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Abstract

In this paper we propose a dynamic model of boundedly rational agents in which, be-
cause of cognitive and/or and memory limitations, agents fail to comprehend all of the
actions that are available to them at a given point in time. However, they can formulate
new “ideas” that reveal alternative courses of action via a costly process of ratiocina-
tion – “thinking.” Agents are aware of the distribution of potential rewards that accrue
from each new idea : they are fully appraised of the economically essential aspects of
their own ignorance. We establish that their behavior is characterized by a reservation
utility, and we analyze the determinants of their optimal thinking “intensity.” Our ap-
proach is notable in that it provides a useful, but albeit rudimentary, characterization
of an agent’s innate intelligence. Thus, one agent is more intelligent than another if,
ceteris paribus, he thinks of ideas at a faster rate and/or thinks of better quality ideas.
We apply the framework to a variety of economic settings.

Epiphany. A sudden, intuitive perception of or insight into the reality or essential
meaning of something, usually initiated by some simple, homely, or commonplace occur-
rence or experience. [Random House, Webster’s unabridged dictionary, 2002].
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“If one wished to be unfair to economists in general, he might select ... a certain well-
known though fictitious character whose idiosyncrasies furnish alternate joy and irri-
tation... He is a somewhat inhuman individual who, inconsistently enough, carries the
critical weighing of hedonistic values to the point of mania. So completely is he absorbed
in his irrationally rational passion for impassionate calculation that he often remains
a day laborer at pitifully low wages from sheer devotion to the fine art of making the
most out of his scanty income ...His enemies consider him eccentric... They are right.
He is eccentric. Indeed, he is not even a good hedonist... A good hedonist would stop
calculating when it seemed likely to involve more trouble than it was worth....” [Clark
(1918, p.26)]

1 Introduction

Over the two centuries or so that have elapsed since the publication of Adam Smith’s The
Wealth of Nations, much of the progress made by economic science has been made possible
by a strict adherence to a particular conception of rational economic behavior. The crystal-
lized embodiment of this viewpoint is located in the canonized being of rational economic
man himself — homo economus.1 He has consistently belonged to the vanguard of count-
less battalions of economists as they conquer the traditional territories of economics, and
even ones that lie beyond them. There is little doubt that homo economicus will continue
to remain an integral part of future spearheads, as subsequent legions of economists carve
out and dispatch new and exciting areas of inquiry. Nevertheless, several areas of legiti-
mate economic discourse have proven to be stubbornly recalcitrant, and, hence, unyielding
to the knight-errant’s prowess. The difficulties alluded to do not stem from some obvious
defect that inheres in homo economus himself; on the contrary, they arise precisely because
of his towering intellect.

Thus, the conception of rationality, as it is used by economists, hinders any satisfac-
tory characterization of a player’s innate intelligence – and, as an immediate corollary,
his potential lack thereof. Rational men are identical in this regard, standing atop the
highest pinnacles of intellectual acuity. Yet, differences in intelligence levels are arguably
quintessential aspects of the world in which we live. How else can we explain, for example,
why men and women of vision become leaders, while others become followers? Why some
researchers are lackluster, while others excel for their efforts? More insidiously, lacking
a suitable compass for intellectual acuity, it is difficult to analyze strategic situations in
which, for example, the strong-minded seek to manipulate those who are intellectually
weaker than themselves.

Moreover, homo economus has little use for the endless stream of (non-informative)
advertising he sees on TV and in other media. Indeed, a man of such brilliance simply

1Of course, the decision maker is not necessarily a male. Instead, by an appeal to the synechdoche, we use
“he” to mean “he or she.”
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selects the option that is best for him, given he understands both his own preferences and
the constraints that limit his choices. Consequently, he is a bulwark against the apparently
irrational behavior of firms, as they spend billions of dollars each year trying to influence
him, by telling him what he already knows.2 Finally, rational man has little need for the
core institutions of modern economies, such as firms, unions, and even his family. These
institutions call for him to cede at least part of his decision making authority to others,
who then subsequently use their power to control, and hence limit his future actions. His
omniscience precludes any apparent use for them, since he can, within the rule of law, use
his intellect to judiciously craft contracts that replicate their behavior and, in the process,
render them all equally otiose.

Thus, rational economic man’s striking intellect evidently is an impediment to progress
in some critical areas of economics. Some sixty years ago Simon (1955) advocated that
economists should model the cognitive limitations of actual human beings and proposed a
means whereby they could do so. This research program has garnered a several names
since its inception — with limited or bounded rationality being the most common among
them.3 The field has recently witnessed renewed vigor after, perhaps, languishing in the
recesses of the profession for some time.4 An important theme in the new literature, is that
much progress can be made by recognizing the costs of decision making. Conlisk (1996c)
is a forceful advocate for this position:5

“If rationality is scarce, good decisions are costly. There is a trade-off between effort
devoted to deliberation and effort devoted to other activities... A model of the trade-off
requires some form of “deliberation technology” by which a decision maker turns scarce
cognitive and other resources into better decisions.” [Conlisk (1996c, p.682).]

In this paper, we develop a dynamic model of boundedly rational agents that explicitly
incorporates deliberation costs. We consider an environment in which, at any given instant
in time, agents are unable to comprehend all of the actions, a , that are actually available
to them: A.6 Instead, we assume that they only perceive those actions that belong to their

2We do not want to claim toomuch: There are several fine extantmodels of informative, and non-informative
advertising (see Bagwell (2005)). Instead, our claim is that models populated by boundedly rational agents
may play a useful complementary role in providing a more complete picture of the economics of advertising.

3Simon (1987, p.266) himself defines bounded rationality as follows:

“The term ‘bounded rationality’ is used to designate rational choice that takes into account the
cognitive limitations of the decision maker—limitations of both knowledge and computational
capacity.”

4Conlisk (1996c), Lipman (1995), and Rubinstein (1998) offer especially useful surveys.
5Despite its importance, he notes: “[V]ery few explicit models of deliberation technology and deliberation

cost have appeared.” [Conlisk (1996c, p.682)]. Conlsik has constructed several interesting models that involve
a deliberation technology [see: Conlisk (1988), Conlisk (1996a), Conlisk (2001) and Conlisk (2003)]. None,
however, adopt the search perspective proposed in this paper.

6In the terminology of Lipman (1999) the decision maker is not logically omniscient.
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sparser active “awareness” sets A (t ) ⊂ A. Reasonably enough, a given agent can select an
action a ∈ A – and in doing so derive utility u (a ) – if and only if he is aware of its existence
(i.e., a ∈ A (t )).

At one extreme, this posited lack of “awareness,” may simply reflect the difficulty of
recalling known facts from memory. At the other, as emphasized by Aragones, Gilboa,
Postlewaite, and Schmeidler (2005), from the practical difficulties associatedwith “fact-free
learning ;” an endeavor that calls for agents to draw valid inferences from the information
they already possess. This latter difficulty is no doubt as ubiquitous as it is important. As
Aragones et al remark,

“[P]utting wheels at the bottom of a suitcase allows it to roll easily. This idea was quite
original when it was first introduced. But, since it only selected and combined facts that
everyone had already known, it appears obvious in hindsight.” [p.1355]

Military history is also replete with such apparent instances. Erwin Rommel’s brilliant
tactical use— on-the-fly—of the 88-FlaK anti-aircraft gun as an anti-tank weapon during
the North-Africa campaign provides a notable case in point.7 Thus,

“[D]uring a single action, the attack on Sidi Omar 22November 1941, a British brigadier
with 51 thick-skinned infantry tanks lost 47, most of them to 88-mm. antitank fire. By
the end of the Winter Battle, out of 1,276 tanks sent to Libya, 674 were damaged and
274 were destroyed. Rommel’s Afrika Korps had so crippled the armor that the British
could not resume the offensive until May 1942.” 8

This example is instructive on at least three counts. First, the use of the FlaKweapon in its
anti-tank role provides a monstrous example of fact-free learning: its use in this capacity
is obvious with hindsight. (The British were well aware that the Germans had batteries of
anti-aircraft guns.) Had the British recognized this possibility, they (presumably) would
have not pursued a tactic which led to the loss of upwards of 80% of their available ar-
mor. Second, not only does it provide an illustration of “fact free learning,” it may also
exemplify the difficulty of recalling already known facts from memory: the British had
evidently forgotten that, during the earlier 1941 campaign against France, Rommel had
already employed this tactic with deadly effect. Finally, in an observation that is partic-
ulary germane to this paper, it hints at the potential strategic considerations that arise
in settings wherein a player faces an opponent who is capable of carrying out significant
tactical innovations on-the-fly.

More subtly, the possibility of “fact-free” learning also has profound consequences for
economists’ usual Knightian distinction between situations of “risk and uncertainty.” Thus,
the outcome of a “fair” coin toss is usually deemed to be one of risk, while the outcome of
a coin toss with “unknown probabilities” (or for that matter unknown outcomes) is one of

7Fliegerabweherkanone.
8Source: http://www.army.mil/.
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uncertainty. Nevertheless, both of these concepts are predicated on the implicit assumption
that the decision maker is capable of comprehending that a coin is being tossed in the first
place. Thus, in the case of Rommel’s use of FlaK guns as tank destroyers, presumably
the problem was that the British command failed to imagine that the weapon could be
used in this manner. If the idea had dawned on them, then they would have immediately
recognized the risks it posed to their armor.

While the focus of Aragones et al’s paper was characterizing the inherent computa-
tional complexity of drawing inferences from already known facts, the focus of this one is
examining the behavior of a decision maker who is aware that he suffers from this malady.
Indeed, our main point of departure from their work is that we assume that agents recog-
nize that they can uncover possible actions via a process of ratiocination — “thinking.” We
model the thinking process using a search theoretic tools. Thus, at random points in time,
and at rate governed by their search intensities, they have new “ideas” concerning feasible
actions. As agents gradually uncover elements of A they augment their active awareness
set A (t ). We assume that they can influence the rate, and the quality, of their ideas by
exerting costly effort. This formulation allows us to model the speed with which an agent
will arrive at a decision, and to relate it to both internal features of his environment (i.e.,
his innate intelligence level) and to external ones that arise because of, for example, the
interposition of other players.

In our framework, players recognize that they can either select an action from A (t ), or
else wait until they have a better idea. Although they do not know all of the elements of
A, they are assumed to understand the consequences of further deliberation. More specif-
ically, we assume that they recognize the distribution of utilities associated with each new
idea. In other words, each agent is assumed to be appraised of the economically essential
aspects of his own ignorance. This feature imposes sufficient coherence on the decision
maker’s problem to render it highly tractable. In particular, in the environments we con-
sider, an agent’s behavior is characterized by a unique, and stationary, reservation utility
s∗. The agent makes a decision if and only if he has an “epiphany;” an idea, a ∈ A, that
provides him with utility that exceeds his reservation value: u (a ) ≥ s∗.

In Sections 2-3 we develop the theoretical framework, while Sections 4–5 present some
simple applications of the approach. More specifically, Section 4 considers the possibil-
ity of strategic manipulation, in which one player (the “speaker”) seeks to influence the
actions taken by another (the “listener”) for her own benefit.9 However, unlike games of
persuasion, in which the speaker must select the information she intends to communicate
to the listener, in this paper the speaker truthfully reveals everything she knows. Nev-
ertheless, cognitive differences between the two parties can lead to circumstances under
which the presence of the speaker actually makes the listener worse off; this despite his
ability to veto any suggestion she makes. In Section ?? we examine the economics of non-

9See, for example, Glazer and Rubinstein (2006).
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informative advertising, which arises when firms spend advertising dollars to apparently
remind consumers of what they already know. Although there are no market frictions –
we assume that consumers can instantly purchase the goods they desire – we show that
trade is costly and time consuming. The reason is that cognitive limitations imply that it
takes time for agents to formulate their consumption plans. Interestingly, we show that
the Diamond paradox emerges only if the market is populated by a large number of firms;
(paradoxically) it fails to emerge in the case of pure monopoly, in which there is a single
firm.10 Section 5 then applies that framework to study strategic situations of “conflict”
between two parties. The point of departure from the literature is that we examine the
consequences of allowing the parties to carry out tactical innovations “on the fly.” Section
7 offers some concluding comments.

Related Literature

This paper is obviously also related to the voluminous search literature.11 Indeed, a large
body of work has constructed and analyzed dynamic models of boundedly rational decision
making in general, and search models in particular.12 However, “search” has been inter-
preted in several distinct ways in the literature. In broad outline, it is possible to delineate
among four broad categories of model that make use of it. They are: (i ) information ac-
quisition, (ii ) “rules of thumb,” (iii ) search by bounded rational agents and (iv ) cognition
as a process of search.

(i) The Acquisition of Information. In 1955 Simon proposed, and analyzed, the first se-
quential search model. He considered an environment in which an individual searches
for a house, and must sequentially gather price information before he purchases one.13

In Simon’s model, and other search papers that analyze the acquisition of information,
agents “understand” everything about their environments: there are no limitations placed
on their abilities to process the information they possess. Instead, “frictions” inhere in the
market, and hinder agents’ abilities to acquire factual information which, in turn, implies
that transactions are costly and time consuming.14

10The Diamond paradox arises when search frictions induce all firms to set the monopoly price.
11Rogerson, Shimer, and Wright (2005), provide an exceptional review of this literature.
12Some of them, include: Conlisk (2003), Conlisk (1996b), Cross (1973), Day (1967), Day and Tinney (1968),

de Palma, Myers, and Papageorgiou (1994), Dow (1991), Lettau and Uhlig (1999), Mullainathan (2002), Os-
borne and Rubinstein (1998), Rosenthal (1993), Rubinstein (1993), Radner (1975b), Radner (1996), Radner
(1975a), Radner and Rothschild (1975), Simon (1955), Winter (1971), and Wilson (2003).

13See, Radner (1975b), Radner (1996), Radner (1975a), andRadner andRothschild (1975) formodels of costly
information acquisition as they pertain to boundedly rational agents. The field was more formally developed,
and popularized, by Stigler (1961), in the context of the search for an automobile. Rogerson, Shimer, and
Wright (2005) provide an excellent survey of the most recent literature. The earlier generations of search
literature are surveyed by Lippman and McCall (1976), and Mortensen (1986).

14Burdett, Shi, and Wright (2001) consider an environment in which agents know prices and product loca-
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In this paper, we seek to broaden the compass of the search approach by using it to
study the implications of “fact free” learning. The distinction we make between the use of
search-theoretic tools to model the acquisition of costly information and their use, proposed
here, to model the costly process of ratiocination, is much more pronounced than the “sus-
penders versus braces” variety. Thus, it is conceivable that markets may be characterized
by significant trade frictions, even if it is costless to gather additional information. For
example, (at a rather mundane level) it make take an individual an inordinate amount of
time to purchase a replacement box of his favorite breakfast cereal because he persistently
forgets he wants to do so, rather than because he is unsure about where to buy one, and
at what price. Moreover, during the lengthy process of deliberation, he may be susceptible
to the “suggestions” — and hence influence — of others. For example, a judiciously placed
cereal (or even milk) commercial may remind him of his desire to purchase a new box of
cereal — even if the commercial reminds him of something he already knows, and thus
fails to provide him with new information per se.

(ii) “Rules of Thumb.” Many papers have argued that real world decision makers are
incapable of solving the apparently complicated dynamic problems that economists pose
for them. Simon (1955) suggested that in this sort of setting they will use simple “rules
of thumb,” in order to simplify their decision making: They will “satisfice” rather than
“optimize.” A focal point of this literature has been addressing the question: how well do
rules of thumb perform relative to optimizing behavior?15 The answer is often “remarkably
well.” In an interesting recent paper, Conlisk (2003) demonstrates that a simple adaptive
procedure converges rapidly to the (unique) optimal stopping rule of sequential search
theory.

Nevertheless, a basic problem with this approach is that restrictions on optimizing
behavior are inherently ad hoc, and hence undesirable. Lipman’s admonition concerning
this point is quite apposite:

“It makes no sense to ask the question ‘how can the agent carry out this complex calcu-
lation’ when the ‘complex task’ is simply our representation of whatever it is the agent
in fact manages to do” [Lipman (1999, p.342-343)]16

In view of this weakness, in this paper we are careful to describe the world as perceived
by the decision maker. We then unabashedly use the tools of optimization to characterize
the agent’s behavior, implying that he behaves optimally in the environment as he compre-
hends it. Yet, despite being a “maximizer,” the constraints the hinder the decision maker’s

tions. However, frictions arise because they do not know which store other players in the game intend to visit
(and goods can be in “short supply”).

15Early work in this area includes: Baumol and Quandt (1964), Day (1967), Day and Tinney (1968), Rosen-
thal (1993), Simon (1955), Winter (1971). More recent contributions include papers by, Conlisk (2003), Conlisk
(1996b), Cross (1973), de Palma, Myers, and Papageorgiou (1994), Lettau and Uhlig (1999).

16See also, Lipman (1991) and Lipman (1995) for related viewpoints.
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ability to comprehend the actions that are available to him impose serious limitations on
his de facto rationality.

(iii) Search by Bounded Rational Agents. Dow (1991) considers an environment in which
a boundedly rational player sequentially searches for a good. (The player sequentially
observes the prices of the same good offered in two different two stores).17 Although the
agent can revisit the first store, the snag is that he is capable of only remembering a range
in which its price offer fell. Dow shows that the agent optimally “remembers,” by partition-
ing of the range of prices into intervals. Nevertheless, although Dow uses search theory
to model that sampling of prices it is not central to his approach. Put another way the
agent’s decision problem would remain unchanged if he lived in a world without search,
but observed two prices at different points in time.18

(iv) Cognition as a Process of Search. From its very inception, search has been deemed to
constitute an essential element of bounded rationality. Thus, according to Simon (1979):

“[T]he failures of omniscience are largely failures of knowing all the alternatives, uncer-
tainty about relevant exogenous events, and inability to calculate consequences. ... If the
alternatives for choice are not given initially to the decision maker, then he must search
for them. Hence, a theory of bounded rationality must incorporate a theory of search”
[Simon (1979, p.502-503)]

4 Despite this auspicious beginning, few papers have actually used search theory to
model the process of cognition itself. An important exception is a series of recent interesting
papers by Macleod (MacLeod (1996), MacLeod (2002a), and MacLeod (2002b)), which are
clearly germane to our work.

The hallmark of MacLeod’s work is that he drops Savage’s “small world assumption,”
which asserts that the decision maker understands all of the consequences of his actions,
and can assign a probability to each state of nature. Instead, he constructs models of
decision making in complex environments, drawing upon recent developments in cognitive
psychology.19 LikeMacLeod, we also drop the small world assumption. However, MacLeod
focuses on the problems that arise when players find it difficult to calculate the payoffs of
known actions. In this paper we examine situations in which the decision maker fails to
comprehend some actions at all.

17See also: Rubinstein (1993).
18Several authors have recently constructed interesting models that stress the importance of memory limi-

tations See for example: Mullainathan (2002), and Wilson (2003). However, the structure of these models is
quite different to the one proposed here.

19Specifically, in his (1996) paper he uses Hölmström andMilgrom’s multi-task principal agent framework to
show how remarkably complicated the environment becomes as the number of tasks increases. For example,
suppose that there are k different tasks, and that each of them is associated with m possible realized benefits
and n realized costs. If there are fifteen tasks and the benefits and costs can each take five distinct values,
then MacLeod shows that, at one cent apiece, including every contingency in a contract would cost some ten
million trillion dollars (MacLeod (1996, p.797)). MacLeod argues that this complexity leads endogenously to
the emergence of incomplete contracts
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2 The Model

Before presenting the details of the formal model, we first offer a simple illustration of the
type of decision problem we have in mind.

Composition

Consider a budding author – Dougal – who has reached an impassé as he seeks to complete
the sentence:

“A wise and shrewd politician, Smith recognized the enormous political capital
that he would amass if he **** (in) implementing the sweeping set of reforms he
had promised during the elections.”

Dougal seeks a word to insert in place of **** that captures “intentionally delays.” Clearly,
the “value” of the sentence depends upon inserting just the right word. For the sake of the
current argument, assume that the (universal) set of possibilities is:20

A = {late, delay, procrastinate, tarry, cunctatious, gele }

He might behave in the following manner,

• He immediately (i.e., at t = 0) thinks of “late” and “delay.”

• Unhappy with these choices, he thinks of “procrastinate” at time t1 > 0.

• Not satisfied with {delay, late, procrastinate }, he then looks for his dictionary. At
time t2 he finds it. He is reminded of the word “tarry” (at t3), and discovers the new
word {cunctatious } at t4.

• He ends his decision problem at time t = t5, by selecting cunctatious, which is the
most apposite word available in the set: {delay, late, procrastinate, tarry, cunctatious }.

Although highly stylized, the example is a useful aid for helping to clarifying several dif-
ferent categories of knowledge that are important in our paper.

The first thing to note is that Dougal’s perception of the world is limited (i.e., it is not
all of A). At date t = 0 his latent or percipient knowledge is:

A = {late, delay, procrastinate, tarry}

20According to the Oxford English Dictionary (2nd Ed.), the last recorded usage of gele was in 971 A.D.

9



Percipient knowledge describes what he could conceivably know at date t = 0, given his
experiences up to that point. Thus, even though it did not initially occur to him at t = 0,
he is quite familiar with the meaning of “procrastinate.” In contrast, it is inconceivable for
him to even “think of” cunctatious given the state of his initial knowledge.21

In what follows, we denote the agent’s active knowledge set by A (t ). This set includes
the actions the agent recognizes are feasible at date t . In this setting, “recognize” simply
means that the decision maker understands that he can: (i ) select one of the actions a ∈
A (t ), and (ii ) by doing so, he can end his decision problem, and accrue an (expected) payoff
of u (a ). Although his latent knowledge A is quite extensive, his active knowledge (A0)
is initially quite meagre; it consists only of A0 = {delay, late }. However, by the time he
makes his decision at t = t5, his active knowledge is A (t5) = {delay, late, procrastinate, tarry,
cunctatious }.

In the example, Dougal augments A (t ) via two sources. First, he can “think” of alter-
native words through a (costly) process of “fact free learning.” Alternatively, he can employ
a technology – a dictionary – that can remind him of words he already knows (tarry ) and
discover new words altogether (cunctatious ).22

Dougal could end his decision problem at its inception by picking either late or delay.
However, he chooses not to do so, and, instead, searches for alternative words by “thinking”
and by acquiring more information from his dictionary. Although both of these activities
are costly, the reason he undertakes them is because he understands there are obvious
benefits to be gleaned from doing so. Hence, although (for reasons that are all too obvious)
he cannot know the words (i.e., actions) he will perceive prior to thinking of them — and
which one he will ultimately choose — he acts as if he knows the payoffs he expects will
accrue from search. In other words Dougal is appraised of economically relevant aspects
of his own ignorance. In the example, Dougal makes a decision, at date: t5 and ends his
decision problem (he picks cunctatious ∈ A (t5)). At that point, he deems the (expected
discounted) costs of further search to exceed the expected benefits

21Of course, like the monkey at the proverbial typewriter, he might stumble across the string of symbols
“cunctatious” quite by accident. In no way can it be said, however, that he has latent knowledge of its meaning.
Thus, for Dougal, “cunctatious” is as likely to be synonymous with “procrastinate” as it is with any other
(unrecognized) word in the English language.

22We use “discover” in its modern sense:

“To obtain sight or knowledge of (something previously unknown) for the first time; to
come to the knowledge of; to find out.”” [entry 8, The Oxford English Dictionary, 2nd ed.,
2002.]
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2.1 The Formal Model

We analyze a simple decision problem in which an agent accrues a payoff – and his decision
problem ends – after he selects a single action.23 The main assumptions are presented
below.

The Environment.

Time is continuous, and is indexed by t ≥ 0. We consider an infinitely-lived decision maker
who discounts the future at the rate ρ. We interpret discounting to mean that the agent
recognizes that he is indifferent between two options that give him utility: u = u (t ) at date
t ≥ t ′ and utility: exp[ – ρ(t – t ′)]u at date t ′. The basic obstacle that confronts the agent
is that he is not omniscient. This means that, unlike the fabulous homo economus, he is
incapable of grasping all of the logical implications of the knowledge he already possesses.

LetA represent all of the feasible actions available to the individual.24 The agentmakes
a decision if he picks one of the actions belonging to A. After making a decision, his payoff
is realized and his decision problem is assumed to end. We assume that the individual has
a well-defined utility function: u:A→R, and denote the utility derived by selecting action
a ∈ A by u (a ).

The actions we have in mind encompass a wide array of economic possibilities. They
might represent a feasible consumption bundle, a strategy, or even the maximal utility
derived by consuming a bundle of goods from some feasible set. Alternatively, the action
might represent the choice of a lottery, in which case u ( ∙ ) is the individual’s expected
utility. Specific interpretations of potential actions a , and the action space A are given in
subsequent applications of the model.

Our goal is to study environments in which the decision maker cannot comprehend
all the feasible actions that are available to him. In other words, he does not “know”
every element that belongs to the set A. To this end, let A ⊂ A denote the agent’s latent
knowledge. This set includes actions that the individual could possibly think of given the
information he possesses and his experiences at date t = 0. At a given point in time, the
agent may understand only a small part of A. Accordingly, let A (t ) ⊂ A denote the actions
that the individual actually does perceive at date t , and A0 ≡ A (0) the initial perceptions
of his environment. The decision maker perceives an action a if: (i ) he understands that
he can select a , and (ii ) he (expects) a payoff u (a ) from doing so.

23It is simple enough to extend our framework to examine the case in which the agent makes a sequence of
decisions.

24In practice, Amay depend upon the state of nature. Indeed, many papers have examined the difficulties of
writing complete contracts in situations in which there are of unforseen states of the world (see for example,
Hart and Moore (1999)). In the environment considered here, we assume (for simplicity) that there is a single
state of the world. Nevertheless, each agent faces a formidable decision problem since he is unaware of his
complete action space.
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In order to focus on “fact-free” — as opposed to “factual” — learning, in this paper we
impose:

Assumption 1 The individual’s latent knowledge, A equals his action space: A = A.

The force of Assumption 1 is that the agent’s decision making process is not hindered
by a lack of information per se ; in principle he knows everything he “needs” to know to
determine the action that maximizes his utility. The trouble is that it is difficult for him
to process this information, and to comprehend the choices that are actually available to
him. Under Assumption 1, rational man would instantly recognize all of the actions in A
and immediately select the best one.

In general, what an agent perceives, and what he could feasibly perceive depend in a
complex manner upon his lifetime experiences up to that point. In this paper, we eschew
modelling this process directly. Instead, we draw a Rubicon. On one side of the line, we
content ourselves with an exogenous description of what the individual: does perceive (A0),
and is capable of perceiving (A). On the other side if it, we posit an endogenous process
whereby the individual gradually updates the actions that he comprehends. Thus, the
agent’s initial perceptions of possible courses of action are important exogenous charac-
terizations of both him and his environment. Nevertheless, the agent is confronted with
an important, and, indeed, non-trivial, decision problem regarding how he will update his
perceptions of the world in which he lives. Critical to our approach is the viewpoint that
the “thinking process,” whereby the decision maker recognizes possible actions is costly,
time consuming, and desultory. This description is, of course, in accordance with common
experience and observation. Everyone finds the task of deducing valid conclusions from
“known” premises to be a time consuming endeavour; some even regard it to be a painful
one. Even the apparently rudimentary task of recollecting past events often entails run-
ning a similar gauntlet.

We assume that at each instant, t , the individual always understands, that the ac-
tions: a (t )0 = 1 (“making a decision”) and a (t )0 = 0 (“deferment” ) are available to him. We
assume that the specific choice of activity a (t )0 ∈ {0,1} is without direct bearing on his util-
ity.25 By setting: a (t )0 = 1, the agent picks a feasible action: a ∈ A (t ). After doing so, his
decision problem ends, and he accrues a utility u (a ). In contrast, if he sets: a (t )0 = 0, he
elects to not select an action from A (t ) and hence, defers making a decision. Obviously, he
must set a (t )0 = 0 if A (t ) = ∅., indicating that he perceives there are currently no other op-
tions available to him. However, he also might optimally set a (t )0 = 0. Indeed, the central
theme explored in this paper is that by setting a (t )0 = 0 — and hence postponing making
an immediate decision — the agent can uncover new ideas, which serve to enhance the set
of actions that he perceives are feasible: A (t ).

25Setting the agent’s instantaneous utility to zero from picking the action: a (t )0 = 0, is a normalization.
Moreover, any cost, or benefit, of setting: a (t )0 = 1 can be rolled into the payoff u (a ).
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In order to avoid tedious issues that will subsequently arise (essentially) because of the
difference between statistical sampling “with” and “without” replacement, consider:

Assumption 2 (The sets A and A0.) The agent’s latent knowledge A contains an uncount-
able number of distinct elements. The set A0 includes a finite number of distinct elements.
Furthermore, provided A , ∅, then a (0)∗ ≡ arg maxa∈A0

is unique.

The individual initially “perceives” that only those actions that belong to A0 are feasible.
The extent of the decision maker’s initial ignorance is captured by: A\A0, which is the
difference between the “reality” of the situation and the world as he perceives it. In view
of Assumption 2 the agent initially comprehends only a tiny (negligible) part of the reality
that confronts him. Provided that the initial perceived set of actions, A0, is not empty, then
u∗(0) ≡ maxa∈A0

u (a ) exists. The assumption that there is a unique maximizing choice,
a (0)∗, is inconsequential. In addition to Assumption 2, consider:

Assumption 3 (The Utility Possibility Set U ) The set of feasible utilities U = {u (a ) : a ∈ A}
equals the compact interval: U = [0,ū ], where: ū ≡ maxa∈A u (a ) > 0.

Notice that since U is a compact interval of real numbers, defining a probability measure
on it (as we do later) is routine.

The Thinking Process

By exerting effort, the agent can think of new ideas that point to alternative actions that
augment his active action set A (t ). The snag is that thinking is a costly, time consuming,
and inherently desultory process: each new idea arrives at random points in time, and
utilities can differ markedly from one idea to the next. Assumption 4 describes the agent’s
thinking process,

Assumption 4 (Thinking).
(i) The individual can choose the intensity (“effort”), e (t ) ≥ 0 which allows him to think of
ideas belonging to A.
(ii) By devoting effort e to thinking, the individual realizes new ideas as independent draws
from a Poisson distribution with parameter λ(e ). We assume that λ(e ) is non-decreasing,
and concave in e . Furthermore λ satisfies the boundary conditions: λ(0) = λ0 ≥ 0 and
lime→0 λ

′(e ) = ∞.
(iii) The flow cost of formulating new ideas is: c = c (e ), which is an increasing and strictly
convex function of e , and which satisfies the boundary condition: c (0) = 0.

According to parts (i ) and (ii ), by exerting greater effort e (t ), (i.e., by “concentrating”), the
decision maker can think more rapidly of alternative actions. Nevertheless, according to
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part (iii ) cognition is a costly process.26 The restrictions on λ( ∙ ), and c ( ∙ ) simply ensure a
unique interior solution for the optimal choice of effort e .

Given a constant value of effort: e ≡ e (τ), the time between successive ideas is exponen-
tially distributed with a constant mean equal to 1/λ(e ). Each new idea provides the agent
with a prospective payoff u (a ).The Poisson distribution succinctly captures the agent’s lim-
ited rationality. The agent is capable of having only one idea at a time, and, generically,
after having one idea he must wait a positive time interval before having the next.

Given his effort intensity level: e (τ), the decision maker can think of at most a count-
able number of new actions over a given finite interval of time τ ∈ [0,t ]. It follows from
this, and from Assumption 2, that A (t ) can have at most a countable number of elements.
Inconsequently, we assume that: A (t ) ⊆ A (t ′), whenever t ′ ≥ t , implying that delay does
not restrict the set of actions available to the individual.27

However, although the individual’s rationality is seriously compromised by his failure
to comprehend A we assume that he understands the (expected) value of formulating new
ideas. Indeed, we assume that he correctly understands all of the relevant aspects of the
distribution of utilities he can expect from uncovering alternative actions. In other words,
the agent acts as if he is appraised of the economically relevant attributes of his own
ignorance. To operationalize this notion, we assume that as the agent “thinks,” he believes
he is sampling utilities from a known distribution that is defined on the support U . Thus,

Assumption 5 (The rewards from thinking).
(i) The decision maker perceives that the utility, u , he generates by thinking of each new
idea is an i.i.d. draw from the given distribution function: u ∼ F (u ), which is defined on
the support: u ∈ U . The distribution function, F (u ) satisfies: F (0) = 0 and F (ū ) = 1. The
function F (u ) is differentiable with respect to u and satisfies: f (u ) ≡ F ′(u ) > 0, everywhere
on the interior of the interval U .
Remark. For the moment, we assume that the distribution F ( ∙ ) does not depend on the
agent’s effort level e . However, it is plausible that by thinking more intensively the agent
not only generates ideas at a faster rate, but also ones that are better “on average.” Section
3.1 considers this possibility.

Throughout, we assume that the agent acts as if he “knows” the true distribution F (u ). It
is to this extent that the individual acts as if he is fully aware of all of the economically

26As Clark (1918, p.23) put it, almost ninety years ago,

“Decision involves effort of attention, and this effort cannot be sustained beyond a few seconds
at a time, nor repeated without limit — a fact which suggests the using up by fatigue of a limited
capacity for this kind of mental act. [T]he exhausting character of choice, so exhausting that it
becomes the part of wisdom to choose to yield up our prerogative of choice, save in the things we
hold most important.”

27This would not be the case if the agent either possesses an imperfect memory, or if his action set is explicitly
time dependent.
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relevant aspects of what he does not know. The technical assumptions on the distributions
are designed to simplify the subsequent arithmetic.

Together, the function: λ( ∙ ) and the distribution F ( ∙ ) provide a useful and natural
characterization of an agent’s intelligence and his creativity. Consider two agents, indexed
j = 1,2. We define agent 1 to be “more intelligent” than agent 2 if:

• For each u ∈ U , F (u )1 = F (u )2, and for each e > 0,λ1(e ) > λ2(e ),

and to be more creative if:

• for each e ≥ 0, λ1(e ) = λ2(e ), and F1(u ) ≤ F2(u ) for all u ∈ U ≡ U1 ∪U2.

The first condition says that, “on average,” both agents think of the same quality ideas, but
player 1 thinks of them faster. The second, says that although both of them think at the
same speed, player 1′s ideas are “better” (in the sense of first-order stochastic dominance).

The decisionmaker described here, should be comparedwith traditional “rationalman.”
In our approach, the agent perceives only a small part of what he can potentially “under-
stand” given the information available to him. However, he recognizes that by “thinking”
that he can slowly enlarge the set of choices he perceives are available to him, and he un-
derstands the rewards (and costs) of doing so. In this sort of environment, it is conceivable
that agents may differ markedly in their ability to generate new and valuable ideas under
ostensibly identical economic circumstances. Moreover, (as we shall see when we discuss
advertising) during this slow process of deliberation other agents can “suggest” profitable
courses of action that the individual could have - but did not - think of. In other words,
other players can strategically “influence” people. In contrast, homo economus perceives
that: A0 = A right off the bat, and immediately picks the “best” option available to him.
In this setting, there is no obvious criterion whereby one homo economus agent can be
ascribed to be more intelligent than another. Likewise, there is little scope, for players to
“influence” each others’ behavior without actually proffering useful (i.e., new) information.

Despite the decision maker’s limited comprehension of the world in which he lives,
as formulated his decision problem is actually quite simple. Formally it is a sequential
“search problem,” with an optimal stopping rule. Thus, at each instant he must decide
whether he will either: (a ) make a decision, by selecting an option from A (t ) or (b ) continue
thinking of new ideas that belong to: A\A (t ). Evidently, as discussed in the next section,
the solution to this problem depends upon a variety of factors, such as his impatience ρ, the
value of the best action available to him in A (t ), the rate at which he can think of/discover
ideas, and the (distribution of) values associated with any such action he takes.

3 Optimally “ Thinking.”

In this Section, we analyze the agent’s optimal “thinking process,” whereby he generates
new ideas concerning the actions available to him. At date t = 0, when his decision problem
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begins, the agent’s knowledge is characterized by the pair (A,A0), where A is the set of
actions that the agent can possibly conceive of in the light of his experiences up to that
point, and A0 is the set of actions he actually does perceive to be possible. Provided that
A (t ) , ∅, the agent recognizes that, at each point in time t ≥ 0, he can set: a (t )0 = 1, and
terminate his decision problem, by picking some action, a ∈ A In what follows, let:

u∗(t ) = max
a∈A (t )

u (a ), and, a ∗(t ) ≡ arg max
a∈A (t )

u (a )

which correspond to the maximum utility and optimal action in the set A (t ).28

Alternatively, by setting a (t )0 = 0 he can defer making an immediate decision, and
“think” about alternative courses of action that he does not currently see: A\A (t ). By
exerting effort, e, (at an instantaneous cost: c (e )) he is cognizant that he will uncover new
ideas at the rate λ(e ), and that the realized value of each new idea is an i.i.d. draw from
a distribution, F (u ) defined on the support U . Thus, at each point in time the decision
maker has two basic choices. On the one hand, he can “stop” thinking andmake a decision,
by selecting a (t )0 = 1 (and choose some a ∈ A (t )). On the other hand, he can “continue”
thinking, by choosing a (t )0 = 0, by selecting an effort level e (t ) ≥ 0.

Since, under Assumption 2, the perceived action set: A (t ), contains at most a finite
number of elements, and since A contains an uncountable number, the individual under
consideration is, and remains, in a strict sense “quite ignorant” about the true nature of
reality. Yet, despite this, at each point in time he is fully aware of all of the economically
relevant aspects of his environment.29 Consequently, following Lipman (1991), we take the
view that the agent maximizes his expected discounted utility. In other words, he behaves
optimally in the environment he perceives.

In the following Lemma, we use a∗(t ) and u∗(t ) to characterize the individual’s behavior.

Lemma 1 (Optimal Decision Making). Under Assumptions 1–5, the decision maker’s
behavior is completely characterized by a unique and constant reservation utility level:
s∗ ∈ (0,ū ), and a unique and constant level of effort, e∗ ≥ 0, in which:
(i) if u∗(0) ≥ s∗ he chooses a∗(0)0 = 1 and the action a∗ ∈ A (0).
(ii) if u∗(0) < s∗ he chooses a∗(t )0 = 0 and e (t ) = e∗ > 0 for all t ∈ [0,τ), where τ is the first
time that he has an idea that generates utility: u∗(τ) ≥ s∗. At time τ he sets: a∗(τ)0 = 1 and
picks the (unique) optimal action a∗ ∈ A (τ) defined by: u (a∗) = u∗(τ).

Proof. All proofs are presented in the Appendix.

The choice of s∗ resembles the familiar “reservation wage property” encountered in sequen-

28The maximum is always well defined, since (i ) A (t ) contains at most a finite number of elements, and (ii )
if A (t ) = ∅, we have normalized: u (a ) = 0. Moreover, under Assumption 2 the choice of a ∗(0) is unique.

29In particular, he knows the maximum payoff u ∗(t ) ≡ arg maxa∈A (t ) u (t ) available to him from choosing
a (t )0 = 1, as well as the (expected) discounted costs and benefits of picking a (t )0 = 0 and selecting any e (t ) ≥ 0.
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tial (job) search theory.30 In this framework, the individual sequentially gathers informa-
tion about wage offers until he encounters the first “acceptable” offer, which is one that
exceeds his reservation value w∗. In this paper, the individual does not acquire additional
information per se. Instead, he engages in a process of “fact free” learning, and terminates
his search efforts only after formulating an idea that provides him with a level of utility
that exceeds his reservation value.

The individual may immediately reach a decision without attempting to think of new
ideas. Intuitively, this will the case if the initial set of possible actions, A0 includes an
action that provides a “sufficiently high” (i.e., exceeding s∗) level of utility. In contrast, if
the prospects available in A0 are suitably “bleak,” the agent actively seeks to think of more
lucrative possibilities. He does this by “thinking” at the constant rate λ(e∗) and terminates
his thought process, by making a decision, once he has stumbled upon a sufficiently good
idea (i.e., one that provides him with a payoff in excess of the reservation value s∗). Notice
that the agent is an “optimizer,” even though to the casual observer it might look at first
glance that, in Simon’s terminology, he is a “satisficer.” I.e., he accepts the first action that
gives him a utility of at least s∗ - which is his aspiration level. Critically, in our approach
the agent constantly weighs the costs of postponing his decision against the benefits he can
expect from doing so. What is more, the aspiration level, s∗, is endogenous to the model.

During the time he is thinking of new ideas (i.e., over the interval [0,τ)) his choice
of effort is constant: e (t ) = e∗. This is despite the fact that, as formulated, his decision
problem is non-stationary. (More specifically, u∗(t ) ≡ maxa∈A (t ) u (a ) weakly increases
with t as new elements are added to A ( ∙ ) and none are removed). The reason, of course,
is that if: u∗(t ) < s∗, then it is ‘as if ’ the agent seeks to maximize his expected discounted
utility by choosing e (t ) ≥ 0 subject to the constraint that A (t ) = ∅. From the properties of
the distribution function, F (u ), this problem is stationary. Intuitively, even though the
options in A (t ) (weakly) improve through time, if none of them is currently “good enough,”
then they are all equally irrelevant.

It is possible, and desirable, to formulate the individual’s decision problem recursively
as this provides greater insight into its structure and major properties. To this end, let
e > 0 and s ∈ (0,ū ) be given, where e is effort and s a stopping value. The individual arrives
at a decision (i.e., terminates his thought process) if and only if he thinks of an idea that
gives him a utility of at least s . For convenience let:

E (s ) ≡

∫ ū
s udF (u )

1 – F (s )
,

which is the mean of u conditional upon the event that u ≥ s . Let v (e,s ) denoted the
agent’s expected discounted utility given the choices of e and s . The value, v (e,s ) satisfies

30Rogerson, Shimer, andWright (2005) provide an excellent survey of the most recent literature. The earlier
generations of search literature are surveyed by Lippman and McCall (1976), and Mortensen (1986).

17



the Bellman equation:

ρv (e,s ) = – c (e ) + λ(e )(1 – F (s ))
{
E (s ) – v (e,s )

}
(1)

The discount rate, ρ, times the value v ( ∙ ) is the flow utility the agent derives by continuing
to think of new actions. It equals the flow disutility from effort, – c (e ), plus the the likeli-
hood that he thinks of an acceptable idea λ(e )(1 – F (s )), times the expected capital gain in
this event (

{
E (s ) – v (e,s )

}
).31 Rearranging equation (1) and solving for v (e,s ) gives:

v (e,s ) =
– c (e ) + λ(e )(1 – F (s ))E (s)

(ρ + λ(e )(1 – F (s )))
(2)

Here, 1/(ρ + λ(1 – F )) corresponds to an “effective” discount rate. Intuitively, the individual
places less weight on the future the: (i ) higher is his rate of time preference, ρ, (ii ) the faster
he expects to reach a decision (which increases with his thinking speed λ and as he becomes
less “picky” - i.e., as F falls).

Using equation (2), the optimal choice of effort, e∗, is governed by the condition:

c ′(e∗) = λ′(e∗)(1 – F (s∗)){E (s∗) – s∗} (3)

The left-hand side of equation (3) is the marginal cost (disutility) of effort; the right-hand
side is its marginal benefit. It equals the incremental flow probability that additional
effort will lead to an acceptable idea, λ′(e∗)(1 – F (s∗)), times the expected capital gain in
this event (E (s∗) – s∗). In other words, the agent equates the costs and benefits of effort at
the margin.

Let s∗ and e∗ denote the agent’s optimal choices of s and e . Define the corresponding
maximized expected discounted value to the agent of continuing to think of new and better
ideas by: V = v (e∗,s∗). Since V is the value of continuing his thought process, the individ-
ual arrives at a decision, and takes an action, if and only if it provides him with utility:
u ′ ≥ V . Yet, s∗ is the optimal stopping value. It too says that the individual will arrive
at a decision iff it provides utility u ′ ≥ s∗. It follows that s∗ is implicitly defined by the
fixed-point: s∗ ≡ v (e∗,s∗) = V . Hence, at a maximum:

s∗ ≡ v (e∗,s∗) =
– c (e∗) + λ(e∗)(1 – F (s∗))E (s∗)

(ρ + λ(e∗)(1 – F (s∗)))
∈ (0,ū ) (4)

Notice that the decision maker’s inability to immediately perceive all of the opportunities
available to him, A, is costly in three separate respects. First, he must exert costly effort
to think of possible actions.32 Second, even in the absence of this direct effort cost, the

31The capital gain equals the expected value of the idea, E ( ∙ ), minus the option value of making a decision
and, hence, discontinuing the search for better ideas.

32The expected discounted sum of these costs is: c/(ρ + λ(1 – F )).
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slow process of deliberation entails costly delay since the agent is impatient.33 Finally,
when combined, the first two costs lead him to settle for, and hence expect, a payoff that is
strictly less than the maximum feasible payoff ū .34

Summarizing, the individual’s decision problem is characterized by the pair (s∗,e∗)
which uniquely solve equations (4) and (3). The individual immediately makes a decision
iff u∗(0) ≥ s∗. Otherwise, he thinks of alternative actions at the rate λ(e∗), and continuous
to do so until he finds one to his satisfaction.

Properties of the solution.

Suppose that: λ(e ) = λ0λ̂(e ), where λ0 > 0. The solution to the individuals problem is charac-
terized by a reservation utility level, s∗ = s (ρ,λ0) and an optimal level of effort, e∗ = e (ρ,λ0).
From previous remarks, the parameter λ0 provides a measure of the innate agent’s intelli-
gence. Ceteris paribus the greater the value of λ0 the greater is the rate at which the agent
can think of new ideas. The parameter ρ measures the extent of the agent’s impatience.
The agent’s expected decision making (i.e., “computational”) speed is:

σ∗ = σ(ρ,λ0) = λ(e∗)(1 – F (s∗))

where: 1/σ∗ is the expected time it takes for him to make a decision. Intuitively, the speed
with which an individual arrives at a decision depends positively upon how quickly he can
think of new ideas, λ(.), and negatively upon how “picky” he is, once he has had one, 1 – F ∗.
The (average) value of the action the agent ultimately selects is: E (s∗) = E {u |u ≥ s∗}. The
effects of differences in temperament (“patience” ), ρ, and innate intelligence, λ0, are easy
enough to work out. Using subscripts to denote partial derivatives, consider:

Proposition 1 (Impatience, ρ, and intelligence, λ0). The individual’s decision problem
satisfies:
(i) Impatience: s∗ρ < 0,e∗ρ > 0, σ∗ρ > 0, E (s∗)ρ < 0.
(ii) Intelligence: s∗λ0

> 0, e∗λ0
> 0, and, if the density f (u ) is log-concave, then:, σ∗λ0

> 0.

According to part (i ), more impatient (higher ρ) players are less picky (their s∗ is lower) and
think harder (their e∗ is higher) than less impatient ones. This is because their impatience
drives them to seek a quick resolution to their problem (recall the average decision speed,
σ∗, increases in e∗ and decreases in s∗). However, the effect of the rush to make a decision
is that the (average) ex post payoff of impatient players, E (s∗), is lower than that of more
patient ones.

We now turn to the effects of differences in the player’s innate “intelligence” level, which
is parameterized by λ0. An increase in λ0 increases the the player’s “pickiness,” by raising

33This is captured by: δ ≡ λ(1 – F )/{ρ + λ(1 – F )} < 1.
34Hence, E (s ) < ū .
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his reservation value s∗. (This implies their expected ex post payoffs E (s∗) are also higher).
More intelligent players also devote more effort toward thinking of new ideas (e∗ increases
with λ0).

The agent’s expected decision making speed is: σ∗ ≡ (1 – F ∗)λ0λ̂(e∗). Consequently, in
view of their “pickiness” there is a tendency for more intelligent players to take longer to
arrive their decisions (i.e., F ∗ ≡ F (s∗) increases with s∗). However, more intelligent players
also devote more effort towards reaching a decision, which speeds up their decision making
process (i.e., λ∗ ≡ λ0 ∙ λ(e∗) rises). Provided that their payoff density f ( ∙ ) is log-concave,
then according to the Proposition, this latter effect dominates so that the more intelligent
the agent the faster he arrives at a decision.35

In contrast, if f (.) is not log-concave, it is conceivable that: σ∗λ0
< 0, indicating that

highly intelligent agents might take the longest time to think, before they arrive at their
decisions. The explanation is as follows. For simplicity, suppose that that λ0λ(e ) ≡ λ0 > 0,
which is independent of e . Suppose further that f (.) is log convex and that: Es∗ ≡ ∂E (u |u ≥
s∗)/∂s∗ > 1, indicating that a one unit increase in the reservation value s∗ increases the
expected value of reaching a decision by more than a unit. The value of continuing to
think of new ideas is:

V = δE (s∗)

where,

δ ≡
λ0(1 – F ∗)

(ρ + λ0(1 – F ∗))

Here, δ is akin to an effective “discount factor.” Notice that, given s∗, the term δ increases
with λ0. Hence — given s∗ — an increase in λ0 raises the expected present value of the
reward E (s∗). However, if Es∗ > 1, the agent could conceivably respond to an increase in
λ0, by raising s∗ so much — to take advantage of the fact that Es∗ > 1) — that his average
decision speed: σ∗ ≡ (1 – F ∗)λ0 declines.

Under the conditions of the Proposition, more intelligent players reach better decisions
(their E (s∗) is higher) and do so more rapidly (their σ∗ is higher) than do less intelligent
ones. This raises interesting questions concerning the limiting properties of innate intel-
ligence levels on the agent’s optimal behavior. More specifically, we know that the reser-
vation value s∗ increases with λ0. We also know that it is bounded above by ū , implying
that it converges to some limit: limλ0→∞ s∗(λ0) = s̄∗. Heuristically, in the limit, as λ0 → ∞,
the decision maker can think “infinitely quickly” of alternatives actions. In this case, does
his expected payoff, E (s∗), converge to ū and does he make a decision instantly?

35In the context of a job search model (with an endogenous reservation wage), Burdett and Ondrich (1985)
show that log-concavity of the wage offer distribution is sufficient for an increase in the job contact rate to
induce workers to accept jobs at a faster rate. However, they do not consider the effects of changes in workers’
search intensities.
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Consider,

Proposition 2 (The limiting properties of s∗(λ0) and σ∗(λ0). If λ(e ) = λ0λ̂(e ) and if f (.) is
log-concave then: limλ0→∞ s∗(λ0) = s̄∗ = ū and limλ0→∞ σ

∗(λ0) = ∞.

From this vantage point, the limit λ0 → ∞ is one in which the agent can think of pos-
sibilities so quickly that his behavior (and utility) converges (in expectation) to that of
“rational economic man.”

3.1 The Quality of Ideas

It is conceivable that by exerting more effort, the decision maker may not only think of
ideas faster, he might also think of ones that are better on average. In order to more
clearly differentiate between the two effects of “speed” and “quality,” assume that: λ(e ) = λ0

(independent of e ). Suppose now that the distribution function (defined on the supportU is
F (u | e ), which depends upon the agent’s effort, e ≥ 0. In addition to the properties already
laid out in Assumption 5 consider:

Assumption 6 (The properties of F (u | e )).
(i) (First-order-stochastic dominance (FOSD), and convexity of the distribution function
(CXDF)). Let Fe ≤ 0 and Fee ≥ 0, where: Fe ≡ ∂F (u | e )/∂e and Fee ≡ ∂2F (u | e )/∂e2, for
all u ∈ U . Assume that for any s < ū :

∫ ū
s Fedu < 0 and

∫ ū
s Fee du > 0.

(ii) (Log concavity) The density function, f (u | e ) is log-concave (LC).

(iii) The distribution function, F (.), satisfies themonotone likelihood ratio property (MLRP):
fe/(1 – F ) is decreasing in u .

The individual’s decision problem is once again characterized by a reservation utility,
s∗, and a level of effort e∗. This time, these values satisfy the asset-value equation:

ρs∗ ≡ – c (e∗) + λ0(1 – F (s∗|e∗))
(
E (s∗,e∗) – s∗

)
(5)

and the first-order condition:

0 ≡ – c ′(e∗) + λ0E (s∗,e∗)e (6)

where the short-hand:

E (s∗,e∗) ≡ E {u |u ≥ s∗,e∗} ≡

∫ ū
s∗ udF (u |e∗)
∫ ū
s∗ dF (u |e∗)

and E (s∗,e∗)e ≡ ∂E (s∗,e∗)/∂e is used. Part (i ) of Assumption 6 is sufficient to ensure that
equations (5) and (6) uniquely characterize s∗ and e∗.
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According to equation (5), the right hand side is the net flow value of continuing to
thinking of new ideas. It equals minus the flow cost of search, – c (s∗), plus the flow prob-
ability that the agent has an acceptable idea: λ0(1 – F (s∗|e∗)) times the capital gain in this
event: E (s∗,e∗) – s∗. Equation (6) indicates that the agent equates the marginal costs and
benefits of additional effort at the maximum.

The following Proposition characterizes themain features of the solution to the decision
maker’s problem.36

Proposition 3 (The solution s∗(λ0),e∗(λ0), σ∗(λ0)).
(i) If Part (i) of Assumption 6 holds, then: s∗λ0

> 0, and e∗λ0
> 0.

(ii) If Parts (i)-(ii) of Assumption 6 hold, then: σ∗λ0
> 0, indicating that the agent’s decision

speed: σ∗ ≡ λ0(1 – F (s∗|e∗)) increases with λ0.

(iii) If Parts (i)-(iii) of Assumption 6 hold, then: ∂E (s∗,e∗)/∂λ0 > 0.

An increase in the rate at which the individual can think of alternative actions, λ0,
makes him more selective in the ones he is willing to act upon. This explains why: s∗λ0

> 0.
The increase in λ0 also raises the effort, e∗, he devotes to thinking for two simple reasons.
First, there is a direct benefit of the increase in λ0, as the agent anticipates arriving at a
decision more rapidly (and he is impatient). Second, the increase in his reservation value
s∗ implies that his expected utility rises, conditional uponmaking a decision. Both of these
effects encourage additional effort at the margin.

The agent’s optimal decision making speed, σ∗, depends upon his innate intelligence
λ0, and the choices he makes regarding both his effort, e∗, and the cutoff value, s∗. Ceteris
paribus, an increase in λ0 raises σ∗ directly. However, the increase in λ0 raises both e∗

and s∗. The former of these effects tends to increase σ∗, the latter to reduce it (the agent
becomes more “picky” ). If the density f (.) is log-concave, then the direct effect dominates;
the agent’s decision making speed, σ∗, increases with his intelligence λ0. Finally, if in ad-
dition to FOSD,CXDF, and LC the distribution function satisfies the monotone likelihood
ratio property (MLRP), then the utility the agent can expect — conditional on making a
decision, E (s∗,e∗), — also increases with his innate intelligence λ0. From part (ii ) of the
Proposition, both s∗ and e∗ increase with λ0. Ceteris paribus, the former effect unambigu-
ously tends to raise E (s∗,e∗), which is, after all, the conditional expectation that u ≥ s∗.
Under the MLRP ∂E (.)/∂e > 0, implying that the latter effect - operating through e∗ -
increases it as well.

The reason that it is necessary to wheel in the technical “heavy artillery” — i.e., the
MLRP— to prove this result is that it is conceivable that the expected quality E (.) decreases
with e under FOSD. The agent chooses his effort level, e∗, with one eye on the “benefit:”
b (e ) ≡ (1 – F (s∗|e ))(E (s∗,e ) – s∗) and the other on the cost c (e ). FOSD simply ensures that

36The effects of changes in ρ are not reported. They parallel the findings already reported in Proposition 1,
where λ = λ(e ).
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b ′(e ) > 0, which, given Fe < 0, could be true even if E ( ∙) decreases with e . Together, MLRP
and FOSD imply that E ( ∙ ) increases with e, which is then sufficient to prove the result.

As for the “limiting” properties with respect to λ0, consider:

Proposition 4 (The limiting properties of s∗(λ0), e∗(λ0), and σ∗(λ0)). In the
limit, λ0 → ∞, the individual’s behavior is characterized by: limλ0→∞ s∗(λ0) = ū;
limλ0→∞ e∗(λ0) = 0; and limλ0→∞ σ

∗(λ0) = ∞.

Thus, (in expectation), he instantly selects an action that gives him ū . Consequently,
as the agent becomes “infinitely smart,” his behavior does indeed converge in expectation
to that of “rational economic man.”

4 Application 1: Strategic Manipulation

“Men are so simple and yield so readily to the desires of the moment that he who will
trick will always find another who will suffer to be tricked.” [Nicolo Machiavelli]

In this Section we use a simplified version of our framework to understand aspects
of strategic environments in which one player (a “speaker”) seeks to manipulate another
player (a “listener”) and bend him to her will, by simply proffering suggestions.37 Signifi-
cantly, unlike persuasion games, we assume that the suggestions tendered by the speaker
are both truthful and complete.

We assume that, with a flow cost c (e ), the listener thinks of actions at the rate λ0 ∙ λ(e ).
The function c ( ∙ ) is increasing and strictly convex in e , while λ( ∙ ) is strictly increasing and
concave. Both functions satisfy the boundary conditions, c (0) = λ(0) = 0. As for payoffs, we
assume that conditional upon formulating an idea, with probability x ∈ [0,1], the listener
thinks of one that provides him with a utility Z . With complementary probability (1 – x )
he thinks of one that provides him with a “low” level of utility, which we normalize to zero.
As for the speaker, with a flow cost C (E ) she thinks of ideas at the rate μ0 ∙ μ(E ). The
functions C (E ) and μ(E ) satisfy the same conditions as those of the listener.

Upon having an idea, the speaker can costlessly and credibly communicate it to the
listener. The listener can always reject the speaker’s advice. However, once the “cat’s out
the bag” he cannot ignore it. In order to capture the essential aspects of manipulation, we
assume that the speaker accrues a payoff only if the listener accepts her idea. In this event,
the listener’s payoff is z and the speaker’s Z – z .38 The details concerning the proposal, z ,
are presented below.

37We follow the terminology of Glazer and Rubinstein (2006).
38This formulation implies that the speaker always thinks of “valuable” ideas. Nevertheless, it is a harmless

restriction. To see this, suppose that conditional upon having an idea, the probability that the speaker thinks
of one that gives a payoff of Z is y ∈ [0,1]. In this case, the flow probability of having an acceptable idea is
μ0 ∙ μ(E ) ∙ y . However, by simply defining, μ0 ≡ μ̂0/y , we could carry out the analysis with μ̂ in place of μ, and
the analysis would be identical to that presented below.
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Analysis

The analysis of the model’s properties is relatively straightforward. Temporarily, assume
that the speaker’s offer, z , and her effort, E , are given. For convenience, define the rate at
which the speaker makes suggestions by m ≡ μ0 ∙ μ(E ). Let v denote the listener’s value.
The relevant Bellman equation is:

ρv = – c (e ) + x ∙ λ0λ(e ) ∙ [Z – v ] + m ∙ I ∙ [z – v ] (7)

Here, ρ∙v is the listener’s flow value of contemplating possible actions. The first term on the
right-hand side is the flow cost of the agent’s effort. The second is the flow probability the
agent formulates his own acceptable idea (x ∙λ0 ∙λ(e )), multiplied by the capital gain in this
event (Z – v ). The final term captures the influence of the speaker. With flow probability
m the speaker makes a suggestion that could permit the listener to enjoy the capital gain
[z – v ]. Here, I ∈ {0,1} reflects whether or not the listener accepts (I = 1) or rejects (I = 0)
the speaker’s suggestion. The listener’s problem is to select both I and e to maximize his
welfare. As for the speaker, he understands the listener’s behavior. His objective is to select
E and z to maximize his own welfare.

The fundamental problem we must broach is, will the listener ever set I = 0, and reject
the speaker’s proposal? In order to answer this question, let m ≥ 0 be given and assume
that I = 1, implying that the listener always accepts the speaker’s proposal. The listener’s
value (which depends upon m and z ) is:

v (e; m, z ) =
– c (e ) + λ0 ∙ λ(e )Z + m ∙ z

r + λ0 ∙ λ(e ) + m
(8)

The listener picks a level of effort to maximize his value v (e; m, z ). Let e∗(m,z ) denote his
optimal effort level and define his optimal value by V (m,z ) ≡ maxe v (e; m, z ).

Now suppose that the listener always rejects the speaker’s proposal, by setting I = 0.
Notice from equation (7) that this is identical to the situation in which he would always
accept her proposals (by setting I = 1), but never actually receives any from her — m = 0.
It follows that equation (8) nests the listener’s optimal valuation in the case he always
rejects her advice, under the parameter restriction that m = 0. Accordingly denote his
value of rejecting the speaker’s proposal by V (0,z ) ≡ V0.

Figure, 1 depicts the value of V0 against the speaker’s offer z . It is (obviously) a hori-
zontal line, since (by assumption) the listener is assumed to reject the offer. The 45o line
depicts the possible value of offers, z , that are made by the speaker.
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Figure 1: Strategic Manipulation

Notice that if the speaker’s offer is less than z∗ it is optimal for the listener to ignore
her suggestions. The reason is that, by doing so, his expected payoff is V0, which exceeds
the value of her offer z < z∗. However, the snag is that it is incredible for him to reject her
proposal if it lies in the range z ≥ z∗. The reason is that having such an offer “in hand”
exceeds the (expected discounted) value of Z “in the bush,” so to speak.

Yet, there is more. The listener recognizes in any subgame in which the speaker of-
fers z ≥ z∗ he will “cave in” and accept the offer. He accordingly adjusts his own optimal
thinking intensity e∗(m,z ) to reflect the reality of his situation. Conditional upon his op-
timal credible behavior, his valuation along the equilibrium path, V (m,z ), is given by the
maximized value of equation 8. Consider,
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Lemma 2 (The Listener’s Optimal Behavior.)
(i) The listener’s value is V0 ∈ (0,Z ) if he rejects the speaker’s proposals.
(ii) The listener credibly rejects any proposal made by the speaker that lies in the range
z < z∗ ≡ V0.
(iii) It is incredible for the listener to reject proposals that lie in the range, z ≥ z∗. In this
case his valuation is V ∗(m,z ).
(iv) If m > 0, then: (a) V ∗(m,z∗) < V0 and (b) ∂V ∗(m,z )/∂z > 0 for z > z∗

Figure 1 depicts the listener’s valuation V ∗(m,z ). It increases with z , and initially lies
below V ∗(0). Crucially, it is predicated on the listener’s credible beliefs concerning his own
ability to reject the speaker’s suggestions.

We now analyze the speaker’s behavior. For simplicity, and in order to place the argu-
ment in the starkest relief, suppose that she makes a take-it-or-leave it offer to the listener
concerning the value of z .39 Let w (E,z ) denote her value. It satisfies the Bellman equation,

ρ ∙w (E,z ) = – c (E ) + μ0 ∙ μ(E ) ∙ I ∙ [Z – z – w (E,z )] + λ0λ(e
∗( ∙ ))[ – w (E,z )] (9)

The first term on the right-hand side of the expression is her flow effort cost. The second
represents the flow probability that she makes an acceptable proposal (μo ∙ μ(E )) times
her capital gain in this event ((Z – z – w (E,z ))). The third, and final, term captures the
capital loss ( – w (E,z )) she suffers if the listener beats her to the post, by independently
formulating his own plan.

The listener’s problem is to pick E and a value of z that is acceptable to the listener to
maximize her own value, w (E,z ). Consider,

Proposition 5 (Strategic Manipulation)
(i) The speaker exerts positive effort E ∗ > 0. Define, her optimal thinking rate by: m∗ ≡
μ0 ∙ μ(E ∗).
(ii) Upon having an idea, she offers the listener a proposal that is worth z∗ ≡ V0 to him.
(iii) The listener’s equilibrium valuation is V (z∗,m∗) < V0.

Quite remarkably, according to part (iii ) of the Proposition, the presence of the listener
actually reduces the speaker’s equilibrium payoff (V ∗(z∗,m∗)) below that which he would
attain in her absence (V ∗(0,m∗)). This despite the assumption that he can reject any and
all of her suggestions. Essentially, the speaker manipulates the listener by giving him
suggestions that she knows he cannot credibly ignore. He too knows this, and responds by
adjusting (lowering) his optimal thinking speed accordingly. The result of this distortion
is that his welfare is lower than it would be in the speaker’s absence.

39Indeed, since this is not a problem of imperfect information (i.e., the speaker honestly reveals all that she
knows) imagine that she proposes a binding contract that promises to pay the speaker z .
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The distortion itself arises directly from the listener’s bounded cognitive abilities. To
see this, consider the limit limλ0→∞ in which the listener thinks of ideas “infinitely quickly,”

Proposition 6 (Limiting Behavior)
In the limit, limλ0→∞, we have: limλ0→∞ z∗(∙) = Z ; limλ0→∞E ∗(∙) = 0; and limλ0→∞ V ∗(m∗,z∗) = Z .

Thus, in this setting intelligence – as measured by λ0 – provides the listener with a
bulwark against manipulation by the speaker. Indeed, as the listener becomes an infinitely
fast thinker, the speaker’s value converges to zero, and the listener himself captures all of
the economic surplus (Z ).

5 Application 2: Strategy Versus Tactics (Sketch)

• Military theory grounded upon the following triumvirate: (i ) Strategy, (ii ) Tactics,
and (iii ) Logistics

• Modern game theory provides an excellent forum for thinking about strategic aspects
of conflict. The tactical (logistical) aspects are usually relatively trivial.

• The reason: agents know their action spaces.

• However, tactical concerns can become pertinent among boundedly rational agents
who do not know their action sets.

• In this case, a lá Rommel, an agent has the opportunity of inflicting a “tactical sur-
prise.”

Consider the following framework.

• Time is continuous, beginning at date t = 0. There are two players: i ∈ {1,2} who
discount the future at the rate ρ.

• The players recognize that at future date T they will play a game (to be described).

• At the beginning (t = 0) of the game, each player has a privately known plan of action
z10 and z20.

• By exerting effort ei ∈ {0,1} each player can think of alternative actions at the rate:
λi ∙ ei .

• The cost of effort is c ∙ ei

• Each idea has a “quality” z ∈ [0,∞)

• Assume that zi ∼ G (z |mi ), where mi is agent i’s creativity. For concreteness, assume
that, G (z |mi ) = 1- exp[-z/mi ]
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Analysis

• Suppose that agent i has iN new ideas by date T .

• Define the best idea: Qi = max{zi 1, zi 2, ...,ziN }.

• At the end of period T agents play a game, using their (privately known) best ideas
Q ∗i ≡ max{zi 0, Qi }.

5.1 A Simple Game of Military Conflict

• At date t = 0 player 2 — the belligerent — can either initiate hostilities (H) against
1 or not (W) (withdraw).

• In the latter case, the players accrue payoffs νi

• In the former, the players have a time period T in which they can do one of two things:
stick with their initial plan (N) or formulate new battle one (P), by exerting costly
effort ei = 1

The Battle is joined

• The (discounted) payoff from victory is $100. (constant sum).

• The probability of victory by player 1 is: I (Q ∗1 ,Q ∗2 ) ∈ {0,1}, where: I = 1 if Q ∗1 ≥ Q ∗2
and zero otherwise.

• Let πjk , where j,k ∈ N,P denote the probability of victory by player 2 given he picks j
and player 1 k .

• Player 2’s expected (gross) payoff is 100 ∙ πj,k .

• The net payoffs are calculated by subtracting the computational costs c ≥ 0.

• The first goal is to determine the distribution of Q given e for each of the players:
F (Q |m,e )

• It can be shown that:

F (Q |m,e ) = 1-F (-λ0λ(e )T exp[-Q /m ])

• which corresponds to a Gumbel (extreme value) distribution.

• For “large” T, the distribution converges to a limiting distribution that is “indepen-
dent” of G (Q |m ) – the quality of idea distribution.
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• The model permits a potentially rich analysis of helping is understand strategic is-
sues that arise in settings in which one’s opponent can carry out tactical innovations
on the fly.

• Assume the players beliefs are congruent in the case that they select N,N and πNN

is the (common) prior belief of 2’s victory if they adhere to their initial plans.

• Now suppose that player 1 sticks to her initial plan, and that 2 adapts his. What
then?

• With probability F (z20|e2,m2) player 2 fails to think of an idea that is better than her
initial plan z20.

• With complementary probability 1-F (z20|e2,m2) she does think of a better idea.

• The conditional distribution is: f̂ (Q |e2,m2)

• Player 2 achieves victory if Q ≥ z10.

• Let F0,1(z10) denote 2’s prior beliefs about z10

• Given Q the probability of victory by 2 is (1-F0,1(z0,1)).

• Thus, the probability of victory is: πPN ( ∙ ) ≡

F (z20| ∙ ) ∙ πNN + (1 – F (z20| ∙ )) ∙
∫ ∞

z20

f̂ (Q |e2,m2) ∙ (1-F0,1(Q ))dQ

• Player 1 chooses e2 to maximize his ex ante payoff: (100)πPN ( ∙ ) – c (e2)

• Denote the solution by: π∗PN .

• Similar remarks apply to the other cases.
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Payoff structure

Figure 2: Payoff Structure

Figure 3: Ex Post Payoffs
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Figure 4: Ex Ante Payoffs: Nash Equilibrium

• Despite the symmetric costs and the propitious odds for player 2, in the subgame
perfect equilibrium she performs poorly.

• Anticipating this she opts not to engage in hostilities (H) and accrues 21 – which is
not much better.

6 Application 3: Authority

In this Section we build upon Aghion and Tirole (1997) by examining how the allocation of
authority in organizations depends upon innate intelligence and creativity.

• Consider a principal (P) who possesses a technology that calls for the employment of
two agents (A1,A2).

• The agents are to formulate and implement a “plan of attack.” for some project.

• If the value of a project is z , the principal accrues a payoff (1 – α) ∙ z . The remaining
α accrues to the agents (in a manner described below).

• The principal is unable to distinguish among the recommendations of the agents, and
hence rubber-stamps any proposal that comes before her.

• Assume that the two agents differ in their innate intelligence levels and in their
innate their creativities.

• The basic economic problem is to determine how to allocate the decision making au-
thority between the two agents.

• At the beginning of the game, the players pick the authority relationship that maxi-
mizes ex ante welfare.
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There are three cases of interest:

1. A1 authority Only A1 has the right to send proposals to P. In particular, while he
can entertain suggestions from A2 he has the right to veto them.

2. A2 authority The converse of the above.

3. Balanced authority (B) Either player can recommend a proposal to the principal.

The Analysis

• Time is continuous, and all players discount the future at the rate ρ Agent i thinks
of projects at the rate λi ∙ λ(e ) and at a cost c (ei ).

• The quality of each of A1’s projects is Z . If the project is implemented, A1’s payoff is
α ∙ a1 ∙ Z . Player 2’s (expected) payoff is α ∙ (1-a1) ∙ Z

• Here, the parameter a1 ≥ 0 captures the affinity between A1 and A2. The quality of
A2’s proposal is z . The corresponding affinity parameter is a2.

• If ai > 1 there is a strict conflict of interest between the agents.

Information

• Hard: upon thinking of plan, the agent can credibly communicate it to the other
agent.

• Soft: upon thinking of a plan, the agent can make an informal “suggestion” to the
other player.

• For the purpose of this discussion, assume that information is soft, and that a1 = a2 = 1.

A-formal Authority

• Given that a2 = 1, A1 will veto any proposal advanced by 2. Lacking any benefit from
effort, he will set e2 = 0.

• As for player A1, his value, V1 is:

rVA 1 = – c (e1) + λ1λ(e1) ∙ [α ∙ Z – VA 1]

• The optimal choice of effort is governed by the condition:

α ∙ Zλ1 ∙ λ′( ∙ ) ∙ (r + c ( ∙ ))
λ1 ∙ λ + r

– c ′
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Balanced Authority

• In this case, player A1 worries about finishing last. Conditional upon e2 his payoff
V1B is:

rV1B = – c (e1) + λ1λ(e1) ∙ [α ∙ Z – V1B ] + λ2λ(e2) ∙ [0 – V1B ]

• The solution to this program is a best response function, e∗1B ( ∙ ,e2B ).

• Similar but opposite remarks for A2.

• A Nash equilibrium is a pair: e∗1B e∗2B that satisfy these best-response functions.

Analysis

• Let VP denote the principal’s payoff.

• Ex ante welfare is: W = VP + V1 + V2.

• As shown in Figure 5, depending upon the values of z,Z,λi either of the three authority
schemes may be optimal.
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A Simulation

Figure 5: The Benefits and Costs of Delegation

7 Concluding Comments

We have introduced a simple model of boundedly rational agents. The heart of our framework is
considering environments in which agents do not know their action spaces. However, via a process
of “thinking” they can uncover feasible actions. The approach potentially has many applications.
Three have been examined. A Third is to non-informative advertising.

A fourth would be to examine the micro-foundations of human capital accumulation, in which
agents can make investments that help them think “faster,” or deeper.”
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8 Appendix

In this Appendix we provide proofs of the lemmas and propositions presented in the paper.
Define the value: v (e,s ) by:

v (e,s ) =
– c (e ) + λ(e )I (s )

(ρ + λ(e )(1 – F (s )))

where: I (s ) ≡
∫ ū

s
udF (u ). Here v (e,s ) is the value that accrues to the agent if he chooses effort e and

acts according to the cutoff rule s . (Of course, v ( ∙ ) is time consistent iff v (e,s ) = s ). Despite this, it
is useful to work directly with v (e,s ), deferring for the moment issues of sequential rationality.

We first characterize the unique optimal value of e given s . To this end, pick any s = s0 for which
I (s0) > 0. Notice that if e = 0, then: v (0,s0) = λ0I (s0)/ρ + λ0) ≥ 0, where: λ0 ≡ λ(0) ≥ 0. Given I (s0),
define ē (s0) > 0, by: v (ē (s0),s0) ≡ 0. Assumption 4 implies such a value always exists. Moreover,
v (e,s0) < 0, whenever e > ē (s0). Finally, note that for any e ≥ 0:

v (e,s0) =
– c (e ) + λ(e )(1 – F (s0))E [u |u ≥0 ]

(ρ + λ(e )(1 – F (s0)))
< E [u |u ≥ s0]

Differentiating v (e,s0) with respect to e yields:

ve (e,s0) =
– c ′(e ) + λ′(e )(1 – F (s0))
E [u |u ≥ s0] – v (e,s0)}

Δ1

where: Δ1 = ρ + λ(e )(1 – F (s0)) > 0. From the properties of c ′ and λ′, we have: lime→0 v (e,s0) = ∞.
Hence, v (e,s0) possesses an interior global maximum on (0,ē (s0)). Let e (s0) ∈ (0,ē (s0)) denote any
stationary point of v (e,s0). By definition it is characterized by: ve (e (s0),s0) ≡ 0. Differentiating
ve (e,s0) with respect to e around this point gives:

vee (e (s0),s0) = ( – c ′′ + λ′′(1 – F (s0)){E [u |u ≥ s0] – v (e,s0)})/Δ1 < 0.

Hence, any such stationary point is a maximum. It follows that e (s0) is the maximizing choice and
that it is uniquely characterized by the condition: ve (e (s0),s0) ≡ 0. Turning now to the properties
of v (e (s0),s0). If s0 = 0, then e (s0) > 0 and v (e (0),0) > 0. In contrast, if s0 = ū, then e (ū ) = 0 and
v (0,ū ) = 0. Since v (e (s0),s0) is continuously differentiable in s0, then, by the intermediate value
theorem, there exists at least one fixed point: s ∗ = v (e (s ∗),s ∗) ∈ (0,ū ). We now show that this fixed
point is unique. With two or more fixed points, at least one of them must satisfy: dv (e (s ),s )/ds , 0
(evaluated around the fixed point). Contrary to claim, let s ∗ represent any of two or more fixed
points. Differentiate v (e (s ),s ) around this point s = s ∗ yields,

λ(e (s ∗))f (s ∗)
(v (e (s ∗),s ∗) – s ∗)

Δ2
= 0

where: Δ2 = (ρ + λ(e (s ∗))(1 – F (s ∗))) > 0. The equality follows as λf (s ∗) > 0, and the definition of a
fixed point v (e (s ∗),s ∗) = s ∗.

8.0.1 Comparative Static Properties:

• Assume that: λ(e ) = λ0 + λ̂(e ), where: λ̂(0) = 0.
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The individual’s problem is characterized by the pair s ∗ ∈ (0,ū ), e ∗ > 0, which uniquely solve:

s ∗ –
– c ∗ + λ∗

∫ ū

s∗
udF (u )

(ρ + λ∗(1 – F ∗))
≡ 0

c ′(e ∗) – λ′(e ∗)(1 – F ∗){E (u |u ≥ s ∗) – s ∗} ≡ 0

Totally differentiating this system with respect to (s,e,λ0) gives:

{1}ds + {0}de – {(1 – F ∗)(E (u |u ≥ s ∗))/Δ2}dλ0 = 0

– {ves }ds – {vee }de + {0}dλ0 = 0

ves = – λ′(1 – F ∗) < 0 and vee = – {c ′′ – λ′′(1 – F ∗)(E (u |u ≥ s ∗) – s ∗)} < 0. Or,

[
1 0

– ves – vee

] (
ds ∗/dλ0

de ∗/dλ0

)

=

(
{(1 – F ∗)( – s ∗ + E (u |u ≥ s ∗))/Δ2}

0

)

Or Ax ∗ = d . Using Cramer’s rule:

ds ∗/dλ0 =
Det (As )
Det (A )

> 0

de ∗/dλ0 =
Det (Ae )
Det (A )

< 0

where:

• Det (A ) = – vee > 0,

• Det (As ) ≡

∣∣∣∣∣∣
{(1 – F ∗)( – s ∗ + E (u |u ≥ s ∗))/Δ2} 0

0 – vee

∣∣∣∣∣∣ = – vee {(1 – F ∗)( – s ∗ + E (u |u ≥ s ∗))/Δ2} >

0

• Det (Ae ) =

∣∣∣∣∣∣
1 {(1 – F ∗)(E (u |u ≥ s ∗))}

– ves 0

∣∣∣∣∣∣ = ves {(1 – F ∗)( – s ∗ + E (u |u ≥ s ∗))/Δ2} < 0.

Consequently, fast thinkers are more picky (their s ∗ is higher), but lazier (their e ∗ is smaller).
Define the individual’s computational speed by:

σ(λ0) ≡ λ(e ∗(λ0))1 – F (s ∗(λ0))

which is the flow rate of contemplating new ideas, λ, times the probability that one is acceptable:
1 – F ∗. Differentiating with respect to λ0 yields,

1 > σ′(λ0) ≡ (1 – F ∗) + {λ′e ∗λ0
(1 – F ∗) – λ0f ∗s ∗λ0

}

Conditional upon the cutoff value, s ∗, the effect of a unit increase in the flow rate of ideas is the raise
the speed with which the agent arrives at a decision. However, the increase in λ0 is associated with
two indirect effects that retard the speed with which he arrives at a decision. First, the individual
reduces his thinking effort, which lowers σ. Secondly, the individual becomes more choosy in his
ratiocination process, raising the cutoff value s ∗.

36



A special case: f is log-concave and λ=λ0. More definite results can be obtained in the
case in which F (u ) is log-concave and in which λ(e ) = λ0 (which is independent of e . In this case,
e ∗ = 0 and c (e ∗) = 0. Consider:

Proposition 7 (Properties of σ(λ)). Assume that F (u ) is log-concave and that λ(e ) = λ0. In this
case,

σ′(λ0) = (1 – F (s ∗(λ0)) – λfs ∗λ0

Proof. See Burdett and Ondrich (1985) and Flinn and Heckman (1983, p.39-41.). The essential
argument is as follows. First the reservation utility is:

ρu ∗ = λ0(1 – F (s ∗)){E [u:u ≥ s ∗] – s ∗}

This can be written:

ρs ∗ = λ0

∫ ū

s∗
(1 – F (u ))du

This follows as:

(1 – F (s ∗)){E [u : u ≥ s ∗] – s ∗} =
∫ ū

s∗
{u – s ∗}dF (u ) =

ū – s ∗ –
∫ ū

s∗
F (u )du =

∫ ū

s∗
(1 – F (u ))du

Differentiating s ∗ wrs ρ yields, s ∗λ , defined by:

ρs ∗λ = – λ0(1 – F ∗)s ∗λ +
∫ ū

s∗
(1 – F (u ))du

which upon re-arrangement yields:

s ∗λ =

∫ ū

s∗
(1 – F (u ))du

ρ + λ0(1 – F ∗)

As for the change in the speed of thinking, this is:

σ′ = (1 – F ∗) – λ0f ∗s ∗λ

Using the solution for s ∗λ gives:

σ′ = (1 – F ∗) – λ0f ∗
∫ ū

s∗
(1 – F (u ))du

ρ + λ0(1 – F ∗)
= (1 – F ∗) –

f ∗

1 – F ∗
λ0(1 – F ∗)

∫ ū

s∗
(1 – F (u ))du

ρ + λ0(1 – F ∗)
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Write this as,

(1 – F ∗) –
f ∗

1 – F ∗
λ0(1 – F ∗)

∫ ū

s∗
(1 – F (u ))du

ρ + λ0(1 – F ∗)
=

(1 – F ∗) –
f ∗

1 – F ∗
λ0(1 – F ∗)

∫ ū

s∗
(1 – F (u ))du

ρ + λ0(1 – F ∗)

–
f ∗

1 – F ∗
ρ
∫ ū

s∗
(1 – F (u ))du

ρ + λ0(1 – F ∗)
+

f ∗

1 – F ∗
ρ
∫ ū

s∗
(1 – F (u ))du

ρ + λ0(1 – F ∗)

=




(1 – F ∗) – f ∗




∫ ū

s∗
(1 – F (u ))du

1 – F ∗








+
f ∗

1 – F ∗
ρ
∫ ū

s∗
(1 – F (u ))du

ρ + λ0(1 – F ∗)

In order that σ′ > 0, it is sufficient that the term in braces is non-negative. If f (.) is log-concave, this
is indeed the case.

Proposition 8 (An alternative proof that if f is log-concave that σ′ > 0).

Proof. The proof is based on the fact the if f is LC, then: dE (u |u ≥ s ∗)/ds ∗ ≡ Es < 1. To show this,
note that:

E =

∫ ū

s∗
uf (u )du

∫ ū

s∗
f (u )du

Differentiate with respect to s ∗,

Es =
f ∗

1 – F ∗
[E – s ∗]

We must show that with f LC, that: Es < 1. Suppose not, then: Es ≥ 1. In which case:

f ∗

1 – F ∗
[E – s ∗] ≥ 1

and,
[E – s ∗](1 – F ∗)

1 – F ∗
≥

(1 – F ∗)
f ∗

Whence, using the definition of E and integrating by parts,

∫ ū

s∗
(1 – F (u ))du

1 – F ∗
≥

(1 – F ∗)
f ∗

Define: H (s ∗) ≡
∫ ū

s∗
(1 – F (u ))du . Since, f is log-concave, then H (.) is log-concave. Thus, ln [H ∗] is

concave. Consequently, d [H ∗′/H ∗]/ds ∗ = H ∗′′H ∗ – (H ∗′)2 < 0. But, H ∗′′ = f (s ∗) andH ∗′ = – (1 – F ∗).
Hence,

f ∗H ∗ – (1 – F ∗)2 < 0.

Yet,
H ∗

1 – F ∗
≥

(1 – F ∗)
f ∗
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which is a contradiction. Hence, f LC=⇒ Es < 1. Now let us show that: σ′ = dσ/dλ0 > 0. From
the definition of s ∗ we have:

ρs ∗ = λ0(1 – F ∗)(E – s ∗)

Differentiating with respect to λ:

ρs ∗λ = – (λ0f ∗(E – s ∗) + (1 – Es )(1 – F ∗))s ∗λ + (1 – F ∗)(E – s ∗)

Re-arranging, and solving for s ∗λ :

s ∗λ =
(1 – F ∗)(E – s ∗)

ρ + (λ0f ∗(E – s ∗) + (1 – Es )(1 – F ∗))
> 0

which follows as: Es < 1 and E > s ∗. The rate at which the agent thinks of ideas and reaches a
decision is:

σ = λ0(1 – F (s ∗))

Differentiating this with respect to λ gives:

σ′ = (1 – F ∗) – λ0f ∗s ∗λ

Substituting for s ∗λ yields:

σ′ = (1 – F ∗) –
λ0f ∗(1 – F ∗)(E – s ∗)

ρ + (λ0f ∗(E – s ∗) + (1 – Es )(1 – F ∗))
=

(1 – F ∗)

{

1 –
λf ∗(E – s ∗)

ρ + (λ0f ∗(E – s ∗) + (1 – Es )(1 – F ∗))

}

From which:

σ′ = (1 – F ∗)

{
ρ + (1 – Es )(1 – F ∗))

ρ + (λ0f ∗(E – s ∗) + (1 – Es )(1 – F ∗))

}

> 0

as Es < 1.‖

Limiting Properties of λ0. The cutoff level s ∗ increases with λ0. It is also bounded above by ū .
It therefore converges to a limit: limλ0→∞ s ∗(λ0) = s̄ ∗. Heuristically, in this limit the decision maker
can think “infinitely quickly” of alternatives. In this case, does his expected payoff converge to ū?
Consider,

Proposition 9 (The limiting properties of s ∗(λ0)). Given that: λ(e ) = λ0 + λ̂(e ), then: limλ0→∞ s ∗(λ0) = s̄ ∗ = ū .

The proof is straightforward. Suppose that contrary to claim, limλ0→∞ s ∗(λ0) = s̄ ∗ < ū . The value of
effort e ∗ is decreasing and bounded below by zero. It converges to some limit: limλ0→∞ e ∗(λ0) = e ∗L ≥ 0.
For every λ0 ≥ 0,

s ∗ –
– c ∗ + λ∗

∫ ū

s∗
udF (u )

(ρ + λ∗(1 – F ∗))
≡ 0
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where: s ∗ = s ∗(λ0) and e ∗ = e ∗(λ0). In preparation for using l’hôpital’s rule, write:

s̄ ∗ – lim
λ0→∞

c ∗(e ∗L )

(ρ + (λ0 + λ(e ∗L ))(1 – F (s̄ ∗))
– lim
λ0→∞

(λ0 + λ(e ∗L ))
∫ ū

s̄∗
udF (u )

(ρ + (λ0 + λ(e ∗L ))(1 – F (s̄ ∗))
= 0

which yields,

s̄ ∗ –

∫ ū

s̄∗
udF (u )

(1 – F (s̄ ∗)))
< 0

which is a contradiction. Hence, limλ0→∞ s ∗(λ0) = s̄ ∗ = ū .‖

8.0.2 Special case II. λ(e ) = λ0λ̂(e )

Here, all of the results are determinate if f is log concave.

Proposition 10 (Special case II): if λ(e ) = λ0λ̂(e ) and if f ( ∙ ) is log-concave, then: ∂s ∗/∂λ0 > 0,
∂e ∗/∂λ0 > 0, and ∂σ∗/∂λ0 > 0.

Proof. Begin with the condition:

ρs ∗ = – c ∗ + λ∗(1 – F ∗)(E – s ∗)

where it is understood that E = E [u:u ≥ s ∗]. Under LC, we have: Es∗ < 1. Totally differentiating
the above yields:

ρs ∗λ = – λ∗f ∗ΔEs ∗λ – λ∗(1 – F ∗)(1 – Es )s ∗λ λ̂
∗(1 – F ∗)ΔE

where: ΔE ≡ E – s ∗ > 0. (Terms in e ∗ an be ignored by the envelope theorem). Re-arranging gives:

s ∗λ =
λ̂∗(1 – F ∗)DeltaE

ρ + λ∗f ∗ΔE + λ∗1 – F ∗)(1 – Es )
> 0

which follows as: 1 – Es > 0. The corresponding FOC for e ∗ is:

– c ∗′ + λ0λ̂
∗′(1 – F ∗)Δ ≡ 0

Totally differentiating this expression yields:

– Δ3e ∗λ + λ̂∗′(1 – F ∗)ΔE – {λ0λ̂
∗′f ∗ΔE + λ0λ̂

∗′(1 – F ∗)(1 – Es )}s ∗λ = 0

where: Δ3 = c ∗′′ – λ∗′′(1 – F ∗)ΔE > 0. Re-arranging in terms of e ∗λ gives:

Δ3e ∗λ = λ̂∗′
{
(1 – F ∗)ΔE – {λ0f ∗ΔE + λ0(1 – F ∗)(1 – Es )}s ∗λ

}

Substituting for s ∗λ :

Δ3e ∗λ = λ̂∗′ {

(1 – F ∗)ΔE – {λ0f ∗ΔE + λ0(1 – F ∗)(1 – Es )}
λ̂∗(1 – F ∗)ΔE

ρ + λ∗f ∗ΔE + λ∗(1 – F ∗)(1 – Es )

}
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Whence:

Δ3e ∗λ =
λ̂∗′

Δ4

{
(1 – F ∗)ΔE {ρ + λ∗f ∗ΔE + λ∗(1 – F ∗)(1 – Es )} –

(
(1 – F ∗)ΔE

)
{λ∗f ∗ΔE + λ∗(1 – F ∗)(1 – Es )}

where: Δ4 = ρ + λ∗f ∗ΔE + λ∗(1 – F ∗)(1 – Es ) > 0. Thus,

Δ3e ∗λ = ρ
λ̂∗′

Δ4
(1 – F ∗)ΔE > 0

The speed of thinking is given by:
σ ≡ λ∗(1 – F ∗)

It follows that:

σ′ = – λ∗f ∗s ∗λ +
λ∗

λ0
(1 – F ∗) + (1 – F ∗)λ∗′e ∗λ0

> 0

The second and last term are positive. It is therefore sufficient to show that, taken together, the
first two are non-negative. Consider,

– λ∗f ∗s ∗λ +
λ∗

λ0
(1 – F ∗) =

λ∗

λ0

[
(1 – F )∗ – λ0f ∗s ∗λ

]

Using the expression for s ∗λ gives:

λ∗

λ0

[

1 – f ∗
λ∗ΔE

ρ + λ∗f ∗ΔE + λ∗(1 – F ∗)(1 – Es )

]

=
λ∗

Δ4λ0
(1 – F )∗

[
ρ + λ∗f ∗ΔE + λ∗(1 – F ∗)(1 – Es ) – f ∗λ∗ΔE

]

=
λ∗

Δ4λ0
(1 – F )∗

[
ρ + λ∗(1 – F ∗)(1 – Es )

]
> 0

which follows as, Es < 1.
Under the conditions of the proposition, an increase in “intelligence” — parameterized by λ0

— implies that the agent exerts more effort at thinking and that he is more judicious in his ac-
ceptable actions. Even though they are more “picky,” intelligent individuals also reach decisions
more rapidly than less intelligent ones. Notice the importance of log-concavity. Suppose that:
ε0 ≥ ρ > 0, and (for simplicity) λ̂′ = 0, then it is easy to see that there exists and ε0 > 0, for which:
limρ→0 σλ0 < 0. Intuitively, if Es > 1, then the returns from increasing s ∗ are quite high. For a
sufficiently low discount rate, the decision maker takes advantage of this by thinking longer as λ0

increases.

8.0.3 The Effects of Patience ( λ=λ(e )).

• Infinitely (im)patient players.
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Let us write s ∗(ρ) and e ∗(ρ). We are interested in the limiting properties: ρ → 0 and ρ → ∞.
They uniquely solve:

s ∗ –
– c ∗ + λ∗

∫ ū

s∗
udF (u )

(ρ + λ∗(1 – F ∗))
≡ 0

c ′(e ∗) – λ′(e ∗)(1 – F ∗){E (u |u ≥ s ∗) – s ∗} ≡ 0

Totally differentiating this system with respect to (s,e,ρ) gives:

{1}ds + {0}de + {s ∗/Δ2}dλ0 = 0

– {ves }ds – {vee }de + {0}dλ0 = 0

ves = – λ′(1 – F ∗) < 0 and vee = – {c ′′ – λ′′(1 – F ∗)(E (u |u ≥ s ∗) – s ∗)} < 0. Or,

[
1 0

– ves – vee

] (
ds ∗/d ρ
de ∗/d ρ

)

=

(
– s ∗/Δ2

0

)

Or Ax ∗ = d . Using Cramer’s rule:

ds ∗/d ρ =
Det (Asρ)

Det (A )
< 0

de ∗/d ρ =
Det (Aeρ)

Det (A )
< 0

where:

• Det (A ) = – vee > 0

• Det (Asρ) =

∣∣∣∣∣∣
– s ∗/Δ2 0

0 – vee

∣∣∣∣∣∣ = vee s ∗/Δ2 < 0

• Det (Aeρ) =

∣∣∣∣∣∣
1 – s ∗/Δ2

– ves 0

∣∣∣∣∣∣ = – ves s ∗/Δ2 > 0.

Thus, more impatient players are less picky. However, they work harder. Both of these are to
ensure a more rapid response of their decision problem. As for computational speed,

σ′(ρ) = λ′e ∗ρ – λfs ∗ρ > 0

Proof of Proposition 3

It is conceivable that by exerting effort, the decision maker may think about better quality ideas,
rather than just thinking faster. Assume that: λ(e ) = λ0 (independent of e ) and that c (e ) = 0. This
enables us to more clearly differentiate between the effects of thinking faster, versus the effects of
thinking “better.”

Conditional upon s ∗ the value of e is:

ρv (e,s ∗) = – c (e ) + λ0(1 – F ∗)(E – s ∗) = – c (e ) + λ0

∫ ū

s∗
(1 – F )du
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The Properties of F (u |e ). From an economic standpoint, the first basic condition we require is
that: b (e ) ≡ (1 – F ∗)(E – s ∗) is increasing and concave in e . Differentiating with respect to e gives:

be = – F ∗e ΔE + (1 – F ∗)Ee > 0

bee = – F ∗eeΔE – 2F ∗e Ee + (1 – F ∗)Ee < 0

where: ΔE ≡ E {u |u ≥ s ∗,e }. If Fe ≤ 0 (strict for some u ) then: – F ∗e ΔE > 0 is the benefit of the
increased likelihood that a given idea is acceptable. A sufficient condition for the inequality is that
Ee > 0, which says that increased effort raises the average quality of acceptable ideas. Using the
fact that

b (e ) ≡ (1 – F ∗)(E – s ∗) =
∫ ū

s∗
(1 – F )du

implies that:

be = –
∫ ū

s∗
Fe du

Consider:

Lemma 3 (The benefit function b (e )). If Fe ≤ 0 for all u ∈ [0,ū ] and Fe < 0 for some u then: be > 0.
(This is First-order stochastic dominance). If F ( ∙ ) is convex in e then: bee < 0. If in addition:
LR ≡ f /(1 – F ) is decreasing in e then Ee > 0.

From an economic standpoint, the first basic condition we require is that: b (e ) ≡ (1 – F ∗)(E – s ∗)
is increasing and concave in e . Differentiating with respect to e gives:

be = – F ∗e ΔE + (1 – F ∗)Ee > 0

bee = – F ∗eeΔE – 2F ∗e Ee + (1 – F ∗)Ee < 0

where: ΔE ≡ E {u |u ≥ s ∗,e }. If Fe ≤ 0 (strict for some u ) then: – F ∗e ΔE > 0 is the benefit of the
increased likelihood that a given idea is acceptable. A sufficient condition for the inequality is that
Ee > 0, which says that increased effort raises the average quality of acceptable ideas. Using the
fact that

b (e ) ≡ (1 – F ∗)(E – s ∗) =
∫ ū

s∗
(1 – F )du

implies that:

be = –
∫ ū

s∗
Fe du

Consider:

Lemma 4 (The benefit function b (e )). If Fe ≤ 0 for all u ∈ [0,ū ] and Fe < 0 for some u then: be > 0.
(This is First-order stochastic dominance). If F ( ∙ ) is convex in e then: bee < 0. If in addition:
LR ≡ f /(1 – F ) is decreasing in e then Ee > 0.

The further properties of F (.). Suppose that Fe < 0 as required. What are the implied properties
of E (if any)? What further restrictions when placed on F lead to “intuitive” comparative static
results?
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To answer this question, note that:

be = – F ∗e ΔE + (1 – F ∗)Ee = –
∫ ū

s∗
Fe du > 0

Alternatively,

(1 – F ∗)Ee =
F ∗e

1 – F ∗

∫ ū

s∗
(1 – F )du –

∫ ū

s∗
Fe du

Whence,

(1 – F ∗)Ee =
∫ ū

s∗
{

F ∗e
1 – F ∗

(1 – F ) – Fe }du

And,

(1 – F ∗)Ee =
∫ ū

s∗
(1 – F ){

F ∗e
1 – F ∗

–
Fe

(1 – F )
}du

Define:

φ(u ) ≡
F ∗e

1 – F ∗
–

Fe

(1 – F )

Then, φ(u ) = 0. If φ′(u ) > 0, then:

(1 – F ∗)Ee =
∫ ū

s∗
(1 – F ){φ(u )}du > 0

Differentiating φ(u ) wrs to u yields,

φ′(u ) = –

(
Feu (1 – F ) + Fe Fu

(1 – F )2

)

= –

(
fe (1 – F ) + Fe f

(1 – F )2

)

> 0

Given that Fe < 0, a sufficient condition is that fe < 0. A weaker condition is MLRP. Thus, differ-
entiate LR ≡ f /(1 – F ) with respect to e to yield:

LRe (1 – F )2 = fe (1 – F ) + Fe f

The MLRP says this is negative. In which case, φ′(u ) > 0 as required. Consequently, if F satisfies:
Fe < 0, then: be > 0. If, in addition, F satisfies MLRP, then: Ee > 0.

8.0.4 Characterization of behavior.

The reservation value is:

ρs ∗ = – c (e ∗) + λ0

∫ ū

s∗
(1 – F (u |e ∗))du

and the first-order condition for e ∗ is:

0 = – c ′(e ∗) – λ0

∫ ū

s∗
F (u |e ∗)e du
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Totally differentiating with respect to λ0:

ρs ∗λ0
= – λ0 (1 – F (s ∗|e ∗))s ∗λ +

∫ ū

s∗
(1 – F (u |e ∗))du = – λ0 (1 – F (s ∗|e ∗))s ∗λ +

ρs ∗ + c ∗

λ0

This yields:

s ∗λ0
=

∫ ū

s∗
(1 – F (u |e ∗))du

ρ + λ0(1 – F ∗)
=

(ρs ∗ + c ∗)/λ0

ρ + λ0(1 – F ∗)
> 0

As for the choice of e ∗ this (at the interior max.) is:

{c ′′ + λ0

∫ ū

s∗
F ∗ee du }e ∗λ = – λ0F ∗e s ∗λ +

∫ ū

s∗
F (u |e ∗)du > 0

The agent becomes more picky, encouraging effort by the generation of better ideas. In addition,
he thinks faster, encouraging effort at the margin. As for the speed of his thinking, this is:

σ(λ0) ≡ λ0(1 – F (s ∗|e ∗))

Differentiating wrs to λ0:
1 – F ∗ + λ0{ – f ∗s ∗λ – F ∗e e ∗λ }

with F ∗e < 0 and e ∗λ > 0, then the agent unambiguously reaches a faster decision if f is log-concave
(using previous arguments). Furthermore, if Feu < 0, then the average quality of the idea increases
as well (i.e., E (u |u ≥ s ∗,e ∗)λ0 > 0).
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