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Abstract

I use data on individual pay and output from Safelite Corp. to estimate a principal-agent model

with moral hazard where the agent has preferences approximating various speci�cations of reference

dependence, diminishing sensitivity, and loss aversion, as well as the case of CARA utility. Estimating

the preference parameters via GMM shows that the speci�cation with loss aversion and diminishing

sensitivity �ts the data better that any of the other nested speci�cations. Furthermore, goodness-of-�t

simulations suggest that the model with loss aversion and diminishing sensitivity has root mean squared

error that is 18 percent smaller than the CARA model.

1 Introduction

In designing an optimal mechanism, a rational principal will take into account the attitudes of the partici-

pating agents. Since in most instances the optimal way to provide incentives depends on the preferences of

the parties involved, the incentive contract chosen by the principal contains valuable information about the

agents�preferences. Given a su¢ ciently rich dataset on individual characteristics and contracts, an economist

could infer which of several preference speci�cations conforms most closely with the empirical evidence.

This paper uses a dataset on individual pay and productivity from the Safelite autoglass company, the

same dataset analyzed by Lazear (2000), to estimate the production and preference parameters of the classic

principal-agent model with moral hazard. This is a useful exercise since the incomplete risk-sharing implied
�Departments of Economics, 110 Eggers Hall, Syracuse, NY 13244; e-mail: iantchev@syr.edu. Acknowledgements to be

added.
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by moral hazard allows us to distinguish, based on contractual outcomes, among di¤erent speci�cations

of attitudes towards risk. The main conceptual departure of the paper lies in the speci�cation used to

model the agent�s preferences. In particular, we consider a piecewise quadratic functional form which nests

approximations to various speci�cations of reference dependent preferences with or without loss aversion and

diminishing sensitivity as well as the standard case of CARA utility.

We use the Safelite dataset mainly for two reasons. First, it contains information on individual output

under two incentive regimes that elicit di¤erent e¤ort levels. Hence we can estimate the production process

under both high and low e¤ort, which helps in identifying the production parameters of the model. In

addition, the incentive contract chosen by Safelite is used commonly in practice, which suggests that any

insight about preferences should be generally applicable.

We �rst formalize the environment in which the dataset was generated. Speci�cally, we derive the proper-

ties of the optimal deviation to a high powered incentive contract by a principal that operates in a competitive

market where the prevalent contract is low powered. This situation approximates the environment in which

Safelite was operating during the period, January 1994 to July 1995, covered by the dataset. Under loss

aversion, diminishing sensitivity, and the assumption that the agent�s reference point is the expected value

under the prevalent contract in the market1 , the optimal contract has several properties that distinguish

it from the insurance-incentives trade-o¤ characteristic of pure risk aversion. In particular, the optimal

contract postulates that if output is below a critical value, the principal should impose on the agent the

biggest possible punishment, a transfer of wmin, with probability one. When output is above this critical

value but below an upper threshold, the agent receives a constant amount equal to his market wage (outside

option). And if output exceeds the upper threshold, there is a region with increasing additional rewards.

Hence contrary to the consumption-smoothing result of the model with a risk averse agent, incentives under

loss aversion and diminishing sensitivity are provided globally rather than locally.

The constant transfer in the middle part of the output distribution is due to reference dependence and

loss aversion. Loss aversion makes the agent very risk averse around the reference point so full insurance

is locally optimal. The agent is risk averse for gains relative to the reference transfer, hence incentives are

partially provided by the region with increasing rewards. On the other hand, the agent is locally risk-loving

for values below the reference point making a corner solution, the biggest possible punishment, optimal.

On the surface, this optimal contract �ts well with evidence from the personnel literature in general

1This rule is motivated by Rayo and Becker (2007). We use it instead of the rule by Koszegi and Rabin (2006) for empirical
reasons. See section 3.1. for the details.
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and Safelite in particular. Speci�cally, the company switched its workforce to an incentive contract which

featured a piece rate coupled with a minimum hourly guarantee. That is, if the weekly piece rate pay for

a worker came below the guarantee, he would receive the guaranteed amount. The guarantee region was

economically signi�cant with about 68 percent of person-months featuring some guaranteed pay. In addition,

more than 93 percent of employees were given a guarantee exactly equal to their previous wage, hence outside

option, which is also consistent with the theoretical model.

However, the �at region in the observed incentive contract could well have been due to a non-monotonicity

in the production process. Moreover, there was no explicit provision for punishment in the case of poor

performance. To address the �rst issue, we estimate a production process which is �exible enough to

incorporate violations of the Monotone Likelihood Ratio Condition (MLRC). As it turns out, the data is

consistent with MLRC being satis�ed, which rules out a non-monotone output process as the reason for the

existence of the guarantee region.

As far as the punishment region is concerned, the model is consistent with the evidence if we interpret

punishment as the forfeiture of an implicit performance bond in the event of separation. In particular,

the estimates from a logistic hazard model suggest that workers with contemporaneous output in the left

tail of the output distribution were signi�cantly more likely to separate from the �rm during the incentive

regime than workers with current output in the middle and right parts of the distribution. We thus interpret

termination as the ultimate punishment that the principal can impose on each agent and treat the amount ,

wmin, forfeited by the agent as something to be estimated and which in principle can depend on the agent�s

observable characteristics.

Once we�ve estimated the production processes and punishment region, we estimate the parameters of

the utility function via two-stage GMM on the incentive and participation constraints. The point estimate

for the coe¢ cient of loss aversion that we obtain is 2:11, which is rather close to estimates derived from

experiments, typically ranging between 2 and 2:5. We also estimate two alternative speci�cations�no loss

aversion and CARA. The value for the objective function in each of the restricted models is much higher

than the objective value of the unrestricted model, which suggests that the unrestricted model �ts the data

better than either of the alternatives.

Finally, we assess the goodness-of-�t for several preference speci�cations by comparing the simulated and

actual contracts for a random sample which was not used in estimating the model parameters. We �nd that

in terms of the root mean squared error (RMSE) criterion, the unrestricted model outperforms the model

restricted to the CARA approximation by about 18 percent. Furthermore, we estimate that ignoring loss
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aversion and diminishing sensitivity if present would have increased the �rm�s compensation costs by an

average of about 28 percent, which implies that loss aversion and diminishing sensitivity could have played

a signi�cant role in shaping the optimal incentive contract adopted by Safelite.

Section 2 provides a summary of the related literature. Section 3 contains the theoretical part of the

paper. Section 4 describes the dataset, while section 5 presents the empirical strategy and estimation results.

Section 6 contains the goodness-of-�t simulations and section 7 concludes.

2 Related Literature

The paper is related to three di¤erent strands of economic analysis. First, it complements the existing

literature that tries to recover preference parameters using regular market participants. For the case of

risk attitudes, prominent examples are Cicchetti and Dubin (1994), who look at individual decisions to

insure against telephone wire failure, Chetty (2006), who infers risk preferences from labor supply choices,

and Cohen and Einav (2007), who estimate the entire distribution of absolute risk aversion underlaying

deductible choices for automobile insurance in Israel. Moreover, our estimate of loss aversion seems to be

one of the very few (the only?) derived using market data. Most of the evidence on the coe¢ cient of loss

aversion is either from lab experiments such as Tversky and Kahneman (1992), or �eld experiments such as

the TV show "Deal or No Deal?" used by Post et al. (2007). In this sense, our paper can shed some light

on how comparable the estimates from the experimental and market based approaches are.

This paper also contributes to the literature on the applications of prospect theory preferences. Camerer

(2001) identi�es ten market phenomena that are inconsistent with the classic formulation of expected utility

theory but can be explained by some feature of prospect theory, typically loss aversion or diminishing

sensitivity. The most prominent applications are in the area of �nance�Benartzi and Thaler (1995), Barberis,

Huang, and Santos (2001)�where it is argued that reference dependence and loss aversion can successfully

account for the equity premium puzzle. But prospect theory preferences have also been used to explain

behavior in a variety of other situations. Examples include inter-temporal choice�Bowman, Minehart, and

Rabin (1999)�labor supply�Camerer et al. (1997), Goette, Fehr, and Hu¤man (2004)�and seller behavior

in the residential real estate market�Genesove and Mayer (2001).

Initially, papers in this area aimed at explaining peculiar forms of behavior that violated predictions of

the standard theory. Recently, however, works such as Barberis, Huang, and Santos (2001), Mas (2006), and

Heidhues and Koszegi (2005) have been investigating more systematically the general implications of prospect
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theory preferences. Our paper contributes to this trend by incorporating prospect theory preferences in the

classic principal-agent model with moral hazard. The conclusions of the model are then tested with available

data and their merit evaluated on the basis of how well they explain that data.

In this sense, our paper also contributes to the empirical literature on the structural estimation of

principal-agent models with moral hazard. As noted by Chiappori and Salanie (2003), this literature is still

very much in its infancy. However, as a result of the complementary increases in the availability of micro

datasets and computational power, the structural estimation of such models has become more feasible.

Recent examples of this approach can be found in Ferrall and Shearer (1999), Paarsch and Shearer (2000),

Vera-Hernandez (2003), and Bandiera, Barankay, and Rasul (2005) and (forthcoming). The last two papers

are especially relevant since they use the detailed nature of personnel records to test hypotheses about social

preferences, a task which this paper also tries to make progress on.

3 Theoretical Preliminaries

In this section we provide a description of the environment in which the principal-agent interaction takes

place. In imposing assumptions about the nature of the economic environment, we have tried to approximate

the conditions under which the dataset was actually generated.

Consider a competitive labor market where principals and agents trade labor services (actions) for mon-

etary remuneration (earnings) via spot contracts. A contract in this environment is a recommended action

for the agent and a payment schedule which may depend on the output produced by the agent. There are

many principals and many agents and a principal may sign contracts with more than one agent but not vice

versa. There are no frictions and no speci�city to any particular relationship, so long term contracts are

ruled out.

Upon signing a contract, an agent can post a performance bond up to an exogenous limit wmin that may

depend on his characteristics. After the contract is signed, the agent has to chose an action from the set

fH;Lg. The action L denotes the level of e¤ort that can be observed without cost by the principal. This

includes whether the agent comes to work on time, slacks around the shop, etc. Beyond this minimum e¤ort

level, whether any "heart", H, is put into the job is the agent�s private information.

After the agent has chosen an action, his output Y gets realized. Individual output is a random variable

that can take on one of S possible values with Y1 < Y2 < ::: < YS . We assume that the agent can freely

dispose of output if he �nds that to be advantageous. Furthermore, conditional on free disposal, we assume
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that individual output is observable but may or may not be contractible. As is standard in the incentives

literature, we also assume that the agent�s action in�uences the probability with which each outcome occurs.

In particular, let psH = Pr(Y = YsjH) and psL = Pr(Y = YsjL) where presumably fpsHg and fpsLg are

such that E[Y jH] > E[Y jL] . Note that we have implicitly assumed that no team production takes place.

In the case of Safelite, however, this is a good approximation to reality.

To summarize, within each period we have the following timing of events: (i) contracts are signed and

any bond is posted if necessary; (ii) action is chosen by the agent; (iii) output uncertainty is realized; (iv)

ex post transfer takes place as speci�ed by the contract and the period ends.

3.1 Preferences

The principals in this market are risk neutral and their objective is to maximize expected pro�t. The agents

on the other hand maximize expected utility. Unlike the principals, the agents are not risk neutral. In

particular, from the agents�point of view, in each period there are two carriers of utility�earnings and e¤ort.

Utility after the output uncertainty of the current period has been realized is given by the function

v(b� r) +D(a = L)e; (1)

where b is the realized current money payo¤ to the agent, D is an indicator function that takes on 1 if

the action chosen by the agent was L and takes on 0 otherwise, e > 0 is the current disutility of high e¤ort

(H relative to L), and r is a reference value to be described shortly.

For the empirical section only, we will assume that

v(x) =

8><>: x+ g � x2 for x � 0

�x+ l � x2 for x < 0

9>=>; ; (2)

where � � 1 is a coe¢ cient of loss aversion while g and l represent the curvature of the function above

and below the reference point.

The above function is a quadratic approximation to several speci�cations of reference-dependent pref-

erences as well as the standard case of CARA utility. For instance, the value function in Kahneman and

Tversky (1978) corresponds to the restrictions r = b�1 (last period payo¤), � > 1, g � 0, and l � 0.
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Koszegi and Rabin�s version with deterministic reference point in their 2006 paper implies the same restric-

tions except that now r = EC [b] where C is the contract the agent expects to face. Similarly, the speci�cation

derived by Rayo and Becker (2007) corresponds to r = EC [b], � = 1, g < 0, and l > 0.

As far as the case of CARA utility, note that for any concave ev;

ev(b) � ev(r) + ev0(r)(b� r) + 1
2
ev00(r)(b� r)2: (3)

Now normalize ev(r) = 0 and let v(b) = ev(b)=ev0(r). Then clearly, if ev(b) is of the CARA type, v(b) will
be isomorphic to its quadratic approximation around r with � = 1 and g = l = ev00(r)=2ev0(r). Hence the
case of constant absolute risk aversion can be de�ned as the pair of restrictions � = 1 and g = l < 0.

The speci�c functional form for v suggests that the agents�local degree of risk aversion depends crucially

on how the realized payo¤ compares with the reference point r. If we do not have a well-formed theory of

how the value of r is determined, we will not be able to put any sharp restrictions on behavior. I follow the

rule derived by Rayo and Becker and assume that if the prevalent contract in the market is given by C� =

(fb�sgSs=1; a�), then

r = E[b�ja�]: (4)

That is, the reference point of each agent is his expected payo¤ under the prevalent contract in the

market. This de�nition implies that no single principal can in�uence the agents�preferences by unilaterally

deviating from the prevalent contract in the market. For instance, if every principal in the market o¤ers a

suboptimal contract that provides utility U , when a principal switches to a contract that provides utility

U + ", the preferences of all agents in the market, including the agents employed by the deviating principal,

will not change. This is because agents form their reference points based on the prevalent contract, while

each principal is in�nitesimal relative to the entire market. There needs to be a positive mass of princi-

pals deviating simultaneously to the same contract in order for the agents� reference points (contractual

expectations) to be a¤ected.

The theoretical validity of the last assumption can be questioned if one adheres strictly to the theory

of Koszegi and Rabin (2006) in which the principal is always able to in�uence the agents�reference points.

For our purposes, however, the assumption given by condition (4) is not controversial. In particular, when
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Safelite switched its workers to incentive pay, over 93 percent of the employees were provided with an hourly

guarantee that was precisely equal to their previous wage (outside option). As we will see, this is exactly

the prediction generated in an environment where condition (4) is satis�ed. Given that our goal is to �nd

the model that best interprets the data, we use the reference point rule derived by Rayo and Becker rather

than Koszegi and Rabin.

3.2 Competitive equilibrium with non-contractible output

As a benchmark, we will �rst describe the equilibrium contract under the following assumption:

A1. Individual output is NOT veri�able/ NOT contractible.

The equilibrium concept we use is Bertrand-Rotschild-Stigliz equilibrium since it seems to be a good

description of the forces operating in the market for windshield installers. Formally, we de�ne competitive

equilibrium in the following way.

De�nition: A contract C = (b; a) is a competitive equilibrium if it�s robust to the introduction of new

contracts. That is, there is no other contract which is at least as good to the agents and makes positive

expected pro�t.

It is immediately obvious that any equilibrium must feature zero expected pro�t. If that is not the case,

then there exists another contract which is feasible, makes positive pro�t, and strictly increases the agent�s

expected utility. But then the current contract cannot be a competitive equilibrium. Hence if C� = (b�; a�)

is an equilibrium, we must have b� = E[Y ja�].

In equilibrium, no extra e¤ort can then be induced from the agent. At the e¤ort choosing stage, the agent

decides between v(b� � r) + e and v(b� � r). Clearly, given that e > 0, the agent will never choose to exert

extra e¤ort. Note that this conclusion critically depends on A1 as well as the assumptions of no frictions or

relationship speci�city. In particular, if there is a strictly positive future surplus from continuing the current

relationship compared with the outside option, incentives can be provided through a long term contract that

features an implicit piece rate2 . Given that the equilibrium transfer is constant and equilibrium pro�ts are

zero, we can conclude that b� = E[Y jL].

3.3 Optimal deviation when output becomes contractible for one principal

We now analyze the situation where one principal �nds a way to formally keep track of individual output.

That is, assumption A1 is no longer satis�ed for this particular principal even though it holds for all other
2See MacLeod and Malcomson (1989).
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principals in the market. Since this is a deviation from equilibrium by just one �rm, the rest of the principals

behave in the usual manner. Let V be the agent�s (ex-ante) reservation utility in equilibrium with non-

contractible output. We know that in any such equilibrium a� = L and b� = E[Y jL] = r, which implies that

the agent�s reservation value is given by

V =
SX
s=1

psLv(0) + e = e: (5)

I want to assume that the production technology is such that if an agent who is currently employed were

to own the technology, it will be individually rational to exert high e¤ort. That is,

E[v(Y � r)jH]� E[v(Y � r)jL] > e: (6)

The �rm that deviates can now provide incentives using piece rate contracts. Hence b CAN be state-

contingent. Let bs � wmin be any state contingent ex-post transfer. The deviating principal would like to

implement e¤ort H since it is the more productive action. Moreover, the principal would like to structure

the incentive contract in such a way that ex ante, the agents are just indi¤erent between working for him

with high e¤ort and their outside option V . This is because for a given e¤ort level, providing a higher level of

expected utility increases expected expenditures. Whether it�s possible to drive expected utility completely

down to V depends on the value of wmin3 . I will assume that the limit (wmin) is lax enough so that the

participation constraint binds with equality. The pro�t maximizing spot deviation contract can then be

described by

�(V ) = max
fbsg

SX
s=1

psHfYs � bsg

s.t. bs � wmin;

(IC) :
SX
s=1

(psH � psL)v(bs � r) � e [�]

3See La¤ont and Martimort (2002) section 4.3.
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(PC) :
SX
s=1

psHv(bs � r) = V [�]

v(bs � r) � v(by � r) for all s and y < s;

where bs can in general be stochastic as long as any possible outcome of a lottery is bigger than wmin.

We can then prove the following proposition for the case of diminishing sensitivity and strong loss aversion.

Proposition: Suppose sabotage is not possible. For v : [x;1] 7! R exhibiting diminishing sensitivity�

v
00

x>0(x) < 0 and v
00

x<0(x) � 0�and strong loss aversion�v0x"0(x)=v0x#0(x) > 1 and v0(x) > 1 for x 2 [x; 0]�the

optimal deviation contract is given by:

1. Punishment region. If the realized state of the world s is such that the likelihood ratio 1� psL=psH <

(x=v(x) � �)=�, with � and � as the multipliers on the incentive and participation constraints, the agent

receives the minimum allowable transfer x with probability one.

2. Inactivity (draw) region. For states where the likelihood ratio is within the open interval from (x=v(x)�

�)=� to (v0x#0(x)� �)=�, the agent receives a constant transfer of r with probability one.

3. Incentive region. For states where 1 � psL=psH > (v0x#0(x) � �)=�, the agent receives a transfer of

bs = r + xs with xs such that 1� psL=psH = [1=v0(xs)� �]=�.

Proof: See Appendix A.

A few comments about the optimal contract will prove useful once we move to the empirical section. The

punishment region can be interpreted as states where the current principal-agent relationship is involuntarily

terminated. In particular, imagine the following situation. At the beginning of a relationship, the agent posts

a performance bond in the amount of wmin. As long as performance is satisfactory (outside of the punishment

region) the agent receives a transfer greater than or equal to r and the performance bond is rolled over or

reimbursed if a voluntary separation occurs. However, if performance falls into the punishment region,

the bond is forfeited and the agent has to post a new bond next period, which is akin to starting a fresh

relationship, even if it is with the same principal. In addition, note that not every contract must necessarily

contain a punishment region. Whether punishment exists or not will depend on the production process being

considered. If, for instance, the production process is such that 1� p1L=p1H > (x=v(x)� �)=�, the optimal

contract will consist only of the draw and incentive regions. Whether a punishment region exists is thus a
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matter which depends on the particular production technology in question and which must ultimately be

settled empirically.

The optimal contract in the case of CARA preferences features the well known local trade-o¤ between

insurance and incentives. The payo¤ to the agent varies smoothly with the value of the likelihood ratio.

In the case where the production technology satis�es the monotone likelihood ratio condition (MLRC) or

sabotage is impossible, the optimal contract will not feature a �at region above the minimum transfer wmin.

If MLRC is not satis�ed, however, and the agent can destroy output, the optimal contract will call for a

constant payo¤ to the agent over the non-monotone region of the output distribution. It is therefore crucial

that loss aversion is not imposed a priori by requiring the MLRC to be satis�ed. Such �exibility can be

achieved by assuming an output process which is general enough to allow for the violation of MLRC. As

it turns out, the estimation in Section 5:2: suggests that the MLRC is satis�ed for the production process

generating the Safelite data.

4 Dataset Description

We now attempt to formally test the theory developed thus far by analyzing a panel dataset on individual

pay and productivity courtesy of the Safelite Glass Corporation. The company is located in Columbus, Ohio

and is the largest installer of automobile glass in the US. Historically, Safelite had been paying its workers an

hourly wage that did not depend explicitly on the number of units installed. During the period 1994-1995,

workers were gradually switched from an hourly wage to a performance pay plan (PPP). The incentive plan

consisted of a constant piece rate per unit installed coupled with an hourly wage guarantee. If their weekly

piece rate pay came below the guarantee, workers were paid the guaranteed amount.

The contractual change and the resulting increase in productivity and pro�ts are extensively analyzed

in a paper by Lazear (2000). Lazear (2000, p. 1350) says that the managers �changed the compensation

scheme because they felt productivity was below where it should have been.�The change was then clearly

done for incentive reasons and can be analyzed as a move from a low powered to a high powered incentive

regime.

At the time of the change, the rest of the companies in the industry were using the hourly wage system

previously used by Safelite. Hence the change to PPP �ts reasonably well with the o¤-equilibrium deviation

analyzed in the previous section. What fundamentals laid behind the change is a very interesting question

in itself. The computerized information system owned by Safelite no doubt played a role. Without it,
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keeping veri�able records of individual output would have been very expensive. In addition, technological

improvements in capital may have increased the marginal product of e¤ort, especially if capital and e¤ort

are complements. The principal will then want workers to exert more e¤ort, claiming that productivity is

not where it should be.

Whatever the reason behind the change to the high powered incentive regime, the switch itself is where

the dataset becomes especially valuable for our purposes. The environment in the company �ts well with the

classical model of moral hazard. First, Safelite operates in a competitive industry. In addition, individual

output is measurable and quality concerns are easy to address. Multi-tasking and e¢ ciency wage considera-

tions are hence not likely to play an important role. And since the switch to the incentive plan was phased

in over a nineteen month period, there is reliable data on individual output and compensation under both

the low and high powered incentive regimes, enabling us to estimate the production process under both high

and low e¤ort.

The dataset used here is exactly the same as the dataset used by Lazear. Since we would like to examine

the goodness-of-�t for various preference speci�cations, I split the workers in two random samples. One of

the samples is used for estimating the production and preference parameters. Once the estimation is done,

we can compute the optimal contract that these estimates imply for each of the data points in the simulation

sample. In this way, we would be able to compare the contracts implied by di¤erent preference speci�cation

with the actual contracts implemented by the company. In addition, we will be able to rank the overall

goodness-of-�t for di¤erent speci�cations using a criterion such as root mean squared error (RMSE). The

simulation stage will thus allow us to see which preference speci�cation comes most closely to rationalizing

the observed contracts.

Table 1 presents summary statistics for some of the key variables for the full sample by incentive regime

and for each of the two subsamples. The basic measure of output is units per day�the monthly average of the

number of windshields that an individual installs per eight hours of labor during a given month. As evident

from the table, average daily output increased signi�cantly after the company switched to the performance

pay plan. Lazear argues that about half of the increase is due to incentives�workers exert more e¤ort, while

the other half is the result of selection�with performance pay, the �rm attracts and is able to retain a better

pool of workers.

Another interesting fact is that both the guarantee and the piece rate varied signi�cantly across workers.

This is consistent with the hypothesis that the principal tailors the incentive contract to each agent based on

the agent�s observable characteristics. Moreover, when workers were switched to PPP pay, they were given
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: Table 1: Descriptive statistics�mean [sdev]�for selected variables.
Est. Sample Sim. Sample

Fixed Wage Incentives

Units a day 2.72 3.30 3.02 3.00

[1.42] [1.58] [1.56] [1.50]

Tenure (years) 4.11 3.97 4.01 3.97

[4.36] [3.99] [4.46] [3.85]

Hourly wage or guarantee 11.73 11.40 11.56 11.51

[3.27] [2.52] [3.00] [2.79]

Piecerate in  41.65 43.41 39.99

incentive regimei
[ ] [119.13] [125.51] [112.78]

Attrition probabilityii
0.05 0.04 0.05 0.05

[0.05] [0.04] [0.05] [0.04]

Fraction of person months 0.49 0.51

in incentive regime

Number of person monthsiii
12,570 14,073 13,802 14,219

Number of persons 1,274 1,273

Notes : i. imputed from monthly incentive pay and output; ii. estimates from a logistic hazard

model; iii. 1378 transition months are ommitted from the fixed wage and incentive subsamples.

Full Sample

2,547

0.50
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an hourly guarantee equal to their previous hourly wage. In particular, over 93 percent of associates were

given an hourly guarantee exactly equal to their previous hourly wage. This �nding is consistent with the

hypothesis that the agents�reference points continued to be at their competitive wages since the switch by

Safelite was a deviation by just one principal and thus did not in�uence the agents�preferences.

5 Estimation

In order to bring the theoretical model closer to the data, we introduce a few modi�cations prior to estimation.

Speci�cally, we allow agents to be heterogeneous along a vector of observable characteristics Zt. These

characteristics may in�uence the production process, the agent�s disutility of e¤ort, and the constraint on

the minimum allowable transfer.

The disutility of e¤ort is assumed to be stochastic and can vary both across agents and periods even after

controlling for observable characteristics. Speci�cally, assume that eit = e(Zit; �) + uit, where uit is iid with

E[uitjZit] = 0 and min e(Zit; �) + minuit > 0. uit is realized at the very beginning of tenure period t and is

observed by both the principal and the agent but not by the econometrician. In addition, we assume that

there is no heterogeneity in the parameters �, g, and l that govern attitudes towards earnings.

The two assumptions mentioned above are made for tractability as relaxing either of them will substan-

tially complicate the analysis both theoretically and empirically. Although neither assumption is likely to

hold completely in reality, we believe they are reasonable as a �rst approximation, especially in light of the

incentive contracts implemented by the �rm. In particular, asymmetric information about heterogeneous

preferences would introduce adverse selection on top of the moral hazard. We would then expect to observe a

menu of contracts o¤ered by the �rm for the workers to self-select into. However, no such menu was observed

in Safelite�s case. Even though contracts were individually tailored, they all had the same basic structure�

piece rate plus a minimum guarantee. Observed preference heterogeneity on the other hand is consistent

with the individually tailored contracts and can be accommodated by making the preference parameters

functions of observable characteristics. This is a fairly straightforward generalization of the current model

but it signi�cantly increases the number of preference parameters that need to be estimated in the GMM

step. Given the computational cost, we do not pursue this extension here, mainly because the goodness-of-�t

ordering of the preference models is not likely to be drastically a¤ected4 .

The timing of the interactions is the same as before except that the principal and each agent can now

4For instance, allowing � to have a non-degenerate distribution will add greater �exibility to the reference-dependent model
and hence improve its goodness-of-�t relative to the CARA (� = 1) approximation.
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decide to separate after eit is realized in the beginning of each period. Let � be the maximum one-period

expected pro�t that a principal deviating to an incentive contract can obtain, where the maximization

is done over the support of (Zt; ut) subject to the agent receiving his reservation utility in expectation.

Moreover since t in�uences Z only through its e¤ect on labor market experience (lme), I will assume that

if the relationship with worker i is terminated after � periods, the principal can costlessly �nd a worker j

such that lmej;t=0 = lmei;t=�+1, so that Zj;0 = Zi;�+1. In that case, the principal will employ only agents

with characteristics (Zt; ut) such that the corresponding expected pro�t is �t = �. Note however that the

distribution of people in terms of (Z; u) employed by the deviating principal need not be degenerate. This is

because production, limits to liability, and the disutility of e¤ort are allowed to depend on Z. Hence there

can be multiple values of (Z; u) which yield the same maximum pro�t level �.

5.1 Attrition

Recall that the model is consistent with attrition on realized output if punishment is interpreted as termina-

tion of the current relationship. In addition, separations may occur as a result of the shock to the disutility

of e¤ort. Finally, for some measurement reason, workers may drop out of the dataset even if they continue

to be employed by the �rm. In order to account for these possibilities, we �rst estimate attrition rates bhit
and construct inverse probability weights, 1=(1�bhit), which are subsequently used in estimating separations
as well as the production and preference parameters.

Since it�s best to impose as few a priori restrictions on the data as possible, we estimate a general attrition

process. In particular, let hit be the probability that individual i drops out of the dataset after tenure period

t. I will model attrition with a discrete hazard model. Speci�cally, consider

hit = prob(Ti = tjTi � t;Xit); (7)

where Ti is a discrete random variable representing the tenure at which the observation spell for worker

i ends. The vector of explanatory variables Xit consists of: Wit�dummy variables for calendar month and

year; individual characteristics Zit�job category, a quadratic polynomial in tenure, current output, and base

wage in the �rst period the worker is observed in the data; and the regime variable effort, which equals

one in the incentive regime and zero otherwise, as well as interactions of effort with the tenure variables

and output.
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Jenkins (1995) shows that when the data is properly organized, the likelihood function for such hazard

models is equivalent to the likelihood of a pooled discrete response model, such as probit or logit. The

properties of the distribution function depend on the distribution of ut+1, the shock to the disutility of

e¤ort. Given that we have not imposed any distributional assumption on ut+1, I tried both probit and logit

to make sure the results are not sensitive to the speci�cation. The results for the attrition logit are given in

Appendix B. I ended up using logit instead of probit in estimating the attrition model because logit gives

better goodness of �t in terms of pseudo R-squared.

5.2 Production

Assume that monthly output is given by,

Yit = Ait �Dit; (8)

where Yit is the total number of units installed, Dit is the working days (8 hours of labor) of individual

i during data-period t, and Ait is a random variable denoting average daily productivity.

Furthermore, assume that lnAit is N(�it; �
2
it) with

�it = ��e � effortit + Zit��z +Wit�
�
w (9)

and

ln�2it = ��e � effortit + Zit��z +Wit�
�
w (10)

where effortit 2 f0; 1g denotes the e¤ort level, 0 for L and 1 for H, and Zit are the observable char-

acteristics, which include job category, quadratic in years of tenure and months under the incentive regime,

and the initial base wage/guarantee for each worker. We also include dummy variables for month and year,

Wit. I use the initial base wage/guarantee as a measure of individual ability since by de�nition, it is the

market�s best estimate for each worker�s average productivity.

To estimate the parameters of the output distribution, we can then use the equation

lnuadit = ��e � effortit + Zit��z +Wit�
�
w + vit; (11)
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where lnuadit is the actual units-per-day for individual i during period t. If the disturbances vit are not

correlated with the explanatory variables, that is if

E[vit �Xit] = 0 for any Xit 2 feffortit; Zit;Witg,

the parameters �� can be consistently estimated by pooled OLS using the estimated inverse survivor

rates as weights. Once this is done and we have the residuals bvit, we can then estimate �� by running pooled
OLS on

ln bu2it = ��e � effortit + Zit��z +Wit�
�
w + kit; (12)

using the weighted sample, provided again that

E[kit �Xit] = 0 for any Xit 2 feffortit; Zit;Witg.

It is not obvious, however, whether the above orthogonality conditions are satis�ed. On theoretical

grounds, the conditions make sense. In an industry where turnover is high and output is frequently observed,

any systematic productivity di¤erence among agents should be re�ected in their market wages. Table 2

provides results from estimating equations (11) and (12) when the individual controls Zit are excluded and

included. The purpose of this comparison is twofold. First, we want to see whether individual characteristics

account for a signi�cant portion of the variation in productivity. This turns out to be true as including the

controls Zit increases the adjusted R-squared from 0:03 to 0:29 for the mean and from 0:01 to 0:14 for the

variance.

The second purpose of the comparison is to see whether the estimates of ��e and �
�
e are sensitive to

omitting relevant individual characteristics. Given that it is the values of ��e and �
�
e that determine the

properties of the likelihood ratio distribution, if the estimates are overly sensitive to individual controls, one

would be worried that pooled OLS estimation may result in omitted variable bias. However, as evident from

Table 2, the hypothesis that the estimated coe¢ cients are equal in each of the two speci�cations cannot be

rejected at any conventional level of signi�cance. Finally, the coe¢ cient on e¤ort is close in magnitude to the

value of 0:197 that Lazear (2000) reports in his Table 3 using the entire sample and individual �xed e¤ects,

which further suggests that the omitted variable bias if present is not too strong.
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: Table 2: Estimates of production parameters: pooled OLS (top part) coe¢ cients and descriptive statistics
for the mean and sdev of log daily productivity (bottom part).

Control

ln(uad) ln(uad) ln(u2) ln(u2)

Incentive 0.2396 0.2814  0.1818  0.3194

Regime Dummy [0.0183] [0.0234] [0.0603] [0.0654]

Individual YES NO YES NO

Characteristics†

Month & Year YES YES YES YES

Dummies

R squared 0.29 0.03 0.14 0.01

N 13,802 13,802 13,802 13,802

muit sigmait muit sigmait

Mean 1.0410 0.2411 0.8014 0.2641

SDev 0.3672 0.1484 0.3672 0.1625

N 6,828 6,828 6,828 6,828

Notes : †Individual characteristics include job category, quadratic in

 tenure, and initial wage or hourly guarantee.

Dependent Variable

Estimated Parameters (Incentive Regime)

High Effort Low Effort

Alternatively, one can consider a model where unobserved heterogeneity is explicitly incorporated. First

di¤erences can then be used to eliminate the unobserved e¤ect. The parameters can thus be estimated via

pooled OLS on the di¤erenced sample. The problem with this approach is that if the goal is to calculate

the likelihood ratios, the unobserved individual e¤ects need to be estimated from the time series for each

individual. This is problematic since as evident from Table 1, we have only about 11 observations per

individual on average. As a result, the production process and all subsequent parameters will be subject to

small sample bias. Not to mention that estimating individual �xed e¤ects will introduce a massive amount

of nuisance parameters, which may signi�cantly in�uence the precision with which the rest of the model

can be estimated. Thus, given the theoretical appeal of the orthogonality conditions and the relatively

smaller observational requirements that pooled OLS imposes on the data, it seems reasonable to estimate

the production process via pooled OLS.

Table 2 also provides summaries for the distributions of � and �. In particular, note the signs of the

estimates for ��e and �
�
e . As expected, being on incentive pay leads to an increase in average productivity.

A more interesting �nding is that the variance of log average product actually declines as a result of moving
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from �xed wages to performance pay. Although this e¤ect is somewhat more unexpected, it is by no means

unreasonable. Intuitively, as the stakes involved in making an error increase, agents would be expected to

be more careful and allow fewer errors in the production process.

These estimates have important implications for the shape of the optimal incentive contract. The combi-

nation of an increase in average productivity with a decrease in variance suggests that the likelihood ratio is

increasing with output except at very high output levels. The presence of the guarantee region thus cannot

be due to non-monotonicity in the production process. If anything, the estimated production parameters

suggest that there should be a cap on performance pay rather than an hourly guarantee for medium and low

output levels.

Once we have estimated (��; ��), we can construct a discrete approximation to the distribution of lnAit

for each it over some common support [y; y]. If we have S total states, we can divide the support into S � 1

cells with nodes fy1; y2; :::; ySg and compute

bpse(Zit) = bFit(ys)� bFit(ys�1) (13)

for s = 1; :::; S � 1 where bFit is the cdf of the distribution N(b�it; b�2it) and bpSe(Zit) = 1� bFit(yS�1).
In estimating the preference parameters (Section 5:4:), we use the interval [�0:75; 2:25] as the support

for lnA and discretize it into 999 cells, so S = 1000. In addition, since the model does not have anything to

say about the quantity of hours worked, in all subsequent calculations we normalize the total hours of work

per month to 176, or 22 labor days.

When translated into actual units installed, the bounds on the productivity support correspond to 10:4

and 208:7 units per month of labor. This range covers �2 standard deviations around �it in both incentive

regimes for over 90 percent (91.4% to be exact) of the person-months in the estimation sample. In addition,

since the di¤erence between the upper and lower bounds is roughly 200, a natural lower bound on the number

of states is 200 since an increment in that case roughly corresponds to an additional unit installed during

the month.

5.3 Separations and Punishment Region

Before we estimate the preference parameters, we need to determine whether there is any relation between

contemporaneous output and the probability of separation. To do that, we again estimate a discrete hazard
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model with

sit = Pr(Ti = tjTi � t;Xit); (14)

where sit is the probability that a separation occurs after tenure period t and Xit are observable charac-

teristics which include the current output realization. Note that the theoretical model predicts a non-linear

relationship between current output and the likelihood of separation for performance reasons. To account for

this, I create 10 categorical variables which split the pooled distribution of lnuad into equal parts. Remem-

ber that we are interested in separations for performance reasons in the incentive regime, and in particular,

whether the introduction of performance pay had any non-linear in�uence on the relationship between sep-

arations and current output. The variables of interest thus consist of the interaction between each of the

output categories and the dummy variable for the incentive regime. We label these variables as catK_ppp

where K is an integer between 1 and 10.

Table 3 presents the estimates from two logistic hazard models. The �rst regression includes all ten cat-

egories as dummy variables. It turns out that cat2_ppp = 1 predicts failure perfectly, so the 34 observations

where cat2_ppp = 1 are dropped from the �rst regression. Nevertheless, during the incentive regime there

is a clear non-linear relationship between current output and the probability of leaving the �rm at the end

of that particular period. Since the coe¢ cients on cat3_ppp through cat6_ppp are not signi�cantly di¤erent

from each other, we estimate a second regression where we pool together all observations from categories 1

through 6. The results are shown in the right side of table 3. This is the model which we use to infer the

likelihood of falling into the punishment region for each observation in the dataset.

To estimate the punishment region, let �it 2 f0; 1g be an index variable which is equal to 0 if a separation

for incentive reasons has taken place after tenure period t and equal to 1 otherwise. We can then express

the survival probability for a given relationship as

1� sit = Pr(�it = 1j lnuad_ppp) �

[1� Pr(Ti = tjTi � t; eXit; �it = 1)]; (15)

where eXit includes all variables in Xit except the interactions between the categorical output variables
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: Table 3: The in�uence of current output on the probability of separation under incentive pay, estimates
from discrete logistic hazard models.

Control Control

Separ. Prob. Separ. Prob.

cat1_PPP 1.3213 1.4785 * cat1_6_PPP

[0.8742] [0.4840]

cat3_PPP * 2.5542 0.5530 cat7_PPP

[0.8017] [0.4370]

cat4_PPP * 2.3777 0.1819 cat8_PPP

[0.6963] [0.4428]

cat5_PPP * 1.6234  0.0713 cat9_10_PPP

[0.6789] [0.5388]

cat6_PPP * 1.3527

[0.5052]

cat7_PPP 0.5941

[0.4383]

cat8_PPP 0.2251

[0.4447]

cat9_PPP  0.0195

[0.5417]

cat10_PPP  0.1123

[1.1432]

Pseudo R sq 0.0662 0.0651 Pseudo R sq

N 13,161 13,195 N

Notes : Each model includes month and year dummies, job

category, tenure, individual wage, and months on incentive

pay as controls.

* = coefficient significant at 5% level.

Dependent Variable

and the incentive dummy. The �rst term in the factorization is the probability of separation conditional on

the current output realization, while the second term is the survival probability conditional on characteristics

and the event that no incentive punishment has been implemented. Using the above relationship, we can

calculate b�it = Pr(�it = 1j lnuad_ppp) since we have estimates for sit and Pr(Ti = tjTi � t; eXit; �it = 1)

from the logistic hazard model.

If �s denotes the probability of non-punishment in state s, we know that

b�it =X
s

bpsH(Zit)�s: (16)

Now the theoretical model implies that �s is either 0 or 1 depending on the value of the likelihood ratio.

Since only the coe¢ cient on cat1_6_ppp has a signi�cant in�uence on separations, we assume that �s = 1

for states such that cat1_6_ppp = 0. Hence to determine the number of states covered by cat1_6_ppp

for which �s = 0; we use the estimated output distribution. In particular, we set �s = 0 for states where
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bFit(s) � 1� b�it, where again bFit is the cdf of N(b�it; b�2it). Otherwise, we set �s = 1.
The mean of the estimated separation probability for incentive reasons is 0:072. This number implies

that on average an incentive termination per relationship occurs every 13:8 months. This may seem like an

unusually low duration. However, the severity of the punishment will depend not only on the probability

but also on the amount forfeited. In particular, if the agent forfeits only a small amount as a result of

a separation, the associated expected value can be quite reasonable even if the probability of the event is

relatively high.

5.4 Preference Parameters

5.4.1 GMM Estimation

A principal that maximizes pro�t will o¤er to agent i for tenure period t the contract Cit = (f�s; bsg;H)

that makes the agent�s participation and incentive constraints bind. The two constraints imposed by the

model are:

uit =
SX
s=1

(psH � psL)f�s(bonuss + g � bonus2s) +

(1� �s)[�(wmin(Zit;  )� guarit)

+l � (wmin(Zit;  )� guarit)2)]g � e(Zit; �) (17)

and

uit =
SX
s=1

psHf�s(bonuss + g � bonus2s) +

(1� �s)[�(wmin(Zit;  )� guarit) +

l � (wmin(Zit;  )� guarit)2)]g � e(Zit; �); (18)

where bonuss = maxfpays�guarit; 0g is the piece rate bonus while wmin(Zit;  ) is the minimum allowable
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: Table 4: GMM estimates of preference parameters, unrestricted and two restricted models.

Lam Gg Gl E(wit guarit) E(eit) Obj. Value

1st Stage 3.04  0.000019  0.005351  109.73 210.99 8.23784×1011

2nd Stage 2.11  0.000022 0.000000  241.43 230.23 340,556

Unrestricted (M1)

CARA (M2) 1.00  0.000022  0.000022  398.72 220.05 396,868

(Lam = 1, Gg = Gl )

No Loss Aversion (M3) 1.00  0.000022 0.000000  423.23 237.97 494,666

(Lam = 1, Gg < 0, Gl > 0)

ex-post transfer. That is, wmin(Zit;  ) � guarit is the amount that the agent will forfeit if the relationship

is terminated for incentive reasons.

Our goal is to estimate the parameters (�; g; l; �;  ) and perform various tests on them. In order to do

that, we use data on the actual contract Cit = (fbonussg; guarit;H) and observable characteristics Zit�job

category, tenure, and initial wage�as well as the estimates for fpsH ; psL; �sg derived from the production

and separation models. Provided that the shocks, uit, at the true values of the parameters are orthogo-

nal to Zit, the preference parameters can be consistently estimated by two-stage GMM on the system of

equations. We again weigh each observation by 1=(1 � bhit) in order to correct for any bias induced by at-
trition on ("it; uit). This produces consistent estimates since inverse probability weighting works for general

M-estimation, including GMM.

Table 4 presents two-stage GMM estimates of the unrestricted model as well as two restricted models�

diminishing sensitivity without loss aversion (g � 0, l � 0, and � = 1) and CARA utility (� = 1

and g = l). The estimates are calculated using the system of equations consisting of the incentive and

participation constraints. For each person-month the likelihood ratio distribution is approximated using

1,000 states. Roughly, this means that an increment in the state space is equivalent to 0.20 additional units

of output per month. Sensitivity with respect to the number of states is explored in the next subsection.

The point estimate of � from the unrestricted model is 2:11, which is surprisingly close to estimates,

typically ranging between 2 and 2:5, obtained from experiments. Tversky and Kahneman (1992), for instance,

obtain � = 2:25 using laboratory experiments, while Post et al. (2007) report point estimates ranging from

2.38 in the Netherlands to 4.53 in the USA using choices from "Deal or No Deal?". Although there is

no strong justi�cation for why the estimates are so similar, especially given the di¤erent approaches and

circumstances used to obtain them, it is encouraging that the orders of magnitude are comparable.
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The estimates for the CARA approximation suggest a coe¢ cient of absolute risk aversion around 0.000044.

This is also roughly consistent with other evidence. For instance, Jullien and Salanie (2000) estimate a slightly

negative coe¢ cient of absolute risk aversion (corresponding to g = 0:03 in our speci�cation), while Cohen

and Einav (2007) conclude that most consumers in their sample are close to risk neutral (g = 0 in our case)

with respect to a symmetric $100 lottery.

Conceptually, it is not surprising that the estimated CARA approximation is close to risk neutrality,

especially given Rabin�s calibration theorem (2000) and the nontrivial amount of risk involved in the contract.

In particular, any signi�cantly higher degree of risk aversion will help in matching the �at region of the

contract. However, it will have problems �tting both the increasing part of each contract as well as the

region where separations occur for incentive reasons. In fact, to reasonably �t the observed contracts, it

appears than one would need a utility function with highly variable curvature, which is essentially what loss

aversion and diminishing sensitivity provide.

Table 4 also suggests that, based on the values of the objective functions, the unrestricted model �ts

the data in the estimation sample much better than either of the two alternatives. We have to be cautious,

however, in deriving any general conclusions from this observation. In particular, the GMM estimation

involves a lot of nuisance (production and punishment) parameters that in�uence the asymptotic distribution

of the preference estimates. Hence the standard quasi-likelihood ratio test cannot be used to reject either

of the two restricted models. Moreover, due to the number of parameters involved and the fact that the

GMM equations are complicated non-linear functions of the nuisance parameters, calculating the correct

asymptotic covariance matrix for the estimates is quite challenging. On top of that, bootstrapping is not

a feasible option either since an iteration of the GMM procedure can take, depending on the optimization

method involved, anywhere from several hours to several days to complete.

It thus seems that the only feasible way in which we can address the variability underlaying the estima-

tion procedure is by exploring the sensitivity of the preference estimates to the uncertainty generated by

estimating other features of the model. We do that below but more importantly, in the next section we also

investigate how well the distribution of simulated optimal contracts usingM1 andM2 �ts to the actual data

of a simulation sample. In some sense this method is preferable to calculating standard errors since it is a

stronger test of the model and is also closer to what we ultimately care about�overall model �t. We thus

believe that our omission of standard errors from this section, although undesirable, is not fatal.
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5.4.2 Sensitivity of Estimates

To address any concerns associated with the uncertainty underlaying the preference estimates, we undertake

two steps. First we explore the sensitivity of the preference estimates with respect to the number of states

S used to approximate the output space. In addition, we investigate how the preference parameters respond

to changes in the values of the nuisance parameters. In particular, we estimate two additional speci�cations,

where the value for each nuisance parameter is set to its point estimate plus or minus two times its associated

standard error.

The top two rows of table 5 show the second stage estimates from the best �tting model (in terms

of objective value) for two discretizations of the state space corresponding to S = 200 and S = 1; 000

(benchmark) respectively. As already mentioned, the case of S = 200 is of natural interest since a state

increment there roughly corresponds to an additional unit of output. Furthermore, for computational reasons,

in the next section we will test the preference speci�cations by simulating the optimal incentive pay at 200

rather than 1,000 points even though we will still be using our benchmark parameter estimates. Thus it is

important to understand how comparable the two discretizations are.

As can be seen from the table, the point estimates vary somewhat between the two discretizations.

Nevertheless, the variation is in a direction we would expect. First, given a �xed number of parameters, it is

more di¢ cult to �t a nonlinear function at 1,000 points than at 200 points. Thus as the grid becomes �ner,

the minimum value of the objective function increases. On the other hand, as the grid becomes coarser, the

approximate contract deviates more and more from the nonlinear actual contract. Thus one would expect

the estimated coe¢ cient of loss aversion to decrease as the approximation worsens. Even with 200 states,

however, the approximate contracts seem su¢ ciently nonlinear to result in a point estimate for � above 1.5,

while the curvature parameters do not seem to be in�uenced at all by the size of the grid. Loss aversion and

diminishing sensitivity thus seem to survive variations in the discretization of the state space.

The bottom two rows of table 5 present point estimates for the preferences parameters in the two situations

where each nuisance (production and punishment) parameter is set to a value equal to its point estimate

plus or minus 2 standard deviations. These speci�cations are quite extreme and should result in preference

estimates that di¤er substantially from the benchmark. They do allow us, however, to quantify the in�uence

of estimation uncertainty in the production and punishment stages on the GMM estimates of the preference

parameters.

The point estimates from the bottom two sensitivity estimations also go in the direction we would
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: Table 5. Sensitivity of preference estimates with respect to the number of output states used and values
of nuisance (production and punishment) parameters.

Lam Gg Gl E(wit guarit) E(eit) Obj. Value

M1 with S =200 1.60  0.000022 0.000000  315.74 187.89 233,563

M1 with S =1,000 2.11  0.000022 0.000000  241.43 230.23 340,556

(benchmark )

Benchmark with

nuissance pars.

 = point ests. + 2 SDs 1.06  0.000004 0.000000  192.77 287.79 169.92

 = point ests.   2 SDs 2.35  0.000061 0.000000  98.04 4.52 16,460

intuitively expect. For instance, when the value of each nuisance parameter is increased by two standard

deviations, the likelihood ratio in the production process increases and so does the probability of termination

due to incentive reasons. In combination, these two e¤ects mean that a given agent will be in the �at portion

of his contract with a lower probability than under the benchmark speci�cation. Naturally, this leads to a

lower estimate for the coe¢ cient of loss aversion with the new value of 1:06 barely above zero. In addition,

since this new shape is further away from full insurance than the benchmark, one would need a higher

disutility of e¤ort in order to justify the deviation. Hence the higher estimate of 287.89 for the average

disutility of e¤ort relative to the benchmark estimate of 230.23.

Finally, the estimates when two standard deviations are subtracted from the value of each nuisance

parameter are the mirror image, relative to the benchmark, of the estimates when two standard deviations

are added. The e¤ect however is not symmetric. This is because compared with subtracting two standard

deviations, adding two standard deviations has a much stronger e¤ect on the probability of termination due to

incentive reasons�it reduces the average value of b�it from 0:93 to 0:13, while adding two standard deviations

increases b�it on average from 0:93 to above 0:99. Hence the biggest source of parameter uncertainty appears

to come from the possibility that the degree of punishment for incentive reasons may be underestimated.

This, however, is unlikely to be a problem. In particular, recall that we observe separations rather than

punishments. Hence if anything, the degree of punishment for incentive reasons may be overestimated. The

parameter bounds shown in the bottom row of table 5 should thus be much closer to the true parameter

values that those in the row above it. This is encouraging as even with a trivial probability of punishment

(less than 0:01), the model produces estimates for the preference parameters that are quite reasonable given

our priors.
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6 Discussion on Modelling and Estimation Procedures

In this part I try to address some of the issues that can potentially be raised against the modelling and

estimation decisions made in the previous sections.

All theoretical and empirical results rely on the assumption that the �rm is maximizing pro�ts both before

and after the switch, which is not realistic.

It will be hard to analyze optimal contracts if the �rm�s objective is not well de�ned and pro�t maxi-

mization seems the most reasonable objective. However, for identi�cation purposes, it is not required than

the �rm was maximizing pro�ts prior to the change in the incentive regime. Maybe it was the case that

the �rm was behaving sub-optimally by paying �xed wages at the going market rate even though it had

the opportunity to contract on output. All conclusions we have derived will go through in this alternative

situation as long as there was some optimizing reason behind the contractual change. Lazear reports that

pro�ts increased signi�cantly after the switch to the new regime, which makes the case for pro�t maximiza-

tion easier to swallow. It is true however that if the �rm chose the new incentive contracts randomly, they

would not contain any useful information about workers�preferences and the analysis in this paper would

be erroneous.

The coe¢ cient of loss aversion is identi�ed only from the punishment decision, which is not directly

observable. Hence it is not clear that what is estimated is at all loss aversion.

Whether any punishment will be present depends on the production and preference parameters5 . In fact,

observing no punishment implies that the coe¢ cient of loss aversion is above a particular value. Hence even

then one can estimate a lower bound on the coe¢ cient of loss aversion. Refer for instance to the last row of

table 5. There, the average punishment probability is reduced to about 0:01, which increases the estimate

of the coe¢ cient of loss aversion to 2:35. Given that the punishment probabilities in this speci�cation are

set to two standard deviations below their point estimates, even if the punishment decision were to be

completely removed, the corresponding lower bound for � will not change drastically. If anything, allowing

for punishment works against the goal of �nding loss aversion even if it is present in the data.

The model assumes that e¤ort does not vary over time within a month. It is much more likely that e¤ort

is contingent on the realization of the individual productivity shock for each month.

Consider the following alternative speci�cation. Each worker gets a productivity shock at the beginning

of every month that will last for the entire month. He observes it sooner rather than later and makes his

5See the discussion below the proposition in section 3.3.
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: Figure 1: Distribution of piece-rate/guarantee ($ per hour). Bi-modality will suggest e¤ort is chosen
contingent on productivity realization.

e¤ort decision conditional on this shock. So then if he has gotten a good shock, he knows he is productive

and will be in the piece-rate region, so he works hard. On the other hand, if he has received a bad shock,

he knows that he cannot reach the incentive region and works just hard enough to not get punished. This

is essentially the model explored in the original paper by Lazear.

Suppose we plot the distribution of (hourly pure piece-rate pay)/(hourly guarantee). Now, if workers

behave according to the above model, we should observe bunching and gaps for an interval below 1 in this

distribution, or at least something like bimodality. However, �gure 1 suggests nothing of this sort. The

distribution is uni-modal with the mode around 0.8. So it doesn�t seem that people were deciding period by

period whether to be in the incentive region or to stay in the guarantee region and shirk. Rather, it looks

more like they were working harder after the switch than during the �at wage regime and sometimes they

made it into the incentive region and sometimes they did not.

Other explanations for the chosen contract are much more likely.

I will discuss only the most prominent alternatives as in principle there are in�nitely many other possi-

bilities:

(i) The �at region will be observed in case of a limited liability constraint, and that�s more likely than

loss aversion.
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Although this observation is correct, it is not at all obvious why the guarantee should be so high. Why

not set the guarantee at the minimum wage? And why do most other �rms that use such contracts typically

set the guarantee well above the minimum wage?

(ii) The contract features are more likely due to concerns over workers�preference for horizontal equity.

If that were the case, why did both the guarantee and piece rate vary signi�cantly across workers?

Concerns for horizontal equity will compress the distribution of hourly guarantees. However, there is no

evidence for this in the data.

(iii) The contract features are more likely to be due to concerns over multi-tasking.

One of the reasons this particular dataset is useful is because multi-tasking concerns are easy to address

since the quality of the installation is easy to verify. In particular, any worker who defectively installed a

windshield had to reinstall it on his own time. However, he was not charged for any of the wasted materials

and his time was covered by the guarantee. Hence it seems that the �rms was trying to insure workers

against the variability of both the quantity and quality of output produced.

(iv) The fact that most workers were given a guarantee equal to their previous wage has nothing to do

with reference dependence. It was probably used to ensure worker cooperation in transitioning to the new

regime.

If that were the case, one would expect the guarantee to disappear after some time. However, that did

not happen and the �rm is using the same type of contract to this day. In addition, most �rms that use such

contracts on a regular basis set their guarantees using target levels derived from industry surveys, which is

also consistent with the reference point story.

7 Testing: Goodness-of-�t Simulations

In this section we assess the goodness of �t of the unrestricted model, the approximate CARA model, and

a combination of the two in determining the shape of the observed incentive contracts. In particular, we

perform three simulations using the data (simulation sample) that was not used in estimating the preference

parameters. For each of the three models and each of the 7,245 remaining observations, the simulation

computes the optimal (cost-minimizing) contract implied by the preference parameters and subject to the

underlaying incentive, participation, and monotonicity constraints.

In solving the optimal contract for each person-month, we use an approximation for the state space with
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: Table 6: Assessing goodness-of-�t with the simulation sample. Root mean squared errors for three models�
unrestricted, CARA approximation, and a combination of the two.

Unrestricted (M1'): M1 with CARA

(M1) Lam = 1, Gg = Gl =  0.000022 (M2)

RMSE 3,048 3,707 3,699

% worse than M1 0 22 21

N 7,245 7,245 7,245

S = 200, or about a unit of output per month as the increment. This rougher approximation is required

for computational reasons. In particular, each optimal contract is the solution to a non-linear constrained

optimization problem where the number of choice variables equals the number of states. Given that we have

to solve such a problem a total of 21,735 times, approximations with signi�cantly more than 200 states are

not computationally feasible.

In some sense, however, the roughness of the discretization works in favor of the CARA approximation.

This is because the nonlinearities associated with both the actual and CARA contracts become more pro-

nounced as the grid becomes �ner6 . This will tend to increase the squared error associated with the CARA

model in the �at region of the contract, while the unrestricted model will not really be a¤ected. Hence, the

goodness-of-�t results presented below can be considered a lower bound on the di¤erence in the �t of the

three models.

The results of the three simulations are summarized in Table 6. The �rst column shows the root mean

squared error associated with the unrestricted modelM1. The second model,M10, uses the same parameters

as M1 except that it imposes the ad hoc restrictions � = 1 and l = g = �0:000022. In this sense,

the di¤erence in the goodness-of-�t of these two simulations gives us an idea of the particular in�uence

loss aversion and diminishing sensitivity play in determining the optimal provision of incentives, holding

everything else �xed. Finally, the third column gives the goodness-of-�t associated with the CARA model

M2.

The unrestricted model clearly outperforms both alternatives. In particular, M10 and M2 �t the actual

data about 22 percent worse than the unrestricted model. In terms of dollars, this is an average di¤erence

of $650 dollars per person-month�a signi�cant amount given that the mean pay in the simulation sample is

around $2,300 per labor month (176 hours of work per month). Moreover, comparing the RMSEs for M10

6To visualize this process, start with the case where say S = 3.
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and M2 suggests that the superior �t of M1 is almost entirely due to the loss aversion and diminishing

sensitivity parameters. In particular, if the parameters for either wmin or e¤ort played a signi�cant role for

the di¤erence between M1 and M2, the RMSE associated with M10 would have been much closer to the

RMSE of the unrestricted model. Since the �ts of M10 and M2 are virtually identical, we must conclude

that adding loss aversion and diminishing sensitivity signi�cantly improves our ability to �t the observed

incentive contracts.

These numbers can also be interpreted in the following ways. First, if the true population parameters

are those given by M2, the �rm would have been losing on average around $650 per person-month by

designing a contract that takes loss aversion and diminishing sensitivity into account. Alternatively, if the

true population parameters are those of the unrestricted model, the �rm would have incurred additional

labor costs of about $650 per person-month on average if they had designed an incentive mechanism that

assumes no loss aversion. Regardless of which interpretation is used, the number just seems too large to be

ignored by a competitive �rm, even if the �rm is not maximizing pro�ts exactly.

8 Conclusions

Incomplete market models can help us to distinguish among di¤erent speci�cations of attitudes towards

risk. This is because market incompleteness leads to imperfect sharing of risk with the resulting sharing

rule typically being sensitive to assumptions about risk preferences. In this paper we analyzed a particular

instance of this general idea. We used micro data on individual pay and output from a private company to

structurally estimate a principal-agent model with moral hazard in which the agent�s utility function nests

approximations to various speci�cations of reference dependence, diminishing sensitivity, and loss aversion,

as well as the standard case of CARA utility. Our empirical results show that the model with loss aversion

and diminishing sensitivity �ts the data much better than the model where preferences approximate the

CARA type. This is because loss aversion and diminishing sensitivity provide signi�cantly greater �exibility

in the degree of local risk aversion. This �exibility allows us to match better the nonlinear features of

observed incentive contracts.

Appendices
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A Proof of Proposition

Let x = wmin. Note that the principal�s optimization problem can be represented by

�(V ) = max
f�s;bsg

SX
s=1

psHfYs � (1� �s)wmin � �sbsg

s.t. 0 � �s � 1

bs � r;

(IC) :
SX
s=1

(psH � psL)[�sv(bs � r) + (1� �s)v(wmin � r)] � e [�]

(PC) :
SX
s=1

psH [�sv(bs � r) + (1� �s)v(wmin � r)] = V [�]:

The above contract uses the set of lotteries between wmin and r to convexify the utility possibilities set.

We can restrict attention to the frontier of the utility possibilities set because any point not on the frontier

can be dominated either by its certainty equivalent or a lottery involving wmin and r. In particular, for

any interior point, there exists a degenerate lottery or a lottery between wmin and r that gives the same

expected utility at a lower expected expenditures. But then the original contract cannot be a solution to

the principal�s optimization problem.

This problem is a concave programming problem over the utility levels fvsgSs=1 where

vs = �sv(bs � r) + (1� �s)v(wmin � r):

In particular, all constraints are convex while the cost of providing utility vs, c(vs) = �s(bs � wmin) is

convex in vs since it is linear in vs for vs < 0 and convex for vs > 0. Hence the objective function is concave.

The �rst order conditions are then necessary and su¢ cient for an optimum. They are given by:
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[�s < 1] : �+ �(1� psL
psH

) =
wmin � r
v(wmin � r) � �s;

where �s is the multiplier on the constraint �s � 0. Note that for states where the left hand side is

strictly smaller than (wmin� r)=v(wmin� r), we must have �s > 0, which implies �s = 0. That is, the agent

is given the biggest possible punishment with probability one.

Now obviously for states where the left hand side of the condition is strictly greater than (wmin �

r)=v(wmin � r), we must have �s = 1. Now for bs > r, the �rst order condition for bs is given by:

[bs > r] : �+ �(1� psL
psH

) =
1

v0(bs � r)
.

Clearly, the smallest value that the right hand side of this equation can take is given by 1=v0x#0(x), since

v0(x) is decreasing for x > 0. Hence for states where the left hand side is smaller than 1=v0x#0(x), we must

have bs = r. But with strong loss aversion, v0(wmin � r) > v0x#0(x). On the other hand, convexity for values

below the reference point implies that v(wmin � r)=(wmin � r) � v0(wmin � r) > v0x#0(x). Hence for states

where the left hand side of each �rst order condition is between (wmin � r)=v(wmin � r) and 1=v0x#0(x), the

optimal contract features �s = 1 and bs = r. Q:E:D:

B Attrition Logit
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: Table A2: Results for the logistic hazard model used to control for attrition.

Dep. Variable

Attrition={0,1} Coef. Std. Err.

jan 0.1881 0.3020

feb 0.6476 0.2843

mar 0.8355 0.2794

apr 0.3198 0.2921

may 0.9887 0.2739

jun 1.2602 0.2677

jul 0.4000 0.2859

aug 0.9429 0.2787

sep 0.9278 0.2767

oct 0.1471 0.3131

nov 0.4909 0.2931

yr95  0.1744 0.1497

job4015 0.8090 0.1368

job4016 2.1530 0.3288

job4017 1.7670 0.2077

job4025 0.1102 0.1820

t  0.0094 0.0020

t_sq 0.0000 0.0000

t_ppp  0.0402 0.0526

t_ppp_sq 0.0022 0.0039

ppp_half 0.0931 0.1840

ppp_one 0.4563 0.2121

w_0 0.0161 0.0186

uad  0.3658 0.0488

uad_ppp  0.0197 0.0635

_cons  3.2929 0.3462

N = 13,802 Ps R sq = 0.0829
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