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Abstract

Studies of observational learning typically assume that decision-makers

consider past choices only for their informational content, which consti-

tutes an information externality. This paper adds payoff externalities,

by which observed decisions can directly affect the payoffs of decision-

maker’s available actions. In our experimental design, two subjects act

sequentially and receive a private, informative signal drawn from a uni-

form distribution. The two signals jointly determine the state of the

world, which subjects must guess. An over-reliance on private infor-

mation in a baseline treatment shows that subjects’ behavior is under-

responsive to information externalities. Further treatments reveal that

decisions are highly responsive to both positive and negative payoff ex-

ternalities. To account for randomness in behavior, we employ a Quantal

Response Equilibrium (QRE) analysis, which affirms subjects’ sensitiv-

ity to payoff externalities.
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1 Introduction

Prior to making a decision, economic agents often observe others making a similar

decision. Consider a hungry patron choosing between several restaurants on the

same block. She may have some private information as to which restaurant would

suit her best. She may also look in the windows to see how many diners have

already decided to patronize each establishment. The decisions of the other diners

reveal to our patron, to some extent, the private information on which they were

based. A full restaurant reveals that others’ had positive information about the

restaurant. In this way, early diners bestow a positive information externality on

later diners. On average, later diners make better choices due to the decisions that

they observe. This process, by which a decision-maker uses previous decisions to

inform her own choice, is called observational learning.

The majority of the observational learning literature1 assumes that payoffs are

related across agents only through the information externalities described above.

That is, observed decisions can increase a decision-maker’s expected payoff only

through the information that those decisions reveal. Clearly, such a model is not

appropriate if a decision-maker has an explicit preference for taking an action

similar to, or different from, those that she observes. Our diner, for example,

may prefer to eat in lively, crowded establishments, or she may prefer relative

solitude. Such a setting involves payoff externalities, or network effects, meaning

that observed choices change the underlying value of alternatives. In the classical

observational learning model, observed choices do not change the value of avail-

able choices, they simply reveal information about their value.

We explore a setting where information and payoff externalities exist simul-

taneously. Our research interests are twofold. First, our test of the classical

observational learning process is more precise than that of existing studies. Sec-

ond, we explore the effect of payoff externalities on this process, and the ability

of agents to account for both influences in their decisions.

Our baseline treatment follows Çelen and Kariv (2004a) (CKa). Each player

i receives a private signal si, drawn from a U [−1, 1] distribution. Each player’s

task is to take an action di ∈ {A,B}, which amounts to guessing the state of the

world ω ∈ {A,B}. ω = A if the sum of all private signals is positive, and ω = B

if the sum of all private signals is negative. Therefore, higher values of si suggest

that ω = A, while lower values of si suggest that ω = B. Correctly guessing the

1See section 2 for a literature review.
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state of the world (di = ω) yields a payoff of Y > 0, while an incorrect guess yields

a payoff of 0. Players act in sequences of two, and player 2 observes d1 before

choosing her own action.

In this design, observational learning is possible for player 2. As ω is the same

for both players, payoffs are perfectly correlated. Further, d1 = A makes A a more

attractive action for player 2, and d1 = B makes B more attractive, due to what

each reveals about s1. As the action chosen by player 1 becomes more valuable, in

expectation, to player 2, we say that this observational learning setting includes a

positive information externality. Importantly, in this baseline treatment, the only

incentive motivating players’ actions is to correctly guess the state of the world.

Therefore, one can intuit di = A as player i’s belief that ω = A is more likely than

ω = B, and the opposite for di = B.

Two additional treatments add payoff externalities to the baseline treatment

described above. In these treatments, an amount X is added to the payoff of both

players if both take the same action (i.e. d1 = d2 = A or d1 = d2 = B). This

payoff externality gives player 2 an added incentive to choose the same (different)

action as player 1 if X is positive (negative). Thus, treatments in which X 6= 0

are no longer classical observational learning settings. In particular, it can not

be assumed that a player’s action is her best guess as to the state of the world.

For marginal decisions, the d2 that maximizes player 2’s expected payoff may not

correspond to the most likely state of the world if it is consistent with receiving

X > 0 or avoiding X < 0. Across treatments, we keep the payoff for correctly

guessing the state of the world, ω, constant at Y = 2. The payoff externality, X,

varies across the three treatments, taking on values of −1, 0 and 1.

The moderate value of the X relative to Y across treatments is crucial. As

a result, a rational player 2 always benefits by following extreme private signals.

Specifically, player 2 should take action A for s2 approaching 1, and B for s2

approaching −1, for all employed values of X. Extreme values of X less than −Y

or greater than Y would make the game one of coordination rather than observa-

tional learning, in which player 2’s private information would become irrelevant

to her optimal action. We therefore include only moderate values of X to create

an environment where both information and payoff externalities are important

determinants of players’ actions.

In each treatment, player 1 chooses d1 = A for positive s1 and d1 = B for

negative s1 in equilibrium.2 As discussed above, player 2 follows her private infor-

2Section 3 includes a formal analysis of player 1’s decision problem.
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mation for s2 close to the endpoints of [−1, 1] in equilibrium. Player 2’s optimal

action for moderate signals, however, depends on player 1’s action. Due to the

existence of positive information externalities, player 2 prefers to imitate player

1’s action for moderate s2. The imitation set is the set of private signals for which

player 2 imitates player 1’s action rather than follow her private signal. It is no

surprise that, in equilibrium, imitation sets increase with the value of X. Pre-

dicted imitation sets are [−.25, .25], [−.5, .5] and [−.75, .75] for X = −1, 0 and

1, respectively, corresponding to imitation rates of 62.5%, 75% and 87.5%.3 It

warrants repeating that only the only for X = 0 does this correspond to player

2’s best guess for ω. In treatments with X 6= 0, d2 differs from player 2’s best

guess for marginal s2.

While other studies employ longer sequences of players, we chose sequences of

only two. As such, our investigation of the observational learning process focuses

on player 2’s decision. A two-player sequence grants a clear theoretical bench-

mark, through Bayesian Nash Equilibrium (BNE), with which to compare our

experimental results. Longer sequences of players have multiple equilibria and

allow for complicated beliefs to rationalize a wide range of behavior. Payoff ex-

ternalities force players to consider the actions of their followers as well as their

predecessors.4 This further clouds a decision process already complicated by the

existence of information and payoff externalities. As the purpose of this paper

is to assess the influence of the two types of externalities, sequences of only two

subjects is most appropriate.

We test the predictions of our model in an experimental setting. Following

CKa, subjects in our experimental sessions assign an action to each possible sig-

nal on the entire signal space of [−1, 1] before viewing their private information.

Specifically, subjects are asked to report a cutoff strategy. Before viewing si, each

subject chooses ŝi, the lowest si for which they choose action ω = A. Importantly,

player 2 views d1, but not ŝ1, before choosing ŝ2. This cutoff elicitation method

affords a complete measure of subjects’ beliefs, as they are forced to choose an

action di for the entire [−1, 1] continuum, not only the si that is drawn.

The first finding of our experiments is that player 2’s guesses show a significant

amount of observational learning. However, there is significantly less observational

learning than predicted by BNE, as the observed imitation sets are smaller than

predicted. Our second finding is that second-movers’ cutoffs are more strongly
3These imitation rates classify all cases where d1 = d2 as imitation, even if d2 is warranted by s2.
4This tension exists, to a limited degree, for player 1. Section 3 explains that it does not effect player 1’s

equilibrium strategy for any of the three treatments.
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influenced by payoff externalities than BNE predicts.

Combined, these results imply that negative payoff externalities can have sig-

nificant adverse affects on the decisions of those who observe the choices of others.

A diner with a mild aversion to crowded restaurants, for example, may eat more

terrible meals than she should in pursuit of solitude. The results hold ambiguous

predictions for positive payoff externalities. In our setting, positive externalities

improve the quality of player 2’s decisions, as subjects in the role of player 2 in the

X = 1 treatment correctly guess ω with higher frequency than their counterparts

in the X = 0 treatment. This may be surprising from a theoretical standpoint, as

payoff externalities introduce an incentive that competes with the task of guessing

the state of the world for marginal s2. Our findings are consistent with subjects

in the X = 1 treatment increasing their imitation set in response to the positive

externality, and inadvertently benefiting from the information externality as well.

One could easily imagine a different scenario where agents over-responsiveness to

positive externalities causes them to imitate too much and make bad choices, in

a manner similar to that predicted for negative externalities.

Our inclusion of a quantal response equilibrium (QRE) analysis serves two pur-

poses. First, it is an equilibrium model which allows for randomness in behavior,

an attractive feature for the analysis of experimental data. Second, it addresses

the confound that player 2’s expected payoff is much flatter as a function of stated

cutoffs in the X = −1 treatment than in the other two treatments. QRE assumes

that subjects respond only to payoff differences, and finds that subjects are least

responsive to payoff differences when X = −1. In other words, subjects make not

only the biggest mistakes under X = −1, but the costliest mistakes.

The remainder of the paper is organized as follows: Section 2 details exist-

ing studies of the three mentioned components of observational learning, while

section 3 derives theoretical predictions for our model. Section 4 describes the

experimental procedures in detail, and section 5 summarizes the experimental re-

sults. Section 6 presents the results of the QRE analysis, while section 7 discusses

various implications of our findings and section 8 concludes.

2 Related Literature

Bikchandani, Hirschleifer and Welch (BHW, 1992) and Banerjee (1992) develop

the classical observational learning model, a setting where externalities across

agents are purely informational. Their theoretical framework involves agents act-
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ing in an exogenously-determined order, making once-in-a-lifetime decisions and

observing all predecessors. General predictions include uniformity of behavior,

even when private information differs across players. In addition, the observational

learning process tends to retard information aggregation. Agents’ incorporation

of observed decisions into their own choices makes those choices less informative

to followers5. Intuitively, as players ignore their private information in favor of

information contained in decisions that they observe, they also fail to reveal their

private information to those observing them.

Anderson and Holt (1997) use a laboratory setting to test the BHW model.

They find that subjects are generally responsive to information contained in ob-

served actions, including in circumstances in which they must act contrary to their

private information. Several other experimental studies have reaffirmed subjects’

willingness to learn from observed actions6.

Hung and Plott (2001) conducted the first experimental study of the obser-

vational learning process when accompanied by externalities. They find that

positive externalities increase subjects’ tendencies to imitate actions that they

observe. Recent work by Drehmann, Oechssler and Roider (2007) uses an inter-

net design to explore an observational learning setting with externalities 7. They

find evidence that subjects respond to externalities, and that they are myopic,

meaning that they tend to ignore the effect of their followers on their actions.

The studies mentioned above find that subjects tend to replicate the actions of

those that they observe when it is profitable to do so. All use a binary-information,

binary-action design, which affords only a course measure of subjects’ tendency to

learn from observed actions. In Anderson and Holt’s (1997) setup, subjects receive

one of two possible signals choose between actions. In their design, the payoff ra-

tio between the two actions can take on three values: 1
2
, 1 and 2. Therefore, when

subjects benefit from ignoring their private information, the payoff to doing so is

twice as high as the payoff to not doing so. The project therefore yields a binary

measure of whether subjects learn from observation when the benefits thereto are

very high. Other studies incorporate similar binary measures of learning.

Our continuous decision space allows us to discern a subjects’ choice between

actions for the entire continuum of private signals. As each private signal corre-

5This result requires assumptions on the information and action space that is likely very realistic in real world
observational learning settings. A sufficient condition is that the action space is courser than the signal space

6Hung and Plott (2001) and Drehman Oechssler and Roider (2007) are examples.
7They employ positive externalities, negative externalities and a unique setting where subjects receive a

negative externality for those that they follow and a positive externality for those that follow them
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sponds to a different payoff for each action, we are able to extrapolate choices for

a continuum of expected payoff ratios. This allows us to specify, for each action,

the payoff premium necessary to entice subjects to ignore their private informa-

tion. We consider this a more complete measure of observational learning than

has been done to date.

3 Theory

3.1 The Model

In our model, two players act in sequence, with the second observing the action

chosen by the first. Each player i receives a private, informative signal si. It is

private in the sense that it is not observed by the other player, and informative

in that it improves the accuracy of beliefs about state of the world. si is indepen-

dently drawn from a uniform distribution on the interval [−1, 1] 8.

The task of each player i is to choose an action di ∈ {A,B}. s1 and s2 deter-

mine the state of the world, ω ∈ {A,B}. ω = A if s1 + s2 ≥ 0, and ω = B if

s1 + s2 < 0. Player i receives a reward of Y if di = ω and no reward if di 6= ω.

Thus, each player’s task is to correctly guess the state of the world.

In addition to the reward described above, each player receives a payoff ex-

ternality in the amount of X iff d1 = d2. This paper explores both positive and

negative values of X. X adds a layer of complication to the observational learning

problem. Subjects are impelled to choose the correct state of the world, but have

an additional motivation to choose the same (different) action as their partner if

X > 0 (X < 0).

We restrict our attention to moderate values of the payoff externality, such that

−Y < X < Y . Such a constraint of the values of X is critical in preserving the

project as one of observational learning. Moderate values ensure that observed

actions influence decisions through the private information that they reveal and

the payoff externality that their imitation will yield. As a result, players benefit

from following private signals close to −1 and 1, and player 2 benefits from follow-

ing d1 for moderate s2. Thus, the problem remains one of observational learning

and does not degenerate into a coordination game.

8Appendix A.1 explores the optimal strategies for a generic distribution of si.
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3.2 Decision Problems

We now consider the decision problem faced by each player. We first derive

Bayesian Nash Equilibrium predictions for the classical observational learning

case, where externalities are purely informational. Then, we consider more general

case with payoff externalities.

Subjects in the experiments received signals uniformly distributed on [−10, 10].

To simplify the analysis in this section, we normalize the signal space to [−1, 1],

and utilize the value of the reward, Y that was used across treatments. For the

remainder of the analysis, Y = 2.

3.3 Classic Observational Learning Setting: X = 0

When payoff externalities accompany the observational learning process, player 1

must consider his actions’ influence on player 2’s behavior. As player 1’s payoff

changes by X if d1 = d2, player 1 may have a motivation to employ strategies

that increase or decrease the probability that player 2 takes the same action.

In the classic observational learning setting, where X = 0, player 1 does not

need to consider the effect of her actions on player 2’s actions. π1k(s1) is player 1’s

expected payoff from choosing action k as a function of s1. Equations 3 and 4 show

the equations for these expected payoffs, which is simply Y ×Prob(s1 +s1 ≥ 0|s1)

and Y × Prob(s1 + s1 < 0|s1) for actions A and B, respectively.

π1A(s1) = 2× s1 + 1

2
= s1 + 1 (1)

π1B(s1) = 2× 1− s1

2
= 1− s1 (2)

Figure 1 plots these expected payoffs against s1. The solid line shows player 1’s

expected payoff for the choice of action A, and the dotted line the expected payoff

of action B. Very low signals make action B more profitable, and high signals

make action A more profitable. Player 1 receives a higher payoff choosing B for

s1 < 0 and A for s1 ≥ 0.

We now define a cutoff strategy. A cutoff strategy is one in which player i takes

one action for all si below some cutoff level ŝi, and the other for all si greater than

or equal to ŝ1. Above, we show that player 1 employs a cutoff strategy of ŝ1 = 0

in equilibrium, choosing action B for negative s1 and A for positive s1. Let ŝ∗1
denote player 1’s equilibrium cutoff strategy.

Upon viewing d1, player 2 can update her expectations. Player 2 knows that
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Figure 1: π1A(s1) and π1B(s1)

s1 ≥ 0 if d1 = A and s1 < 0 if d1 = B. We define π2kl as player 2’s expected

payoff for choosing action k after observing player 1 choose action l. Player 2’s

updated payoffs are illustrated in figure 2. As player 2 may find herself at two

different information sets, following actions of A and B by player 1, these two

decisions must be analyzed separately. Figure 2(a) shows the payoffs updated for

d1 = A, and figure 2(b) for d1 = B. Again, the solid line shows the expected

payoff associated with the choice of action A, and the dotted line with the choice

of action B.
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Figure 2: π2 for X = 0

First, notice the flatness of player 2’s payoff functions for negative values of s2

in figure 2(b) and for positive values of s2 in figure 2(b). This occurs because such
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signals, coupled with d1 perfectly reveal the state of the world9. Further, player

2 employs a cutoff strategy at both information sets. Let sA
2 be player 2’s cutoff

following d1 = A, and sB
2 following d1 = B. Further, sA∗

2 and sB∗
2 denote player

2’s optimal cutoffs. For X = 0, figure 2 shows that sA∗
2 = −.5 and sB∗

2 = .5

This discussion of the X = 0 case reveals that player 1, in theory, suppresses

no information. Her action is as informative as it could be, in that it minimizes

the variance of player 2’s expectation of s1 given d1. In the process of maximizing

her payoff, player 2 suppresses some of her private information. An omniscient

observer learns less after observing d1 and d2 than she would if player 2 set ŝ2 = 0.

For a large subset of her signals [−.5, .5], player 2 simply mimics the action of

player 1. This is the imitation set : the set of s2 for which player 2 takes the same

action as player 1 unconditionally.

3.4 The Addition of Payoff Externalities: X 6= 0

The addition of externalities complicates the analysis. We begin by arguing that

both players still employ cutoff strategies in equilibrium. Equations 3 and 4 show

player 1’s profits for choosing A and B for any strategy employed by player 2 (in

particular, we do not assume that player 2 uses a cutoff strategy). Prjk is the

probability that, given player 2’s strategy, she chooses action j after observing

d1 = k.

π1A = s1 + 1 + PrAA ×X (3)

π1B = 1− s1 + PrBB ×X (4)

As π1A is increasing in s1 and π1B is decreasing, there will be some ŝ1 such that

π1A ≥ π1B ∀ s1 ≤ ŝ1 and π1A ≤ π1B∀s1 ≥ ŝ1. In other words, in any BNE, player

1 employs a cutoff strategy.

Proposition 1. In any BNE, player 1 employs a cutoff strategy ŝ1 = 0.

Proof. See appendix A.2

The complete proof has been relegated to appendix A.2, which we summarize

here. For any X, ŝ1 = 0 maximizes the probability that player 1 receives the

reward, Y = 2. The probability that player 1 receives the payoff externality X,

however, varies with the value of X, as player 2 is more likely to imitate d1 for

9This is a departure from the BHW model, where conditional on the state of the world, private signals are
independent. In our model, ω = A makes high s2 more likely for a given s1, and the converse foe ω = B.
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higher values of X. Player 1 must therefore consider player 2’s reaction to her

choices in choosing ŝ1. Appendix A.2 derives player 2’s reaction function to d1,

the result of which is the combination of equations 5 and 6.

sA∗
2 = −1

4
× [

(2 + X) + ŝ1 × (X − 2)
]

(5)

sB∗
2 =

1

4
× [

(2 + X) + ŝ1 × (X − 2)
]

(6)

Taking into account player 2’s response to ŝ1 as presented in equations 5 and

6, equation 7 shows the derivative of player 1’s profit as a function of ŝ2
1.

∂π1(ŝ1)

∂ŝ2
1

= −1

2
+

X

16
× [

X − 2
]

(7)

For X > −Y , this number is always negative, proving that ŝ∗1 = 0 across treat-

ments. Intuitively, the −1
2

on the left-hand side of equation 7 reflects the fact that

setting an extreme cutoff of −1 or 1 reduces player 1’s probability of receiving

Y = 2 from 3
4

to 1
2
, relative to a cutoff of 0. The portion on the right, X

16
×[

X−2
]

reflects the expected change in payoff resulting from the altered probability of re-

ceiving the externality. This number is negative for 0 < X < 2, reflecting that the

decreased probability of receiving the payoff externality is detrimental to player

1 when X > 0. The number is positive, but less than 1
2

when −2 < X < 0. This

reflects the fact that under negative payoff externalities, the decreased probability

of imitation helps player 1, but not enough to justify the decreased probability of

receiving Y = 2. Thus, ŝ∗1 = 0.

The fact that ŝ∗1 = 0 makes the analysis straightforward for player 2 for the

relevant values of X. Our experiment involves three different values of X: 1, 0

and −1. Player 2’s expectations of s1 given d1 are unchanged from the X = 0

case. Thus, π2AB and π2BA are unchanged from the X = 0 case illustrated in

figures 2(a) and 2(b), respectively. π2AA and π2BB are both simply shifted ver-

tically by X, as the payoff to choosing the same action as player 1 changes by

X from the X = 0 case. Figure 3 represents player 2’s payoffs for X = 1 and

X = 0. The graph shows that sA
2 = −.75(−.25) and sB

2 = .75(.25) for X = 1(−1),

respectively. Analytically, substituting ŝ∗1 = 0 into equations 5 and 6 yields the

following equations for ŝA
2 and ŝB

2 , across treatments:
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Figure 3: π2 for X 6= 0

sA∗
2 =− .5− .25×X (8)

sB∗
2 =.5 + .25×X (9)

Treatment

X=1 X=0 X=-1

ŝ∗1 0 0 0
ŝA∗2 -.75 -.5 -.25
ŝB∗2 .75 .5 .25

Prob(d1 = d2) .875 .75 .625

Table 1: Predicted Cutoffs

Note that the game is symmetric, in that ŝ∗1 = 0 and sA∗
2 = −sB∗

2 . Further, the

cutoffs vary in sensible directions. Positive externalities increase the size of player

2’s information set. Importantly, unconditional imitation is not predicted. Player

2 benefits from imitating player 1’s action for many private signals, but should

always follow her private information in the case of extreme s2.

According to BNE predictions, the information aggregation process is impeded

by positive externalities in our two-subject design. An observer gains a noisier

measure of ω from observing d1 and d2 as X increases. The intuition is clear. Pos-

itive externalities allow for more extreme s2 to be overridden by the observation
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of d1. Under negative externalities, marginal s2 are no longer overturned, allow-

ing player 2 to rely more on, and therefore reveal more completely, her private

information.

4 Experimental Design

The experiment took place at the University of California at Berkeley’s Exper-

imental Social Sciences Laboratory (XLab). A total of 161 subjects were used,

comprised of staff and students of UC Berkeley. Each session involved between 10

and 20 subjects, and subjects were not allowed to participate in more than one

session. Each session involved 1 treatment only. A total of 30, 30 and 36 subjects

participated in the conditions of X = 1, 0 and −1, respectively. Separate sessions

were conducted with a computer playing the roles of player 1 in each treatment.

17, 25 and 23 subjects participated in these sessions. Subjects made all deci-

sions on computers, and were divided by cubicles to limit interaction and ensure

anonymity of decisions and private information. Each session lasted between sixty

and ninety minutes. Before participating, subjects read a detailed set of instruc-

tions which was then read out loud to them by an instructor10. Included in the

instructions was a description of the payoffs specific to each treatment. Subjects

were paid $5 as a show-up fee, and their subsequent earnings depended on their

performance, according to the payoff schedule described in section 3. The average

earnings totaled roughly $21. During the experiment, earnings were described in

terms of “experimental tokens”, and their exchange rate into dollars (4 tokens =

1 dollar).

To avoid granting disproportionate salience to the payoff externality, we pre-

sented payoffs in as neutral a manner as possible. To this end, subjects were not

told that they received any additional cost or benefit for following the action they

observe. Rather, payoffs were presented as illustrated in table 211, for the X = 1

treatment when s1 + s2 < 0.

Sessions consisted of 30 rounds each. At the beginning of each round, subjects

were randomly divided into anonymous groups of two and randomly assigned to

the role of player 1 or player 2. The computer then drew signals s1 and s2 from

a U [−10, 10] distribution, which players 1 and 2, respectively, used to make their

decision. Each subjects’ task was to choose di ∈ {A,B}. Before making her deci-

10Copies of the experimental instructions are available at http://rogilla30.googlepages.com/experimentalinstructions.
11There was an analagous table for s1 + s2 > 0.
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If s1 + s2 < 0 :

Others’ Choice
A B

Your Choice A 1 0
B 2 3

Table 2: Payoff Presentation: X = 1 for ω = B

sion, player 2 was informed by the computer of player 1’s decision.

Rather than observing their signal and then making their decision, subjects

were asked to make a decision rule before viewing their signal. Specifically, each

subject was asked to choose a cutoff ŝi, such that di = A if si ≥ ŝi and di = B if

si < ŝi
12. This cutoff elicitation method was employed to extract a richer measure

of learning than a binary action space can provide.

After both subjects made their choices, they were informed of the value of each

signal, and the payoff that they received. This process was repeated for each of

the thirty rounds in each session, and subjects were paid anonymously upon their

exit.

5 Results

The application of our experimental results to the research questions will rely on

two types of summary statistics: observed choice outcomes, di ∈ {A,B}, and

observed cutoffs, ŝi ∈ [−1, 1]. We introduce the following definitions for use in the

discussion of di: Imitation occurs when d2 = d1. Divergence occurs when d2 6= d1.

Before employing the observed ŝi in our analysis, it is instructive to discuss its

interpretation. Based on private information, subjects should choose action A for

si < 0 and B for si > 0, or equivalently set ŝi = 0. ŝi < 0 means that player

i chooses di = A for some si < 0, which shows some inclination for action A.

Conversely, ŝi > 0 can be interpreted as an inclination for action B. Following

Smith and Sorensen (2000), we use the term cascade to describe an inclination

sufficiently extreme to choose the same action for any private signal. ŝi = −1

signifies a players’ decision to choose action A for any private signal, while ŝi = 1

means a subject chooses action B for any private signal. Therefore, cutoffs of −1

and 1 in our design are cascades.

For player 2, cascades can take on two forms. Player 2 can choose to imitate

12Player 2 viewed d1 before choosing ŝ2.
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d1 for any s2, or to diverge for any s2. sA
2 = −1 or sB

2 = 1, which represent

unconditional imitation, shall be termed positive cascades. sA
2 = 1 or sB

2 = −1,

which represent unconditional divergence, will be referred to as negative cascades.

5.1 Observational Learning

Our first research interest involves the efficiency of the observational learning pro-

cess. As mentioned in section 2, previous experimental work has largely supported

success of BHW’s model. Our X = 0 treatment is a richer test of the observa-

tional learning model, in that we elicit choices for a continuum of expected payoff

differentials. We begin by exploring whether player 2 does, in fact, learn from

player 1’s action. Recall that in the X = 0 treatment, subjects have no incentive

other than to choose ω. Table 3 shows the rate at which subjects did so in the

experiment. Subjects performed better in the role of player 2, as evidenced by the

X = 0 (Observations)
Player 1 (450) Player 2 (450)

Success .691 (.750) .756 (.875)

Table 3: Choosing ω when X = 0

6.5% increase in the success rate. In this way, we can say that player 2 did learn

from the action of player 1. Player 2 performed worse relative to theory, however,

falling short of the prediction by 11.9% versus 5.9% for player 1.

In quantifying player 2’s learning, it is useful to look at the observed ŝ2. Table

4 shows the mean of sA
2 and sB

2 for X = 0. Two regularities are evident. First,

we find further evidence that player learns from d1. sA
2 and sB

2 are both different

from ŝ1, and in the direction predicted by theory, sB
2 < ŝ1 < sA

2 . This means that

player 2 shows a preference for the action chosen by player 1. Second, player 2

learns less than predicted by theory, in that sA
2 > sA∗

2 and sB
2 < sB∗

2 . In other

words, player 2 shows a weaker preference for d1 than predicted. Further, ŝ1 > 0

and ŝA
2 > −ŝB

2 , which are consistent with positive-skewed cutoffs, as observed for

player 1 in figure 4.

X=1

ŝ1 sA2 sB2
Observed Cutoff .136 (.399) -.188 (.511) .324 (.434)
Predicted Cutoff 0 -.5 .5

Table 4: Observed Cutoffs for X = 0
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Figure 4: ŝ1

Table 4 presents evidence that player learns less from d1 than predicted by

BNE. This prediction, however, assumes that ŝ1 = 0, which figure 4 shows is

often not the case. It is therefore possible that subjects in the role of player 2 are

less influenced by d1 because they correctly believe that player 1’s decision-making

is unreliable, making d1 less informative.13 In order to address this confound, the

sessions were conducted with a computer in the role of player 1. All subjects

therefore played the role of player 2 for all 30 rounds, and were told that the

computer always chose ŝ1 = 0. ŝ2 is presented in figure 5 for sessions involving

humans versus computers in the role of player 1. 5 shows that there is no drastic

difference when a computer plays the role of player 1. If anything, it seems that

player 2 learns less than when playing with a human player 1. As a result, we

conclude that the under-learning observed in ŝ2 is not caused by a mistrust of

player 1’s rationality. We interpret the under-learning as evidence that obser-

vational learning is not an easy process, and even subjects in a straightforward

experimental environment have difficulty with it.

5.2 Externalities and the Observational Learning Process

In the study of observational learning, uniformity of behavior is an important

metric to consider. The prevelance of imitation is an appropriate measure for

such uniformity. Table 5 shows the frequency of imitation in both treatments with

externalities, and compares them to their theoretical predictions. Predictably,

imitation is higher under the positive externality. The difference is larger than

predicted by BNE, with imitation nearly twice as frequent under X = 1 as under

X = −1.
13Appendix C shows that d1 is very informative to player 2, even if ŝ1 is very noisy. This is largely due to our

restriction that players employ cutoff strategies. Still, mistrust in d1 could change player 2’s behavior.
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Figure 5: ŝ2 for human vs. computer player 1: X = 0

Treatment (Observations)
X=1 (450) X=-1 (540)

Observed Imitation .798 .430
Predicted Imitation .875 .625

Table 5: Observed and Predicted Imitation with Externalities

As outlined in table 5, imitation is predicted for 87.5% of s2 under X = 1,

and only under 62.5% of s2 under X = −1. It is therefore necessary to bear in

mind that, as we compare (d1, d2) outcomes to their BNE predictions, that we

are comparing the outcomes to different subsets of realized (s1, s2). Predicted

outcomes are assigned to regions in the (s1, s2) plane in figure 6. Table 6 cate-

gorizes the observed (d1, d2) outcomes for the predictions illustrated in figure 6.

The three categories are successful BNE predictions, player 1 error (d1 6= d∗1) and

player 2 error (d1 = d∗), d2 6= d∗2. Two important regularities are manifest in the

table. First, BNE is more successful in predicting imitation under X = 1, and at
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Figure 6: Predicted Choices with Externalities

predicting divergence under X = −1. Put another way, subjects are more likely

to imitate correctly under positive payoff externalities, and to diverge correctly

under negative payoff externalites.

The second regularity involves a comparison of player 2’s error rate across

treatments. Player 2 is far more likely to imitate incorrectly under X = 1, and

to diverge incorrectly under X = −1. In other words, the most common mistake

under negative payoff externalities is for player 2 to follow her private information

when theory predicts imitation. The most common mistake under positive payoff

externalities, on the other hand, is for player 2 to imitate player 1’s action, when

she should allow her strong private signal to override it.

Each of the two regularities suggests that player 2 tends to imitate under pos-

itive payoff externalities and diverge under negative. An interpretation is that

subjects are more sensitive to payoff externalities than predicted by BNE. They

tend to make ‘mistakes’ that are consistent with avoiding the negative externality

and seeking the positive.

Imitation Predicted Divergence Predicted

X=1 X=-1 X=1 X=-1

Observations 400 334 50 206

BNE Success .730 .480 .580 .680
Player 2 Error .133 .341 .320 .112
Player 1 Error .138 .180 .100 .209

Table 6: Error Break-Down by Prediction

18



Figures 7 and 8 show the observed distributions of sA
2 and sB

2 , respectively, for

X = 1 and X = −1. For the reasons discussed above, results are also shown

for the sessions with a computer in the role of player 1, with the knowledge that

ŝ1 = 0. ŝ2 toward the left of figure 7 and to the right of figure C.3 correspond to

a strong preference to imitate d1, while the opposite imply a tendency to diverge.

As predicted by BNE, ŝ2 shows a stronger preference for imitation under X = 1.

Further, the majority of ŝ2 fall in the vicinity of the BNE predictions of sA∗
2 = −.75

and sB∗
2 = .75. Much of the observed ŝ2 under X = 1 are in fact classified as

positive cascades.

Behavior is less consistent for X = −1. ŝ2 is spread out, biased slightly toward

a preference not to imitate d1
14. This tendency does not coincide with the BNE

prediction, that player 2 should imitate d1 for 62.5% of s2. In fact, negative

cascades are consistently among the more common cutoff choices for X = −1.

The observed cutoffs reaffirm the message of choice outcomes, that externalities

influence the observational learning process more than predicted by BNE.

5.3 What Determines Cutoff Decisions?

This paper investigates two reasons for player 2 to consider d1: the information

contained therein, and the externality player 2 receives if she imitates player 1.

The purpose of this section is to quantify each of these influences on player 2’s

choice variable, ŝ2. Recall equations 5 and 6:

sA∗
2 =− .5− .25×X

sB∗
2 =.5 + .25×X

A regression of the observed sA
2 in all 3 treatments on X yields:

sA
2 =− .202− .416×X (10)

(.020) (.024)

The results of the analogous regression for sB
2 :

sB
2 =.276 + .359×X (11)

(.019) (.023)

14sB
2 in the computer sessions of X = −1 are the exception. A possible explanation is the positive bias in

cutoffs across treatments, but we offer no explanation as to why it is so pronounced in this particular case.
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Figure 7: sA
2 for human vs. computer player 1: X = 1 and X = −1

The intercept represents player 2’s approximate cutoff for X = 0. Across treat-

ments, player 2 is sensitive to the information in d2 (intercept highly significant),

but less so than predicted. Player 2 appears to be more sensitive to X than

predicted by BNE. The positive bias observed in both ŝ1 and ŝ2 can explain the

different coefficients for sA
2 and sB

2 . The bias causes a more extreme intercept for

sB
2 simply because sB∗

2 is positive across treatments.

6 Quantal Response Equilibrium

For the analysis of experimental data, predictive models that allow no random-

ness in decisions need to be interpreted with caution. Section 5.2 shows that

subjects’ behavior differs from the theoretical prediction in a systematic fashion.
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Figure 8: sB
2 for human vs. computer player 1: X = 1 and X = −1

Specifically, cutoffs are closer to their theoretical predictions when externalities

are positive than when they are negative.

A possible confound, however, is the steeper payoff function under positive ex-

ternalities. In all three treatments, information externalities are positive, in the

sense that d1 = A makes action A a more attractive action for player 2. When

X = 1, player 2 has an additional motivation to imitate d1, and is therefore pun-

ished severely for not doing so. Under X = −1, on the other hand, information

externalities motivate imitation, while payoff externalities motivate divergence.

Although the information externalities tend to override payoff externalitie, in the

sense that player 2 should still imitate for the majoirity of s2, failing to imitate

at least allows player 2 to avoid the negative payoff externality. In this sense,

even severe deviations from BNE behavior are not severely punished in terms of
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payoffs for X = −1. Figure 9 shows player 2’s expected payoff versus her chosen

cutoff, assuming d1 = A. Clearly, similar deviations from the optimal cutoff lead

to higher payoff differentials for higher X. The concern is that, while the absolute

deviation from the optimal cutoff strategy differs across treatments, the resulting

payoff loss may not.
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Figure 9: π2 vs. sA
2

The problem can be addressed through a Quantal Response Equilibrium (QRE)

analysis. QRE assumes that, rather than best-responding, subjects ‘better re-

spond’, randomizing between all actions but choosing those with higher expected

payoffs with a higher probability, determined by a ‘sensitivity parameter.’ A

comparison of this parameter across treatments will tell us if across-treatment

differences discussed in the previous section might be a result of the differentially

steep payoff functions of the different treatments.

We assume a logistic form of QRE 15. Specifically, the probability that subject

i chooses action j when actions are indexed by k is:

Pr(ŝi = j) =
eβπj

∑
k eβπk

(12)

β quantifies subjects’ sensitivity to payoff differences. If β = 0, subjects are per-

fectly insensitive to payoff differences. Thus, behavior is uniformly random, and

subjects choose each cutoff with equal probability. As β approaches ∞, behav-

ior converges to BNE. For intermediate values of the parameter, subjects choose

higher-paying cutoffs more often, but choose each cutoff with a positive probabil-

ity.
15As QRE is discrete-choice model, we sorted the cutoffs into 21 bins, just as presented in figures5, 7 and

C.3. ŝ2 ≤ −.95 were grouped together, as were −.95 < ŝ2 ≤ −.85. etc. When computations were necessary, all
grouped cutoffs were assumed to be the midpoint of the range of the group
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Table 7 show the β estimates for subjects in each role in each of the three

treatments, along with their log-likelihoods. It also presents estimates and log-

likelihoods for two alternative models: the random model and a simple non-

equilibrium quantal-response (QR) model. The random model assumes that each

cutoff is chosen with equal probability 16. The QR model is simply the quantal

response of player 1 to the observed cutoffs of player 2 and vice-versa.

X=1

Random QR QRE

β1 0 (−1367) 6.62 (−1234) 6.59 (−1235)
βA

2 0 (−1475) 2.52 (−1171) 2.62 (−1170)
βB

2 0 2.22 2.20

X=0

Random QR QRE

β1 0 (−1366) 4.79 (−1283) 4.79 (−1283)
βA

2 0 (−1392) 1.33 (−1289) 1.58 (−1288)
βB

2 0 3.16 2.91

X=-1

Random QR QRE

β1 0 (−1648) 2.49 (−1608) 2.59 (−1605)
βA

2 0 (−1692) 0.19 (−1644) 0.42 (−1644)
βB

2 0 0.19 0.12

Table 7: QRE Estimates by Treatment

The results presented in table 7 reinforce the cutoff data presented in the pre-

vious section. Observed cutoffs differ more from their theoretical predictions for

negative externalities. Table 7 addresses the confound mentioned above, that

noisier cutoffs may be a result of flatter payoff functions. The presented results

suggest that subjects are more sensitive to payoffs when payoff externalities are

positive than when they are negative. Errors increase across treatments as the

payoff externality decreases, suggesting further that subjects are more responsive

to payoff externalities than to information externalities.

A comparison in the values of the log-likelihood functions reaffirms the story.

The QRE model improves substantially over the random model for X = 1, with

the log-likelihood improving from −1475 to −1171 for player 2. There is much less

improvement for X = −1, with the random model generating a log-likelihood of

−1692 and the QRE −1644. The minimal improvement in fit suggests that sub-
16Cutoffs between -.9 and .9 are chosen with probability 1

20
, while cutoffs of -1 and 1 are chosen with probability

of 1
40

each, due to the way the continuous cutoffs were sorted into discrete bins.
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jects do a poor job of setting the most profitable cutoffs when payoff externalities

are negative, so much so that behavior is almost random.

7 Discussion

This paper finds that subjects are relatively insensitive to the information con-

tained in the decisions that they observe, and highly sensitive to accompanying

payoff externalities. As evidence for the first finding, we show that second-movers

rely on her private information in situations where a Bayesian would imitate first-

movers. The second finding is supported by the fact that second-movers’ imitation

set increases (decreases) in the presence of positive (negative) payoff externalities

than predicted by BNE. This section discusses the application to more generalized

environments, and addresses several confounds.

We add one layer of realism to the majority of the observational learning stud-

ies. We find that subjects react strongly to the additional incentive provided by

payoff externalities. It must be said, however, that there is nothing that ties this

reaction to the specific form of this incentive. It may be that any separate, salient

incentive to choose one action over another affects the observational learning pro-

cess in the same way, be it by taking the same action as one’s predecessor, or

an entirely different type of motivation. In other words, observational learning is

difficult, and clearer motivations have stronger effects on decisions. The best we

can do is to state that observational learning environments with payoff external-

ities have the payoff structure of the game that we study. Our results therefore

pertain to observational learning situations, but may not be unique to them.

The computer treatments addressed confounds of loss aversion (to some de-

gree), social preferences and over-reaction to noisy play by player 1. At least one

other simple heuristic can account for the under-responsiveness to observation that

we find in X = 0 and X = −1 treatments. Under-learning corresponds to cutoffs

close to 0, which is the median of the decision set. Menu effects have shown that,

in the absence of strong preferences, subjects often tend to make choices close to

the median of available options17. However, such a heuristic would not predict the

increase in cascades under negative and (especially) positive payoff externalities.

A major motivation for the study of observational learning is the efficiency of

the process. We employ sequences of only two subjects, partially due to the theo-

retical clarity that such a simple setup affords. Based on the X = 0 treatment, we

17See Kahneman, Schkade and Sunstein (1998) for an example.
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identify two reasons why the information aggregation process is less efficient than

predicted by theory. First, player 1’s somewhat imprecise behavior retards the

available information. More importantly, player 2 does not incorporate all of the

information that is nonetheless available in player 1’s decision into her own. These

two effects combine to make player 2’s action even less reflective of the players’

combined information than predicted by theory. Therefore, a third mover would

find player 2’s action relatively uninformative.

However, the typical observational learning model18 is characterized by perfect

information, meaning that DM’s observe all predecessors. Player 2’s action alone

is less informative than predicted by BNE specifically because it is less correlated

with player 1’s action. This makes a combination of player 1 and player 2’s actions

collectively more informative to a sophisticated third mover under perfect infor-

mation. In other words, the reluctance toward observational learning, in some

cases, will counteract the information suppression described in Banerjee (1992)

and BHW.

Our results unambiguously suggest that cascades will occur more often with

positive payoff externalities than without. Further, the frequency of cascade be-

havior on the part of player 2 suggests that informational cascades will often

reflect only the information of the first mover. In our experiment, the positive

externality improves subjects’ performance with respect to theory. It is possible,

however, that this fact is dependent on our particular experimental design. Sub-

jects can over-adjust their cutoff by a maximum of .25 to positive externalities,

and 1.25 to negative (for example, by setting sA
2 = −1 and 1 for X = 1 and −1,

respectively). A different design may find that positive externalities can severely

damage the learning process as well.

Our results suggest an unambiguous decline in player 2’s performance across

a wide variety of environments with negative payoff externalities. The effect on

a longer sequence of subjects is unclear. Drehman, Oechssler and Roider (2007)

find that subjects tend to divide themselves evenly between actions under neg-

ative externalities, suggesting that decisions have little correlation to the state

of the world. This piece of evidence suggests that subjects beyond the role of

the second-mover continue to have difficulty with observational learning in the

presence of negative payoff externalities19.

18Çelen and Kariv (2004b) is an exception.
19Again, the complexity of equilibria makes it difficult to determine whether subjects act optimally.

25



8 Conclusion

It is natural for economic decision-makers to consider similar decisions made in

the past. The majority of the existing literature has focused on a model where

observation is useful only in revealing private information. In many real-world

situations, past choice outcomes may fundamentally change the tradeoff between

alternatives, rather than simply revealing information about them. Hung and

Plott (2002) and Drehman, Oechssler and Roider (2007) are among the few stud-

ies of payoff externalities on observational learning. Their models involve binary

action sets which do not allow for a precise measure of the influence that payoff

externalities exert on decision-making.

Our continuous signal design, coupled with a cutoff-elicitation technique grants

a precise measure of observational learning. Across-treatment comparison per-

mits the comparison of the effects of information and payoff externalities. We

find that subjects are more sensitive to payoff externalities, and less sensitive to

information externalities, than predicted by BNE. This finding is perhaps best

represented in the regressions of equations 10 and 11, which show that choices are

under-influenced by d1, and over-influenced by payoff X, relative to BNE. The

results did not change significantly when a computer played the role of player 1,

discounting the likelihood of alternative explanations such as social preferences

and a mistrust of player 1. QRE analysis shows that our results are robust to

payoff differentials.

We conclude that the information aggregation process is muted because it is in-

herently difficult. The pursuit of externalities is simpler, and is therefore likely to

be represented more pronouncedly in decisions. This clearly will hinder second-

movers under negative externalities, with ambiguous effects for second-movers

under positive externalities. As discussed in section 7, extension to longer se-

quences of decision-makers is a more complex discourse. Our results do suggest,

however, that the dynamics in longer decision-making processes are likely to dif-

fer from theoretical predictions, though further study is necessary to determine

exactly how.
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A Addendum to Theory

A.1 Theoretical Predictions for Generic si Distributions

Proposition 2. Player 2 best-responds to any strategy employed by player 1 by

using a cutoff strategy. A cutoff strategy is one such that there exists some signal

ŝ2 such that d∗2 = A if s2 ≥ ŝ2, and d∗2 = B if s2 ≤ ŝ2.

Proof. Player 1 decides between actions A and B after observing player 1’s action.

d1 informs player 2 which action yields the externality, X, as well as allowing

player 2 to update her prior beliefs as to the identity of action H. Player 2 uses

this information in conjunction with her private signal s2 in order to decide which

action, A or B, yields the higher expected payoff. For now, assume that d1 = A
20:

Eπ2(A|d1 = A, s2) = X + Y × Pr(A = H|s2, d1)

= X + Y × Pr(s1 + s2 ≥ 0|s2, d1)

= X + Y × Pr(s1 ≥ −s2|s2, d1)

= X + Y × [1− Fs1|d1=A(−s2)] (13)

Fs1|d1=A is the conditional cdf of s1 given d1 = A. Similarly:

Eπ2(B|d1 = A, s2) = Y × Fs1|d1=A(−s2) (14)

Player 2 maximizes her expected payoff by choosing action A if:

Eπ2(A|d1 = A, s2) ≥Eπ2(B|d1 = A, s2)

X + Y × [1− Fs1|d1=A(−s2)] ≥Y × Fs1|d1=A(−s2)

Fs1|d1=A(−s2) ≤1

2
×

(
1 +

X

Y

)
(15)

20Note that we do not assume symmetry, that Eπ2(A|d1 = A) = Eπ2(B|d1 = B) and Eπ2(A|d1 = B) =
Eπ2(B|d1 = A). Symmetry is proven below
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Similarly, for d1 = B:

Eπ2(A|d1 = B, s2) ≥Eπ2(B|d1 = B, s2)

Y × [1− Fs1|d1=B(−s2)] ≥X + Y × Fs1|d1=B(−s2)

Fs1|d1=B(−s2) ≤1

2
×

(
1− X

Y

)
(16)

As cdf ’s are increasing functions, Fs1|d1=A(−s2) is decreasing in s2, meaning

that if Eπ2(A|d1, s2) > Eπ2(B|d1, s2) for a given value of s2, it is also true for all

higher values of s2. In other words, player 2 uses a cutoff strategy for any

strategy employed by player 1.

We now define ŝ2, player 2’s cutoff. ŝ2 is the lowest s2 for which player 2

chooses d2 = A. Of course, player 2 may behave very differently if she observes

d1 = A versus d1 = B. We therefore divide ŝ2 into two classes, classifying it as

sA
2 following d1 = A, and sB

2 following d1 = B. Additionally, we define ŝ2, player

2’s optimal cutoff strategy, the s2 such that Eπ2(A|s2, d1) ≥ Eπ2(B|s2, d1). Note

that this is a two-part strategy, sA∗
2 being player 2’s optimal cutoff after observing

d1 = A, and sB∗
2 after observing d1 = B.

sA∗
2 ≡− F−1

s1|d1=A

(
1

2
× (

1 +
X

Y

))
(17)

and

sB∗
2 ≡− F−1

s1|d1=B

(
1

2
× (

1− X

Y

))
(18)

Proposition 3. Player 1 best-responds to any cutoff strategy employed by player

2 by also employing a cutoff strategy.

Proof. We now consider player 1’s decision problem. To begin with, we assume

that player 2 employs an arbitrary cutoff strategy, (sA
2 , sB

2 ).

Eπ1(A|s1) =Y × [Pr(A = H|s1)] + X × [Pr(d2 = A|d1 = A)]

=Y × [Pr(s1 + s2 ≥ 0|s1)] + X × [Pr(s2 > sA
2 )]

=Y × [Pr(s2 ≥ −s1|s1)] + X × [Pr(s2 > sA
2 )]

=Y × [1− Fs2(−s1)] + X × [1− Fs2(s
A
2 )] (19)
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Where Fs2() is the cdf of s2. Similarly:

Eπ1(B|s1) = Y × [Fs2(−s1)] + X × [Fs2(s
B
2 )] (20)

and Eπ1(A|s1) ≥ Eπ1(B|s1) if:

Fs2(−s1) ≤ 1

2
×

[
1 +

X

Y

[
1− Fs2(s

A
2 )− Fs2(s

B
2 )

]]
(21)

All terms on the right-hand side of equation 21 are independent of s1. As Fs2

is an increasing function, Fs2(−s1) is decreasing in s1. Therefore, player 1

uses a cutoff strategy for any cutoff strategy employed by player 2.

Combined with proposition 1, this implies that both players employ a

cutoff strategy in any equilibrium

We define ŝ1 as player 1’s cutoff, and ŝ∗1 as her optimal BNE cutoff, using

equation 21, as follows:

ŝ1
∗ = F−1

s2

(
1

2
×

[
1 +

X

Y

[
1− Fs2(s

A
2 )− Fs2(s

B
2 )

]])
(22)

A.2 BNE Derivation for si ∼ U [−1, 1], X 6= 0

We begin by arguing that, under X 6= 0, both players still employ cutoff strategies

in equilibrium. Equation 23 shows player 1’s profits for choosing A and B for any

strategy employed by player 2 (in particular, we do not assume that player 2

uses a cutoff strategy). Prjk is the probability that, given player 2’s strategy, she

chooses action j after observing d1 = k.

π1A = Y × s1 + 1

2
+ PrAA ×X π1B = Y × 1− s1

2
+ PrBB ×X (23)

As π1A is increasing in s1 and π1B is decreasing, there will be some ŝ1 such that

π1A ≥ π1B ∀ s1 ≤ ŝ1 and π1A ≤ π1B∀s1 ≥ ŝ1. In other words, in any BNE, player

1 employs a cutoff strategy. Note that the proof did not assume that player 2 uses

a cutoff strategy. We use this to update player 2’s profit function. π2jk is player

2’s expected payoff for choosing action j after observing d1 = k, as a function of

s2.

π2AA =

{
Y × s2+1

1−ŝ1
+ X if s2 ≤ −ŝ1

Y + X if s2 > −ŝ1

π2BA =

{
Y × −ŝ1−s2

1−ŝ1
if s2 ≤ −ŝ1

0 if s2 > −ŝ1
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π2AB =

{
0 if s2 ≤ −ŝ1

Y × s2+ŝ1

1+ŝ1
if s2 > −ŝ1

π2BB =

{
Y + X if s2 ≤ −ŝ1

Y × 1−s2

1+ŝ1
+ X if s2 > −ŝ1

We can solve for player 2’s optimal strategy:

sA∗
2 = −1

2
×

(
1 +

X

Y

)
+

ŝ1

2

(
X

Y
− 1

)
sB∗
2 =

1

2

(
1 +

X

Y

)
+

ŝ1

2

(
X

Y
− 1

)
(24)

As player 2’s optimal strategy is a function of ŝ1, player 1 must consider this

influence in her own strategy. Player 1’s expected payoff:

π1 = Pr(d1 = ω)× Y + Pr(d1 = d2)×X (25)

Pr(d1 = ω) =
3− ŝ2

1

4
(26)

Pr(d1 = d2) = Pr(d1 = A|ŝ1)× PrAA + Pr(d1 = B|ŝ1)× PrBB (27)

=
1− ŝ1

2
× 1− sA

2

2
+

1 + ŝ1

2
× sB

2 + 1

2
(28)

Substituting equations 24, 26 and 28 into equations 25 yields:

π1 = Y × 3− ŝ2
1

4
+ X ×

[
3

4
+

1

4

[X

Y
+ ŝ2

1

(X

Y
− 1

)]]
(29)

Meaning:

∂π1

∂ŝ2
1

=
1

4

[
− Y −X × (

1− X

Y

)]
(30)

As this number is negative for all −Y < X < Y , ŝ∗1 = 0 for all such values

of X. As for player 2’s optimal strategy, substituting ŝ1 = 0 into equation 24

yields: sA∗
2 = −1

2
×

(
1 + X

Y

)
and sB∗

2 = 1
2

(
1 + X

Y

)
. Thus, with Y = 2, sA∗

2 =

{−.75,−.5,−.25} and sA∗
2 = {.75, .5, .25} for X = {1, 0,−1}, respectively.

B Over-Reacting to X?

As discussed in section 3, the theoretical prediction for each treatment is symmet-

ric, as ŝ1
∗ = 0, and ŝA

2

∗
= −ŝB

2

∗
. This facilitates a straightforward transformation

of the data that makes data presentation more manageable. Player 1 always faces

the same decision, and her decision thus defines her strategy. Player 2, on the

other hand, reveals her decision for only one of her two information sets (the
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observed d1 ∈ {A,B}). We impose symmetry on her strategy, assuming that

sA
2 = −sB

2 . We construct ŝ2 as follows:

ŝ2 ≡
{

sA
2 if d1 = A

−sB
2 if d1 = B

(31)

The slope terms in equations 10 and 11 imply that player 2 attaches too much

importance to the externality, X. This is true, to some degree. If player 2 were

to extract all of the available information from player 1’s action, this adjustment

is too strong. It is argued in section 5, however, that player 2 extracts too little

information from player 1’s action.

The analysis that follows takes it as given that player 2 under-reacts to the

information contained in player 1’s action. It poses the question, given the limited

information that player 2 extracts, does she player 2 react appropriately to the

network externality?

This, of course, requires an assumption about player 2’s unobserved belief.

Equations 10 and 11 imply that player 2 behaves as though ŝ2 = −.244 is a best

response when X = 0. We now generate beliefs that rationalize this behavior. Any

belief for which ŝ2 = −.244 is a best response can be rationalized. Equivalently,

any distribution of ŝ1 for which ŝ2 = −.244 is a best response is a possible belief.

For lack of a better alternative, we assume that player 2 believes that player

1’s strategy is a deterministic cutoff strategy, but her belief of player 1’s cutoff

changes based on whether she observes d1 = A or d1 = B:

f̃(s1|d1 = B) =

{
1

1.466
for s1 ≤ .466

0 for s1 > .466
(32)

Player 2 reacts as though ŝ1 = .466 if d1 = B, and as though ŝ1 = −.466 if d1 = A.

Substitution into equation 10 (along with Y = 2) yields: ŝ2 = −.267− .367×X.

The empirical weight from equation 10, -.383, suggests that player 2’s over-

weighting of the network externality may be rational given their under-appreciation

of the informational content of player 1’s action. Within the context of observa-

tional learning experiments, the findings suggest that positive externalities will

improve decision-making. On the other hand, decision-making could be increas-

ingly harmed as externalities become more negative.
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C Deriving Player 2’s Optimal Response to a Noisy Player

1

The analysis above shows that players do not strictly perform as predicted by

theory. To that end, it is necessary to consider how a rational decision-maker

should respond to such players. A claim of this paper is that subjects in the

role of player 2 do not react strongly enough to the information contained in the

actions of player 1. If, however, the inherent noise in the decision-making process

renders the observation of player 1’s action obsolete, then it is perfectly rational

for player 1 to under-react to this action (relative to theory). It is the aim of this

section to evaluate the decisions of player 2, accounting for the randomness in

player 1’s behavior.

C.1 A Noisy Player 1

Assume that player 1 is a stochastic player. We will treat her chosen cutoff,

ŝ1, as the realization of a random process represented by the random variable

Ŝ1. Assume that S1 has support [−1, 1] and cumulative density function F (ŝ1).

Without loss of generality, this analysis assumes that player 2 observes d1 = A,

meaning that player 1’s signal s1 > ŝ1.

The aim of this section is to determine the optimal cutoff for player 2, ŝ∗2,

given that ŝ1 is stochastic. The procedure used here is to first use Bayes’ Rule to

generate the updated distribution F (ŝ1|d1 = A), and to use this distribution to

find F (s1|d1 = A). Finally, these distributions will be used to define player 2’s

maximization problem, and find ŝ∗2.

The role of Bayesian updating is vital in the current problem. Imagine, for

example, that hats1 is distributed symmetrically (about 0) and continuously. Ex

ante, f(ŝ1) = f(−ŝ1) for any ŝ1 ∈ [−1, 1]. However, if hats1 > 0, Pr(d1 = A|Ŝ1 =

ŝ1) < Pr(d1 = A|Ŝ1 = −ŝ1) if γ > 0. Therefore, the observation that d1 = A

skews the distribution F (ŝ1|d1 = A) to the left. In other words, because lower

cutoffs make the choice d1 = A more likely, player 2’s observation that d1 = A

makes lower ŝ1 more likely. Formally,
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Pr(Ŝ1 = ŝ1|d1 = A) =
Pr(Ŝ1 = ŝ1)× Pr(d1 = A|Ŝ1 = ŝ1)

Pr(d1 = A)
(33)

f(ŝ1|d1 = A) =
f(ŝ1)× (1− FS1(ŝ1))∫ 1

−1
f(ŝ1)× (1− FS1(ŝ1))dŝ1

(34)

where Fs1(ŝ1) is the cumulative density function of S1 evaluated at, here

F (s1) = s1+1
2

. The next step in determining ŝ∗2 is to find the conditional prob-

ability density function of S1 for a given value of ŝ1. Given d1 = A, there is 0

probability attached to values of S1 < ŝ1. Therefore, the conditional distribution

f(s1|d1 = A, ŝ1) condenses the probability function f(s1) to values of s1 ≥ ŝ1.

Pr(S1 = s1|d1 = A, ŝ1) =

{
0 for s1 ≤ ŝ1
Pr(S1=s1)
Pr(S1≤ŝ1)

for s1 > ŝ1

(35)

f(s1|d1 = A, ŝ1) =
f(s1|d1 = A, ŝ1)∫ 1

ŝ1
f(s1|d1 = A, ŝ1)

(36)

We now have the conditional distributions for both ŝ1 and s1, which will be used

to evaluate player 2’s maximization problem. Figure C.1 illustrates player 2’s

problem for values of ŝ1 ≤ −ŝ2. Player 2 can alter the probability of her four

outcomes Y + X, Y , X and 0 by adjusting ŝ2. Due to the assumption that f(Ŝ1)

has a support of [−1, 1], there is a positive probability that ŝ1 > −ŝ2, and as

player 2 does not observe the realization of ŝ1, this possibility must be accounted

for in the analysis. Figure C.1 shows the regions as defined for low values of ŝ1.

The state represented in figure C.1 is less likely than that in figure C.1, as

d1 = A makes low values of ŝ1 more likely and high values less likely than in the

unconditional distribution f(s1). The probability calculation must be done in two

parts: the case involving ŝ1 ≤ −ŝ2, and that involving ŝ1 ≥ −ŝ2. The following

as a general calculation for the probability of receiving each of the payoffs for

a general ŝ2, over which we will then optimize to find ŝ∗2. We begin with the

probability of a given ŝ2 resulting in the payoff π2 = Y + X, defined the irregular

pentagon in the top-right of figure C.1 or the rectangle in the top-right of figure

C.1.
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Figure 10: Assigning π2 to Regions in the s1, s2 Plane for ŝ1 ≤ −ŝ2 and d1 = A
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Figure 11: Assigning π2 to Regions in the S1, S2 Plane for ŝ1 ≥ −ŝ2 and d1 = A
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Pr(π2 = Y + X|d1 = A) =

∫ −ŝ2

−1

∫ 1

−ŝ1

∫ 1

ŝ1

f(s1|d1 = A, ŝ1)ds1f(s2)ds2f(ŝ1|d1 = A)dŝ1

+

∫ −ŝ2

−1

∫ ŝ2

−ŝ1

∫ 1

−S2

f(s1|d1 = A, ŝ1)ds1f(s2)ds2f(ŝ1|d1 = A)dŝ1

+

∫ 1

−ŝ2

∫ 1

ŝ2

∫ 1

ŝ1

f(s1|d1 = A, ŝ1)ds1f(s2)ds2f(ŝ1|d1 = A)dŝ1

(37)

where

f(s1|d1 = A, ŝ1) =
f(s1|d1 = A)∫ 1

ŝ1
f(s1|d1 = A)ds1

(38)

The function f(s1|D1 = A, ŝ1) is the conditional distribution of s1 given that

d1 = A for a given ŝ1 (as the pdfs are then integrated over all values of ŝ1).

f(s1|d1 = A, ŝ1) shifts the all of the density of f(s1|d1 = A) to possible values of

s1, those greater than the given ŝ1.

The first two lines of equation 37 correspond to the pentagon from the top-right

of figure C.1, while the third line represents the rectangle at the bottom-left of

figure C.1. Notice that the definition of the regions corresponding to high values

of ŝ1 integrate with respect to ŝ1 from −ŝ2 to 1, while that corresponding to low

values of ŝ1 integrate with limits of −1 and −ŝ2. Similarly, the probability that

π2 = X, Y , and 0 are computed as follows:
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Pr(π2 = X|d1 = A) =

∫ −ŝ2

−1

∫ −ŝ1

ŝ2

∫ −s2

ŝ1

f(s1|d1 = A, ŝ1)ds1f(s2)ds2f(ŝ1|d1 = A)dŝ1

(39)

Pr(π2 = Y |d1 = A) =

∫ −ŝ2

−1

∫ ŝ2

−1

∫ −s2

ŝ1

f(s1|d1 = A, ŝ1)ds1f(s2)ds2f(ŝ1|d1 = A)dŝ1

+

∫ 1

−ŝ2

∫ −ŝ1

−1

∫ −s2

ŝ1

f(s1|d1 = A, ŝ1)ds1f(s2)ds2f(ŝ1|d1 = A)dŝ1

(40)

Pr(π2 = 0|d1 = A) =

∫ −ŝ2

−1

∫ −1

ŝ2

∫ 1

−s2

f(s1|d1 = A, ŝ1)ds1f(s2)ds2f(ŝ1|d1 = A)dŝ1

+

∫ 1

−ŝ2

∫ 1

ŝ1

∫ ŝ2

−s1

f(s2)ds2f(s1|d1 = A, ŝ1)ds1f(ŝ1|d1 = A)dŝ1

(41)

The four probabilities calculated above are functions of ŝ2. Player 2’s problem,

then, is to choose the value of ŝ2 that maximizes her expected profit, using the

probabilities calculated above.

Eπ2 = (Y + X)× Pr(π2 = Y + X) + X × Pr(π2 = X) + Y × Pr(π2 = Y ) + 0× Pr(π2 = 0)

(42)

C.2 ŝ1 Uniformly Distributed

For illustrative purposes, we now impose a simple structure on ŝ1. Specifically,

we assume that ŝ1 is randomly drawn from a uniform distribution on the interval

[−1, 1], meaning that f(ŝ1) = 1
2
∀ŝ1 . Recall further that, as s1 and s2 are also

uniformly distributed, f(si) = 1
2

and F (si) = si+1
2

for i = 1, 2. Substituting these

values into equations 34 and 36, we can retrieve the conditional pdfs f(ŝ1|d1 = A)

and f(s1|d1 = A, ŝ1). As the probability function will be calculated by integrating

with respect to s1 before ŝ1, f(s1|d1 = A, ŝ1) should not take into account the

distribution of ŝ1.
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Figure 12: f(ŝ1|d1 = A) for Ŝ1 ∼ U [−1, 1]

f(ŝ1|d1 = A) =
1
2
× 1−ŝ1

2∫ 1

−1
1
2
× 1−ŝ1

2
dŝ1

=
1− ŝ1

2
(43)

f(s1|d1 = A, ŝ1) =
1
2∫ 1

ŝ1

1
2
ds1

=
1

1− ŝ1

(44)

As seen in figure C.2, f(ŝ1|d1 = A) is skewed to the right, with low values of

ŝ1 more likely than high values, as expected. Figure C.2 shows the an example

of the distribution f(s1|d1 = A, ŝ1), specifically f(s1|d1 = A, ŝ1 = −.5). The

distribution is still flat, as it does not account for the fact that ŝ1 is known.

Solving the integrals in equations 37 through 41, and substituting these values

into player 2’s objective function, 42, we can retrieve a profit-maximizing ŝ2, ŝ1,

for each treatment. Notice that noise associated with the noisy play of player 1

does not change player 2’s optimal action substantially.

1. X = 1: ŝ2 = −(
√

2− 1)

2. X = 0: ŝ∗2 = −(
√

3− 1)

3. X = −1: ŝ∗2 = 0

38



−1 −0.5 0 0.5 1
0

0.025

0.05

0.075

0.1

s
1

f(
s 1)

Figure 13: f(s1|d1 = A, ŝ1 = −.5)
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(b) Eπ2(ŝ2) when ŝ1 ∼ U [−1, 1

Figure 14: X = 1

C.3 Best-Responding to Observed ŝ1

Appendix C.2 argues that, even for a very noisy ŝ1, player 2 can extract a great

deal of information from observing player 1’s action. Specifically, if ŝ1 is commonly

known to be uniformly distributed on the interval [−1, 1], player 2’s optimization

problem changes very little. This section analyzes player 2’s optimization problem

when facing the observed ŝ1.
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Figure 15: X = 0
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Figure 16: X = −1

To achieve this goal, we consider ŝ1 to be a random variable. ŝ1 is assumed

to take each value on [−1, 1] with the same frequency with which it is observed

in the data. We define ŝ2
o = (sAo

2 , sBo
2 ) as the strategy that maximizes player 2’s

payoff in response to the observed distribution of ŝ1.

First, let ŝ1 be the 1×n vector of observed ŝ1 for a each treatment, where n is

the number of observations for ŝ1 in that treatment. Then, allow Eπ2(ŝ1, ŝ2|d1) to

be a vector of functions defining the expected profit for any ŝ2 for each element of
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ŝ1 and d1. Recall that each element of Eπ2(ŝ1, ŝ2|d1) will be a two-part function,

discontinuously differentiable at ŝ2 = −ŝ1.

A complication arises from the fact that, for any ŝ1 6= 0, choices A and B

are no longer equally likely. Given that player 2 observes d1 = A or B before

making her decision, we must allow her to update her priors. η(ŝ1|d1 = A) = 1−ŝ1
2

and η(ŝ1|d1 = B) = 1+ŝ1
2

are functions that weight each observed ŝ1 according to

its updated probability given d1 = A and d1 = B, respectively. Then η(ŝ1|d1 =

A)·π2(ŝ1, ŝ2|d1 = A)′ is a function defining profit for any ŝ2 after observing d1 = A,

and η(ŝ1|d1 = B) · π2(ŝ1, ŝ2|d1 = B)′ defines the analogous expected payoff given

d1 = B. Maximizing this function for the observed ŝ1 in each treatments yields

the values in table 8. Note that we no longer assume the optimal strategies to

be symmetric, as the observed ŝ1 often differ from zero. As figures 7 and show,

there is a positive bias in ŝ1 under X = −1 and X = 0. In table 8, ŝ∗2 denotes the

Externality

X = 1 X = 0 X = −1
ŝ∗2 −.75 −.5 −.25
sAo
2 -.789 -.560 -.153

sBo
2 .702 .399 .069

Table 8: Best-Responses to Observed ŝ1

theoretical prediction for player 2’s cutoff strategy ŝ2. sAo
2 and sBo

2 are player 2’s

optimal responses to the observed ŝ1 for d1 = A and B, respectively.

The negative externality treatment exhibits the greatest difference between the

theoretically predicted optimal response, and the optimal response to the observed

ŝ1. The reason for this is two-fold. First, observed play by player 1 is the noisiest

in this treatment, making the information held therein the least reliable. Second,

player 2’s payoff function is the flattest in this treatment to begin with, allowing

smaller informational differences to alter the optimal cutoff more significantly.

Table 8 also shows that the optimal strategy is asymmetric. In the optimal

strategy, sAo
2 < −sBo

2 . For X = 1 and X = 0, d1 contains nearly as much

information as predicted by theory, but is more revealing for d1 = A. This is a

result of the positive bias observed in ŝ1. Table 9 explores whether subjects do,

in fact, conform more when observing the more informative action d1 = A.

Table 9 does not support the hypothesis that player 2 properly adjusts ŝ2 for

the positive bias in ŝ1. In the positive externality treatment, sA
2 ≈ −sB

2 . For

negative and zero externality treatments, conformity is stronger for d1 = B than
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Treatment

X = 1 X = 0 X = −1
ŝ2 .75 .5 .25
sA
2 -.623 (.408) -.188 (.511) .208 (.586)

sB
2 .608 (.471) .324 (.434) -.103 (.603)

Table 9: Actual Response by d1

for d1 = A. This coincides with a positive bias in sA
2 and sB

2 for these treatments.

The best-response to the positive bias in ŝ1 would be to decrease sA
2 , but subjects

tend to increase sA
2 in these cases. If player 2’s behavior is a reaction to a belief

about noisy play on the part of player 1, this reaction is payoff-decreasing.

D Player 2 with Social Preferences

As player 2’s behavior affects the probability that player 1 receives the externality

X, a player 2 with social preferences must consider player 1’s payoff in setting

ŝ2. We first discuss the predictions of Rawlsian and utilitarian preferences for

each treatment using the framework of Charness and Rabin’s (2002) model, then

derive parameters necessary to describe the observed behavior.

D.1 The Model

Charness and Rabin’s (2002) two-person model of social preferences allows for an

agent to place a different weight the other’s payoff based on whether the other’s

payoff is higher or lower than the agent’s. Applied to this experiment, player 2’s

preferences are:

u2(π1, π2) =

{
ρπ1 + (1− ρ)π2 if π2 ≥ π1

σπ1 + (1− σ)π2 if π2 ≤ π1

(45)

We will analyze predictions of two different social preferences, using the framework

of this model. For simplicity, we will assume that player 2 makes his decision

knowing that ŝ1 = 021. This is a strong assumption based on the observed behavior

of player 1, but not one with extreme behavioral implications for player 2.

Recall that for values of s2 ≤ sB
2 , d1 = d2 = B, causing both players to earn

21It is possible that player 1 has social preferences as well. Applying Charness and Rabin’s model to our game,
player 1 would rationally choose ŝ1 = −1 or 1 for highly negative σ. This corresponds to player 2 sabotaging her
own decision in order to destroy the informational content passed to player 2
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Figure 17: u2(π1, π2) for Charness-Rabin Social Preferences

the same payoff. Therefore, u2(π1, π2) = π2 for such values of (s1, s2). For values

of s2 > ŝ2, players 1 and 2 receive different payoffs. If π2 = Y , then π1 = 0,

and u2(π1, π2) = (1 − ρ)Y . If π2 = 0, then π1 = Y , and u2(π1, π2) = σY .

Player 2’s Charness-Rabin preferences are shown in figure 17. We now discuss the

predictions of two specific types of preferences, using the framework of Charness

and Rabin’s model.

• Rawlsian Preferences: ρ = 1, σ = 0

An agent with Rawlsian or maximin preferences increases the lower of the two

profits at any cost to the higher. Importantly, we assume that player 2 is Rawlsian

in terms of outcomes, rather than in a probabilistic sense. In other words, a

Rawlsian player 2 seeks to maximize the expectation of the minimum rather than

the minimum of the expectations. Figure 17 guides intuition as to the optimal ŝr
2.

Clearly, for X > 0, ŝr
2 = −1, and for X < −Y , ŝr

2 = 1.

For −Y < X < 0, Equating the beneficial and harmful tradeoffs of an increase

in ŝr
2, ŝr

2 = −1 × Y +X
Y

. For the negative externality treatment of this paper,

that makes ŝr
2 = −.5. Notice that the Rawlsian player 2 reacts to the negative

externality less than the self-interested player. The cause of this reaction is that

a Rawlsian feels significantly worse about π2 = Y than does a self-interested

player 2. Therefore, she imposes a negative externality on both players 1 and 2 to
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increase the probability that both players receive Y , even though it decreases both

profits in expectation. Rawlsian preferences perform moderately well in predicting

behavior when X = 1, but quite poorly when X = 0 and X = −1.

π2 π1 ur
2(π1, π2) uu

2 (π1, π2)

Y + X Y + X Y + X Y + X

Y 0 0 1
2Y

X X X X

0 Y 0 1
2Y

Table 10: Rawlsian and Utilitarian Social Preferences

• Utilitarian Preferences: ρ = σ = 1
2

An agent with utilitarian preferences maximizes the sum π1+π2. If X ≥ Y
2
, player

2 would always prefer both players to receive the externality than for herself to

receive Y , so ŝu
2 = −1. If X < −Y

2
, ŝu

2 = 1, as the sum of the negative externality

to both players outweighs the payoff Y to player 2 herself. If −Y
2

< X < Y
2
, there

is an interior solution, ŝu
2 = − (Y +2X)

2Y
.

• Social Preferences Fitting the Results

Rawlsian and Utilitarian fail to explain the results that we observe. We now apply

Charness and Rabin’s model to the mean action of player 2, ŝ2 in each treatment

to account for this behavior. Player 2 behavior in the zero externality case cannot

be explained by social preferences, as it remains an individual decision problem.

Behavior in the positive and negative externality treatments are vulnerable to in-

fluence by social preferences. The following are the optimal cutoffs in the positive

and negative externality treatments:

X = 1 X = −1

ŝsp
2 = − (2σ − 3)

2(ρ + σ − 2)
ŝsp
2 = − (2σ − 1)

5(ρ + σ − 2)
(46)

Of course, as each equation has two unknowns, it is impossible to find a best-fit

ρ and σ for the two treatments independently. However, using both treatments,

we can solve the two simultaneously:
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X = 1 X = −1

.615 =
5(2σ − 3)

ρ + σ − 2
−.148 =

5(2σ − 1)

ρ + σ − 2
(47)

ρ = 0 σ = .69 (48)

It is more commonly found that ρ > σ, as it is often found that subjects are

more generous to those with less than them. Therefore, social preferences seem

an unlikely explanation for player 2’s behavior.

E Individual Decisions Over Time

Section 5 and details average behavior of subjects in each treatment. A different

question altogether is the behavior of individual subjects. This section analyzes

the behavior of individual subjects, both on average and the evolution of this

behavior over time. Table E shows how the average behavior of subjects in the

role of player 2 in each treatment evolves over time.

Externality
X = 1 X = 0 X = −1

Obs. per Bin 75 75 90
Periods 1-5 -.39 (.58) -.20 (.56) .22 (.64)
Periods 6-10 -.57 (.45) -.41 (.43) .10 (.69)
Periods 11-15 -.62 (.39) -.24 (.50) .15 (.63)
Periods 16-20 -.68 (.41) -.24 (.44) .23 (.60)
Periods 21-25 -.71 (.34) -.22 (.51) .12 (.57)
Periods 26-30 -.73 (.36) -.29 (.34) .08 (.51)

Table 11: Average ŝ2 Over Time

Table E shows that there is significant aggregated learning over time under

the positive externality. ŝ2 gradually approaches the theoretical prediction of -.75

by the final period. For the zero and negative externality treatments, there is no

clear trend (although in both cases ŝ2 is closer to the theoretical predictions in

the final five rounds than in the first five). The variance does fall somewhat from

the early to the later rounds, but not significantly.

With the exception of X = 1, there is little movement in average behavior

over time. At the individual level, however, it is still desirable to isolate any

predictive patterns in behavior over time. We now turn our attention to individual
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performance over the 30 periods. Figures 18, 19, 20 and 21 show selected examples

of four different classes of behavior. They are not representative of the behavior or

the entire pool of subjects, but rather examples of divergent behavioral patterns

that are not manifest in the pooled data.
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Figure 18: Players Whose Choices Appear Random

Figure 18 shows examples of players whose behavior is noisy. Even so, there

are patterns in the behavior of the subjects displayed. Subject 2208’s ŝ2, although

in flux, hovers around -.5. Subject 1206’s ŝ1 is noisy, but consistently positive22.

Even for subjects whose behavior is the noisiest, there are distinguishable patterns.

As seen in figure 19, some subjects follow theory very closely. Subject 1204

chose the exact theoretical prediction in every period. The behavior of subjects

2209 and 4104 began somewhat noisily, but was consistently in line with theory

by the end of the treatment.

This paper finds that subjects are reasonably sensitive to externalities and in-

sensitive to information relative to theory. Figure 20 shows examples of players

in each treatment that take this conclusion to the extreme. These subjects react

absolutely to externalities. In their absence, they follow their own private infor-

mation. They do not react at all to information contained in d1. Subject 2110

follows this behavior by conforming absolutely to the action he observes in the

presence of a positive externality. In the case of subject 1213, there is no exter-

nality. Therefore, the subject sets ŝ2 each time, neglecting to use the information
22Recall that ŝ1 was, on average, positive when X = 0.
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Figure 19: Players Behaving According to Theory
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Figure 20: Players Ignoring Information

inherent in player 1’s action. Subject 4216 behaves noisily in both roles in the

beginning of the experiment, then settles into the strategy of following the theo-

retical prediction in the role of player 1 (ŝ1 = 0) and following a (near) negative

cascade in the role of type 2 (ŝ2 ≈ 1).
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Figure 21: Players that Learn over Time
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