N

Çñ
0
0

ô
,

ñ
Ṽ+ 0
0 Ṽ−

ôå
(25)

where if p is odd,

B̃+
n = hp+1 τ

+(p+1)(x̄)lim

(p+ 1)!
eT1 Λ−1

0 Υp+1 + o(hp+1) = B+
n

and if p is even,

B̃+
n = hp+2

ñ
τ+(p+1)(x̄)lim

(p+ 1)!
ϕ̃′(x̄)+

ϕ̃(x̄)+

ô
eT1 Λ−1

0 (Υp+2 − Λ1Λ0Υp+1)

+

ñ
τ+(p+2)(x̄)lim

(p+ 2)!

ô
eT1 Λ−1

0 Υp+1 + o(hp+2)

= hp+2

ñ
τ+(p+1)(x̄)lim

(p+ 1)!
φ′(x̄)↓

φ(x̄)↓

ô
eT1 Λ−1

0 (Υp+2 − Λ1Λ0Υp+1)

+

ñ
τ+(p+2)(x̄)lim

(p+ 2)!

ô
eT1 Λ−1

0 Υp+1 + o(hp+2) = B+
n

and analogously for B−n . Observe that E(σ2
ε (xi, zi) | xi = x , xi 6= x̄) = σ2(x) for all x

in (x̄, x+). Hence, if p is even or odd,

Ṽ+ =
Var(εi | x̃+

i = x̄)
ϕ̃(x̄)+

eT1 Λ−1
0 Ω Λ−1

0 e1 = P(xi 6= x̄)
σ2(x̄)↓

φ(x̄)↓
eT1 Λ−1

0 Ω Λ−1
0 e1 = P(xi 6= x̄)V+,

and analogously for V−. By assumption 2.4 (1) and the LLN, ñ/n
p−→ P(xi 6= x̄) > 0,

and by the Continuous Mapping theorem and Slutsky’s theorem,

√
hn

Ç
τ̃+(x̄)lim − τ+(x̄)↓ − B+

n

τ̃−(x̄)lim − τ−(x̄)↑ − B−n

å
d−→ N

Çñ
0
0

ô
,

ñ
V+ 0
0 V−

ôå
. (26)

Also, by assumption 2.4 item (1), assumption 2.5 item (1) and the LLN, Ê(g(zi) |
xi = x̄)

p−→ E(g(zi) | xi = x̄). Hence, Slutsky’s theorem and the continuous mapping
theorem imply

√
nh
(
B1
n − Bn

) d−→ N
(

0,E(g(zi) | xi = x̄)2
[
α2V+ + (1− α)2V−

] )
.
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For determining the asymptotic distribution of B2
n +An, denote

a+
n := eT1 (X̃TW+X̃)−1X̃TW+Z,

a−n := eT1 (X̃TW+X̃)−1X̃TW−Z,

b+n := α
î
Ê(g(zi)zi |xi = x̄)T − Ê(g(zi) |xi = x̄) a+

n

ó
,

b−n := (1− α)
î
Ê(g(zi)zi |xi = x̄)T − Ê(g(zi) |xi = x̄) a−n

ó
,

then

B2
n +An = b+n (γ̂+ − γ+) + b−n (γ̂− − γ−) +An =

[
b+n b+n 1

]  γ̂+ − γ+

γ̂− − γ−

An

 .
First, observe that assumptions 2.6 (3) and (6)-(8) and Theorem 3 in Porter (2003)

guarantee that a+
n

p−→ E(zi | xi = x̄)↓ and a−n
p−→ E(zi | xi = x̄)↑. By assumption 2.4

item (1), assumption 2.6 item (1) and the LLN, Ê(g(zi) | xi = x̄)
p−→ E(g(zi) | xi = x̄),

and Ê(g(zi)zi | xi = x̄)
p−→ E(g(zi)zi | xi = x̄). Hence, by Slutsky’s theorem,

[b+Tn b−Tn 1]
p−→ [αCT+ (1− α)CT− 1]. From assumption 2.6 (2) and Slutsky’s the-

orem,

√
n(B2

n +An) d−→
î
αCT+ (1− α)CT− 1

ó
N

Ö 0
0
0

 ,
 V+

γ 0 0
0 V−γ 0
0 0 VA


è

∼ N
(
0, α2CT+V+

γ C+ + (1− α)2CT−V−γ C− + VA
)
. (27)

Since
√
nh(B2

n + An)
p−→ 0, Slutsky’s theorem guarantees the joint convergence

of
√
nh(B1

n − Bn) and
√
nh(B2

n + An). The only remaining task is to calculate the
covariance nhCov(B1

n − Bn, B2
n + An) up to the O(h) level. This result requires that

one return to the proof of theorem 3 in Porter (2003), p. 44., and refer to equations
(17) to (22) in that paper. B1

n can be rewritten as

√
nh(B1

n − Bn) = eT1

[
αDn+

19∑
s=17

Es + (1− α)Dn−

22∑
s=20

Es

]

where Es is the numerator in equation (s) in p.44 in Porter (2003), the notation trans-
lates here as

di = 1(xi > x̄), Zi =
1
h
X̃i, Dn+ = (n−1X̃TW+X̃)−1, Bn+ = B+

n ,

y+
i = τ+(xi)− τ+(x̄)↓ − τ+(1)(x̄)lim(xi − x̄)− · · · − 1

p!
τ+(p)(x̄)lim(xi − x̄)p + εi,

µ+
j (x) = τ+(x)−

ï
τ+(x̄)↓ + τ+(1)(x̄)lim(xi − x̄) + · · ·+ 1

j!
τ+(j)(x̄)lim(xi − x̄)j

ò
,
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and the terms with the “-” sign are defined analogously. Hence,

1
h
nhCov(B1

n − Bn, B2
n +An) =

[
α

19∑
s=17

1√
h

Cov(eT1 Dn+Es,
√
n(B2

n +An))

+(1− α)
22∑
s=20

1√
h

Cov(eT1 Dn−Es,
√
n(B2

n +An))

]

We will deal with the first term, for s = 17, 18 and 19. The second term, for s = 20, 21
and 22 is analogous.

1√
h

Cov(eT1 Dn+Es,
√
n(B2

n +An)) =
1√
h

Cov(eT1 Dn+Es,
√
nB2

n) +
1√
h

Cov(eT1 Dn+Es,
√
nAn)

An is composed exclusively by observations for which xi = x̄, while Dn+Es is composed
exclusively by observations for which xi > x̄. They are therefore independent, and since
E(An) = 0, 1√

h
Cov(eT1 Dn+Es,

√
nAn) = 0. B2

n = b+n (γ̂+ − γ+) + b−n (γ̂− − γ−). The
term b−n (γ̂−−γ−) is composed exclusively of observations for which xi = x̄ and xi > x̄.
It is therefore independent of Dn+Es, and 1√

h
Cov(eT1 Dn+Es, b

−
n

√
n(γ̂− − γ−)) = 0.

The term E19 is not random, and therefore, 1√
h
Cov(eT1 Dn+E19, b

+
n

√
n(γ̂+ − γ+)) = 0.

For the term E18, we will use Hölder’s inequality:

1√
h

Cov(eT1 Dn+E18, b
+
n

√
n(γ̂+ − γ+)) = E(eT1 Dn+E18b

+
n

√
n(γ̂+ − γ+))

− E(eT1 Dn+E18)E(b+n
√
n(γ̂+ − γ+))

6 E((eT1 Dn+E18)2)1/2E(n(b+n (γ̂+ − γ+))2)1/2

+ E(|eT1 Dn+E18|)E(|b+n
√
n(γ̂+ − γ+)|)

Porter shows that Var(eT1 Dn+E18) = o(h−(p+1)), and from assumption 2.6 (2), E(n(b+n (γ̂+−
γ+))2)1/2 is uniformly bounded. Hence, 1√

h
Cov(eT1 Dn+E18, b

+
n

√
n(γ̂+ − γ+)) = o(1).

The only remaining term is 1√
h
Cov(eT1 Dn+E17, b

+
n

√
n(γ̂+− γ+)). It is necessary to

have a better understanding of γ̂+. b+n (γ̂+ − γ+) = b+n (Z̃T+Z̃+)−1Z̃T+(Ỹ+ − Z̃+γ
+), and

for observations such that xi > x̄,

ỹi+ − z̃i+γ+ = yi − zTi γ+ −
n∑
j=1

1(xj > x̄)T+
i,j(yj − z

T
j γ

+)

= τ+(xi) + εi −
n∑
j=1

1(xj > x̄)T+
i,j(τ

+(xj) + εj)

Let T+ = [T+
i,j1(xj > x̄)] the n × n matrix with entry Ti,j1(xi > x̄, xj > x̄) in line i,

column j, τ+ = (τ+(x1), . . . , τ+(xn))T , and P+
γ := b+n (Z̃T+Z̃+)−1Z̃T+ . Then b+n (γ̂+ −

γ+) = P+
γ (I+ − T+)(τ+ + ε), where I+ = Diag{1(x1 > x̄), . . . ,1(Xn > x̄)}. Also,

e1Dn+E17 =
√
nhP+

1 ε. Hence, since it can be easily shown that E( 1√
h
eT1 Dn+E17) =
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o(1) and since b+n
√
n(γ̂+ − γ+)) is uniformly bounded,

1√
h

Cov(eT1 Dn+E17, b
+
n

√
n(γ̂+ − γ+)) = nE(P+

1 ε(γ̂
+ − γ+)T b+Tn )

(
P+

1 ε
)
b+n (γ̂+ − γ+) =

(
P+

1 ε
)

(γ̂+ − γ+)T b+Tn = P+
1 ε(τ

+T + εT )(I+ − T+)TP+T
γ

=⇒ E(
(
P+

1 ε
)
b+n (γ̂+ − γ+)) = E(P+

1 ε
2(I+ − T+)TP+T

γ )

where ε2 = Diag{ε21, . . . , ε2n}. Define E(ε2 | X) = Diag{E(ε2i | xi = x1), . . . ,E(ε2i |
xi = xn)} and Ê(ε2 | X) = Diag{Ê(ε2i | xi = x1}, . . . , Ê(ε2i | xi = xn))T . We can then
rewrite ε2(I+ − T+)TP+T

γ as

PTγ (I+ − T+)ε2 = b+n (Z̃T+Z̃+)−1ZT (I+ − T+T )(I+ − T+)ε2

= b+n (Z̃T+Z̃+)−1
[
ZT ε2 − E(Z | X)T ε2 − ZTE(ε2 | X) + E(Z | X)TE(ε2 | X)

− (Ê(Z | X)− E(Z | X))T ε2 − ZT (Ê(ε2 | X)− E(Z | X))

+ (Ê(Z | X)− E(Z | X))T Ê(ε2 | X) + E(Z | X)(Ê(ε2 | X)− E(ε2 | X))
]
.

Hence

nP+
1 ε

2(I+ − T+)TP+T
γ =

[
P+

1 ε
2Z − P+

1 ε
2E(Z | X)− P+

1 E(ε2 |X)Z

+P+
1 E(ε2 | X)E(Z | X)

]Ç Z̃T+Z̃+

n

å−1

b+Tn + Un,

|Un| 6
∣∣∣∣∣ 1n

n∑
i=1

1
h
k
(xi − x̄

h

)
1(xi > 0)X̃iε

2
i

∣∣∣∣∣ d∑
s=1

sup
i

∣∣∣Ê(zsi | xi)− E(zsi | xi)
∣∣∣ |bsn|

+

∥∥∥∥∥ 1
n

n∑
i=1

1
h
k
(xi − x̄

h

)
1(xi > 0)X̃izi

∥∥∥∥∥ d∑
s=1

sup
i

∣∣∣Ê(ε2i | xi)− E(ε2i | xi)
∣∣∣ |bsn|

+

∣∣∣∣∣ 1n
n∑
i=1

1
h
k
(xi − x̄

h

)
1(xi > 0)X̃i

∣∣∣∣∣ sup
i

∣∣∣Ê(ε2i | xi)
∣∣∣ d∑
s=1

sup
i

∣∣∣Ê(zi | xi)− E(zi | xi)
∣∣∣ |bsn|

+

∥∥∥∥∥ 1
n

n∑
i=1

1
h
k
(xi − x̄

h

)
1(xi > 0)X̃iE(zi | xi)

∥∥∥∥∥ d∑
s=1

sup
i

∣∣∣Ê(ε2i | xi)− E(ε2i | xi)
∣∣∣ |bsn| .

Because the terms with the kernels can easily be shown to be bounded, supi
∥∥∥Ê(ε2i | xi)

∥∥∥
is asymptotically bounded, because supi

∥∥∥∑n
j=1 1(xj > x̄)T+

i,jε
2
j − E(ε2i | xi)

∥∥∥ = op(1),
and the other terms are op(1) by assumption 2.6 (2), Un = op(1).
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Finally, again by assumption 2.6 (2),Ç
Z̃T+Z̃+

n

å
p−→ Var(zi | xi)

=⇒ nP+
1 ε

2(I+ − T+)TP+T
γ

p−→α(E(ε2i zi | xi = x̄)↓ − E(ε2i | xi = x̄)↓E(zizi | xi = x̄)↓)C+

= αC+(Σz(x̄)↓)−1czε2(x̄)↓.

Therefore,

α
19∑
s=17

1√
h

Cov(eT1 Dn+Es,
√
n(B2

n +An))→ α2 C+(Σz(x̄)↓)−1czε2(x̄)↓

and the result for s = 20, 21 and 22 is analogous.

A.3.2 Theorem 6:

The convergence of V̂ follows from observing that αĈ+ = b+n and (1 − α)Ĉ− = b−n
and its convergence is established in the previous section. Theorem 4 in Porter (2003)
guarantees the convergence of V̂+ and V̂−, as long as σ̂2(x̄)lim s → σ2(x̄)lim s and
φ̂(x̄)lim s → φ(x̄)lim s as n → ∞. The latter is guaranteed by item (3) in assumtpion
2.6. We show the former for s = “+′′, the result for s = “−′′ is analogous.

E((yi − zTi γ̂+)2 | xi = x̄)↓ = eT1 (X̃TW s+X̃)−1X̃TW+R+ (28)

= eT1 (X̃TW+X̃)−1X̃TW+R̃+

− eT1 (X̃TW+X̃)−1X̃TW+(R+ − R̃+) (29)

where R̃+ = (R̃+
1 , . . . , R̃

+
n )T , R̃+

i = (yi−zTi γ+)2. We begin by showing that the second
term is op(1). Notice that

R+
i − R̃

+
i = (yi − zTi γ̂+)2 − (yi − zTi γ+)2

=
[
(yi − zTi γ̂+) + (yi − zTi γ+)

]
zTi (γ̂+ − γ+)

Let

Û+ = eT1 (X̃TW+X̃)−1
n∑
i=1

1(xi > x̄) k
(xi − x̄

h

)
(yi − zTi γ̂+)zTi

Ũ+ = eT1 (X̃TW+X̃)−1
n∑
i=1

1(xi > x̄) k
(xi − x̄

h

)
(yi − zTi γ+)zTi

Then the second term in (28) is

eT1 (X̃TW+X̃)−1X̃TW+(R+ − R̃+) = (Û+ + Ũ+)(γ̂+ − γ+)
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From equation (15) and the proof of theorem 5, it’s easy to see that

Û+ + Ũ+ p−→ 2 (τ+(x̄)↓) E(zi | xi = x̄)↓

and since γ̂+ − γ+ p−→ 0 by assumption 2.6 item (2), the second term in (28) is op(1).
The first term in (28) is a local polynomial regression of (yi − zTi γ

+)2 on xi at
x̄. Hence, from assumption 2.6 items (2)-(7) and theorem 4.1 in Ruppert and Wand
(1994),

eT1 (X̃TW+X̃)−1X̃TW+R̃+ p−→ lim
x↓x̄

E(yi − zTi γ+)2 | xi = x) = lim
x↓x̄

E(ε2i | xi = x) = σ2(x̄)↓.

The proof for the convergence of ĉzε2(x̄)lim is analogous. It is only necessary to
observe that

E(zi(yi − ziγ+)2 | xi)− E(zi | xi)E((yi − ziγ+)2 | xi) = E(ziε2i | xi)− E(zi | xi)E(ε2i | xi).

A.3.3 Theorem 7:

Observe that

P

Ñ
√
nh

θ̂»
V̂n

> cλ

é
= P

(
√
nh

Ç
θ̂ − θ − Bn√

Vn

å
−
cλ

(»
V̂n −

√
Vn
)

√
Vn

+

√
nhBn√
Vn

> cλ −
√
nhθ√
Vn

)
.

From theorem 6 and the continuous mapping theorem,
»
V̂n −

√
Vn

p−→ 0. Moreover,√
nhBn → 0, since

√
nhhp+1 → 0. Hence, by theorems 5 and Slutsky’s,

√
nh
Ä
θ̂−θ−Bn√
Vn

ä
−

cλ

Ä√
V̂n−

√
Vn
ä

√
Vn

+
√
nhBn√
Vn

d−→ N (0, 1). Under H0, θ = 0, and the first result follows imme-

diately. Under H1, since h→ 0, Vn → α2V+
τ +(1−α)2V−τ , and therefore −

√
nhθ√
Vn
→ −∞,

from which the second result follows.

Under the alternatives θ/
√
nh, observe that

P

Ñ
√
nh

θ̂»
V̂n

> cλ

é
= P

(
√
nh

Ç
θ̂ − θ/

√
nh− Bn√
Vn

å
−
cλ

(»
V̂n −

√
Vn
)

√
Vn

+

√
nhBn√
Vn

+ θ

Ñ
1√
Vn
− 1»

α2V+
τ + (1− α)2V−τ

é
> cλ −

θ»
α2V+

τ + (1− α)2V−τ

)
.

and since θ
Å

1√
Vn
− 1√

α2V+
τ +(1−α)2V−τ

ã
p−→ 0, by Slutsky’s theorem the third result of

the theorem follows.
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A.4 Estimation in the nonparametric case

A.4.1 Theorem 8:

The proof is similar to the proof of the convergence of the nonparametric term in
the partially linear case. The essence of the argument is that since the support if
dF (zi) is finite, all arguments can be done separately for each possible value of zi.
We begin by deriving the asymptotic distribution of Γ̂(zm)+. This is a standard local
polynomial regression of the kind used in Porter (2003) for the estimation of one side
of the discontinuity in the regression discontinuity design. There are two differences.
First, Γ̂(zm)+ uses only data for which zi = zm. Second, the results in Porter assume
that the variable xi has a density function in a neighborhood of x̄. Assumption 2.7
item (1) implies that P(xi = x̄ | zi = zm) > 0, so this is no longer possible. However,
from item (2), the conditional distribution function

P(xi 6 x | xi > x̄ , zi = zm) =
P(xi 6 x , zi = zm)− P(xi 6 x̄ , zi = zm)

P(xi > x̄ , zi = zm)

has a density function in (x̄, x+), and it is equal to

ϕm(x) :=
d
dxP(xi 6 x , zi = zm)
P(xi > x̄ , zi = zm)

.

Though theorem 3 in Porter dependens on the existence of a density function in (x̄, x+),
it is not dependent on the existence of a density function at the discontinuity point x̄,
as long as the right limit of ϕm(x) at x̄ exists. From assumption 2.7 item (2), this is
true and

ϕm(x̄)↓ := lim
x↓x̄

ϕm(x) :=
φ(x̄, zm)↓

P(xi > x̄ , zi = zm)
.

Assumption 2.7 (3)-(6) complete the requirements of Theorem 3 in Porter (2003). Let
n+
m :=

∑n
i=1 1(xi > x̄)1(zi = zm),√

hn+
m

Ä
Γ̂(zm)+ − B̃+

m,n

ä
d−→ N

Ä
0 , Ṽ+

m

ä
(30)

where if p is odd,

B̃+
n = hp+1 f

+(p+1)(x̄, zm)lim

(p+ 1)!
eT1 Λ−1

0 Υp+1 + o(hp+1) = B+
m,n
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and if p is even,

B̃+
n = hp+2

ñ
f+(p+1)(x̄, zm)lim

(p+ 1)!
ϕ′(x̄, zm)↓

ϕ(x̄, zm)↓

ô
eT1 Λ−1

0 (Υp+2 − Λ1Λ0Υp+1)

+

ñ
f+(p+2)(x̄, zm)lim

(p+ 2)!

ô
eT1 Λ−1

0 Υp+1 + o(hp+2)

= hp+2

ñ
f+(p+1)(x̄, zm)lim

(p+ 1)!
φ′(x̄, zm)↓

φ(x̄, zm)↓

ô
eT1 Λ−1

0 (Υp+2 − Λ1Λ0Υp+1)

+

ñ
f+(p+2)(x̄, zm)lim

(p+ 2)!

ô
eT1 Λ−1

0 Υp+1 + o(hp+2) = B+
m,n

Also, observe that E(σ2
ε (xi, zi) | xi = x , xi > x̄, zi = zm) = σ2

m(x) for all x in
(x̄, x+). Hence, if p is even or odd,

Ṽ+
m =

σ2(x̄)↓

ϕ(x̄, zm)↓
eT1 Λ−1

0 Ω Λ−1
0 e1 = P(xi > x̄, zi = zm)

σ2(x̄)↓

φ(x̄, zm)↓
eT1 Λ−1

0 Ω Λ−1
0 e1

= P(xi > x̄ , zi = zm)V+
m

By assumption 2.4 (1) and the LLN, n+
m/n

p−→ P(xi > x̄ , zi = zm), and by the contin-
uous mapping theorem and Slutsky’s theorem,

√
nh
Ä
Γ̂(zm)+ − B+

m,n

ä
d−→ N

(
0 , V+

m

)
.

The exact same reasoning applied to Γ̂(zm)− will yield the equivalent result for the
left limit. Moreover, the result in Porter (2003) states the joint convergence of√
nh
Ä
Γ̂(zm)+ − B+

m,n

ä
and
√
nh
Ä
Γ̂(zm)− − B−m,n

ä
by the Cràmer Wold device. The

Γ̂(zm)+ are independent for all m, and also independent from the Γ̂(zm)−, because they
are built using different parts of the sample, hence by continuous mapping theorem,

α
√
nh
Ä
Γ̂(zm)+ − B+

m,n

ä
+ (1− α)α

√
nh
Ä
Γ̂(zm)− − B−m,n

ä
d−→ N

(
0 , α2V+

m + (1− α)2V−m
)
.

Assumption 2.4 (1) and (2), the LLN and Slutsky’s theorem imply that p̂mx̄
p−→ pmx̄

jointly for all m. By Slutsky’s theorem again,
√
nh (Bn − Bn) =

=
î
p̂1
x̄ . . . p̂Mx̄

ó α
√
nh
Ä
Γ̂(z1)+ − B+

1,n

ä
+ (1− α)α

√
nh
Ä
Γ̂(z1)− − B−1,n

ä
...

α
√
nh
Ä
Γ̂(zM )+ − B+

M,n

ä
+ (1− α)α

√
nh
Ä
Γ̂(zM )− − B−M,n

ä  d−→

d−→ N
(

0 ,
î
p1
x̄ . . . pMx̄

ó
Diag{α2V+

m + (1− α)2V−m}
î
p1
x̄ . . . pMx̄

óT)
= N (0 , V)

The joint convergence of
√
nhBn and

√
nhAn is guaranteed by Slutsky’s theorem,

because
√
nhAn

p−→ 0. In order to derive the small sample covariance, the same con-
siderations as in the correlation between the Γ̂(zm)+ and the Γ̂(zm)− for all m apply
here, namely that they are independent from An because they are built using differ-
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ent observations. An may be correlated with Bn. Equation (8) and lemma B.2 imply
that nhE(AnBn) =

√
hO

(
hp+1

)
= hO(hp+1/2), which is of order smaller than h, and

therefore the correlation os negligible. Hence, the small sample variance is

V + hVA + o(h) = Vn

which concludes the demonstration.

A.4.2 Theorem 9:

We showed that p̂mx̄
p−→ pmx̄ . It only remains to prove that σ̂2(x̄, zm)↓

p−→ σ2(x̄, zm)↓ and
σ̂2(x̄, zm)↑

p−→ σ2(x̄, zm)↑ for all m. In the beginning of section 8 in the appendix, we
showed that the restriction to the observations such that xi ∈ (x̄, x+) and zi = zm has
a density function in (x̄, x+) equal to ϕm(x). We will use Masry (1996)’s result on the
uniform convergence of the multivariate local polynomial. From assumption 2.7 and
Theorem 6 in that article, if zi = zm,

sup
x∈(x̄,x+)

∣∣∣f̂+(xi, zi)− f(xi, zi)
∣∣∣ = sup

x∈(x̄,x+)

∣∣∣f̂+(xi, zm)− f(xi, zm)
∣∣∣ = O

ÇÅ
log n
nh

ã1/2

+ hp+1

å
almost surely. Define D+

m = {i ; xi > x̄ and zi = zm}, then by the continuous mapping
theorem,

sup
i∈D+

m

∣∣∣(ε̂si )2 − ε2i
∣∣∣ = O

ÇÅ
log n
nh

ã1/2

+ hp+1

å
a.s.

Let R̃ = (ε21, . . . , ε
2
n)T ,

σ̂2(x̄, zm)↓ = P+
1,m,x̄R̃+ P+

1,m,x̄(R− R̃)

The first term is a simple local polynomial regression of the ε2i onto xi at x̄, and by
theorem 3 in Porter (2003), it is a consistent estimator of limx↓x̄ E(ε2i | xi = x, zi =
zm) = σ2(x̄, zm)↓. For the second term, let (v)i denote the i-th element of vector v,
and since

(
P+

1,m,x̄

)
i

is different from zero only if i ∈ D+
m,

∣∣∣P+
1,m,x̄(R− R̃)

∣∣∣ =

∣∣∣∣∣∣
Ç
X̃T
xW

s
x,mX̃x

nh

å−1
X̃T
xW

s
x,m(R− R̃)
nh

∣∣∣∣∣∣
6

∥∥∥∥∥∥
Ç
X̃T
xW

s
x,mX̃x

nh

å−1
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Observe that
(
X̃TxW

s
x,m

h

)
i

= 1(i ∈ D+
m) 1

hk
(
xi−x̄
h

)
(a0 + a1(xi − x̄) + · · ·+ ap(xi − x̄)p).

From assumption 2.7 (5), the kernel has bounded support, and since k is continuous,
there exists k̄ such that |k(u)| 6 k̄ for all u. Let umax := supu {u ; k (u) 6= 0}, define
xmax
h := x̄+ umaxh. Hence,∣∣∣∣∣

Ç
X̃T
xW

s
x,m

h

å
i

∣∣∣∣∣ 6 1
h
k̄ [|a0|+ |a1||xmax

h − x̄|+ · · ·+ |ap||xmax
h − x̄|p]

6
1
h
k̄ [|a0|+ |a1u

max|h+ · · ·+ |ap(umax)p|hp]

6
C

h
, for n large enough.

=⇒
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∣∣∣ 6 C

h
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By the convergence of P+
1,m,x̄R̃ and the continuous mapping theorem, there exists a

(p+ 1)× (p+ 1) positive definite matrix M such that for all δ > 0,

P

Ñ∥∥∥∥∥∥ÇX̃T
xW

s
x,mX̃x

nh

å−1

−M−1

∥∥∥∥∥∥ > δ

é
→ 0

Hence,

=⇒
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∣∣∣ 6 C

h

(∥∥M−1
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∣∣∣(ε̂si )2 − ε2i
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=

[Ç
(log n)1/3

n1/3h

å3/2

+ hp

]
Op (1) a.s.

From assumption 2.8 (3), hn1/3(log n)−1/3 →∞, and from assumption 2.7 (7), h→ 0.
Hence,

∣∣∣P+
1,m,x̄(R− R̃)

∣∣∣ p−→ 0. The proof of the convergence of σ̂2(x̄, zm)↑ is analogous.

A.4.3 Theorem 10:

Analogously to the proof of theorem 7,

P
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√
nh
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nh
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.

From theorem 9 and the continuous mapping theorem,
»
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p−→ 0. Moreover,
if
√
nhhp+1 → 0,

√
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m,n → 0 and
√
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√
nhBn → 0. Hence, by

theorems 8 and Slutsky’s,
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ä
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+
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d−→ N (0, 1). Under
H0, θ = 0, and the first result follows immediately. Under H1, since h → 0, Vn → V,
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and therefore −
√
nhθ√
Vn
→ −∞, from which the second result follows.

Under the alternatives θ/
√
nh, observe that

P

Ñ
√
nh

θ̂»
V̂n
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é
= P

(
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nh

Ç
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.

and since θ
Ä

1√
Vn
− 1√

V

ä
p−→ 0, by Slutsky’s theorem the third result of the theorem

follows.

B Lemmas and definitions

Given how much the term “uniform integrability” is used here (particularly in the proof
of theorem 5), explicitating the definition may be useful.

Definition 2. A sequence of random variables {κn, n > 1} is called uniformly inte-
grable if for every ε > 0, there corresponds a δ > 0 such that supn>1 E(|κn| | κn ∈
A) < ε whenever P(A) < δ and, in addition, supn>1 E(|κn|) <∞.

Lemma B.1. (Chow and Teicher (1997)) If {κn, n > 1} are random variables with
supn>1 E(|κn|s) < ∞ for some s > 0, then the sequence {|κn|r, n > 1} is uniformly
integrable for all 0 < r < s.

Lemma B.2. (Billingsley (1995)) If the random variables {|κn|r, n > 1} are uniformly
integrable for some r > 0 and κn

d−→ κ, then E(|κ|p) <∞ and E(|κn|r)→ E(|κ|p).

C Empirical Appendix
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Data Frequency

CIG Frequency Percent Cumulative

0 393,939 80.70 80.70

1 1,469 0.30 81.00
2 2,986 0.61 81.61
3 3,759 0.77 82.38
4 2,890 0.59 82.98
5 6,838 1.40 84.38

6 2,618 0.54 84.91
7 1,758 0.36 85.27
8 1,644 0.34 85.61
9 335 0.07 85.68

10 32,720 6.70 92.38

11 117 0.02 92.41
12 801 0.16 92.57
13 396 0.08 92.65
14 128 0.03 92.68
15 4,568 0.94 93.61

16 93 0.02 93.63
17 39 0.01 93.64
18 259 0.05 93.69
19 19 0.00 93.70
20 25,333 5.19 98.89

21 49 0.01 98.90
22 30 0.01 98.90
23 39 0.01 98.91
24 36 0.01 98.92
25 417 0.09 99.00

26 7 0.00 99.01
27 3 0.00 99.01
28 12 0.00 99.01
29 2 0.00 99.01
30 2,993 0.61 99.62

31 4 0.00 99.62
32 3 0.00 99.62
33 2 0.00 99.62
34 5 0.00 99.62
35 97 0.02 99.64

36 5 0.00 99.65
37 2 0.00 99.65
38 1 0.00 99.65
39 0 0.00 99.65
40 1,474 0.30 99.95

> 40 254 0.05 100.00

Total 488,144
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