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Abstract

Focusing on the �fuzzy� regression discontinuity (RD) design, this paper

proposes two easy-to-implement estimators for the average treatment e¤ect in

the presence of multiple selection biases� selection on both observables and un-

observables. The theoretical results leverage the dual nature of the RD design,

both the �borderline experiment�provided near the threshold and the exclusion

restriction provided in the selection equation for the choice of treatment. The

improvement that the proposed estimators o¤er in the e¢ ciency-bias trade-o¤

is examined through Monte Carlo experiments and an empirical study of an

education program allocated on the basis of test score cuto¤s.
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1 Introduction

The fundamental problem of causal inference about a treatment e¤ect stems from

the impossibility of observing the same individual simultaneously in treated and un-

treated states.1 The identi�cation of treatment e¤ects must rely on comparisons of

the outcomes of di¤erent individuals with di¤erent treatment status, which means

di¤erences in outcomes may arise from factors other than the treatment. The most

reliable design to deal with this problem is random assignment of the treatment.2

Unfortunately, for many of the most general questions in the social sciences, random

assignment is either too costly to implement or unethical.3 One ethical procedure

that society and governments follow to allocate resources assigns resources on the

basis of merit or need, often using eligibility cuto¤s for the program in which the

odds of qualifying for the intervention change substantially (or �discontinuously�) at

the cuto¤s. For example, researchers note that as long as there is some �noise�or

arbitrariness in the eligibility criteria, near the cuto¤s, the assignment of resources

is �close to random.�Although the e¢ ciency of such policy designs can and should

be debated, they provide a unique opportunity for evaluating the e¤ect of an inter-

vention while leveraging some of the features of random assignment. The regression

discontinuity (RD) design attempts to utilize these discontinuous changes in the prob-

1Such a causal e¤ect is de�ned as the di¤erence between potential outcomes in the presence and
in the absence of a treatment (Rubin, 1974; Holland, 1986).

2In this study, the identi�cation of treatment e¤ects refers to the identi�cation of the e¤ect of a
treatment intervention, not the e¤ect of a self-selected treatment. The former has implications for
policy design; the latter can mislead policy making.

3In addition to the feasibility issues, random assignment is subject to threats to both its internal
and its external validity, such as substitution bias, randomization bias, placebo e¤ects (Malani,
2006), and Hawthorne e¤ects (Winship and Morgan, 1999; Cobb-Clark and Crossley, 2003).

2



ability of treatment at the eligibility cuto¤(s).4 A �sharp�RD design occurs when

the probability of treatment goes from 0 to 1 at the cuto¤ point. However, this study

instead focuses on the so-called �fuzzy�RD design (Trochim, 1984), in which the

change in the probability of treatment is less than 1 but still substantial; this design

better matches the design of most policy interventions.

Much theoretical research on RD design (Hahn, Todd, and Van der Klaauw, 2001;

Lee and Card, 2008) focuses on the e¤ects at the eligibility threshold, at which point

potential biases disappear while the probability of treatment changes discontinuously.5

Its similarity to a borderline experiment at the eligibility threshold also has prompted

its recognition and exploitation in many empirical studies.6 However, two concerns

arise about a focus on e¤ects at the threshold. First, empirically, the de�nition of

�the limit�can be ad hoc and preclude inference due to a paucity of data. Most ap-

plied studies implementing RD design instead use data away from the discontinuity

or assume a functional form for the selection bias, due to observables, to obtain esti-

mates and form con�dence intervals.7 In some of these applications, such as Angrist

and Lavy (1999) and Chay, McEwan, and Urquiola (2005), as the data away from the

discontinuity get trimmed, the con�dence intervals grow large enough to disallow the

rejection of many hypotheses. Second, in the presence of treatment e¤ect heterogene-

ity, near the discontinuity, only the average e¤ect for a particular population can be

identi�ed in certain conditions (e.g., monotonicity), rather than the average e¤ect for

a randomly selected member of the population known as the average treatment e¤ect

(ATE). The former8 is useful for policy analysis, because it measures the impact of

4For a history and overview of RD design, see Thistlethwaite and Campbell (1960), Goldberger
(1972a, 1972b), and Cook (2008).

5Lee and Card (2008) further extend the applicability of an RD design to the case in which the
selection variable has discrete support.

6These studies include Berk and de Leeuw (1999), Black (1999), Black, Galdo, and Smith (2007),
Lee (2008), Lemieux and Milligan (2008), Ludwig and Miller (2007), and Van der Klaauw (2002).

7These studies include Angrist and Lavy (1999), Chay and Greenstone (2003), Chay, McEwan,
and Urquiola (2005), DiNardo and Lee (2004).

8This is the local average treatment e¤ect (LATE) (Imbens and Angrist, 1994; Angrist, Imbens,
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the eligibility criteria that were used by the program; the latter generally is more use-

ful for forecasting the relative bene�ts of potential policies under consideration. This

study attempts to address these concerns by integrating the results from literature

on selection biases with RD literature. The derived theoretical results leverage RD�s

dual nature� that is, that it provides both a borderline experiment near the disconti-

nuity and an instrumental variable (IV) for the actual treatment status. In particular,

the treatment probability changes signi�cantly according to the treatment eligibility

de�ned in the RD design, such that if there is no anticipation of a treatment before

its implementation, the treatment eligibility should be excluded from the potential

outcome in the absence of the treatment. In this sense, the eligibility indicator in RD

becomes a strong and valid IV for actual treatment status.

This study proposes the following regression model, which is based on the treat-

ment e¤ect de�nition (i.e., the di¤erence between two potential outcomes in the pres-

ence and in the absence of the treatment):9

yj = gj(z
�) + � � j + uj, E(ujjz�) = 0, (1)

where gj(z�) is continuous in z�, and j indicates the presence (j = 1) or absence

(j = 0) of a treatment intervention. For the factors that a¤ect yj, the observable part

(gj(z�)) and the unobservable part (uj) are assumed to be additively separable. An

individual�s treatment status (d) indicates either receiving the treatment (d = 1) or

not (d = 0). A random treatment assignment can lead d to j. Here, � is the additive

e¤ect, solely due to the treatment. In this model, the ATE is de�ned as

ATE � E(y1 � y0) = E (� + g1(z�)� g0(z�)) � �. (2)

and Rubin, 1996).
9The following discussion of identi�cation and estimation of treatment e¤ects considers no ad-

ditional covariates (x), to avoid unnecessary complications. Imbens and Lemieux (2008) discuss
adjustments for additional covariates.
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The average di¤erence in the observed outcome (y, and y = dy1+ (1� d)y0) between

the treatment (T) and the control (C) group can be decomposed into �ve parts:

E(yjd = 1)� E(yjd = 0) =

8>>>>>>>>>><>>>>>>>>>>:

E(�)

+E(g0(z�)jd = 1)� E(g0(z�)jd = 0)

+E(g1(z�)� g0(z�)jd = 1)

+E(u0jd = 1)� E(u0jd = 0)

+E(u1 � u0jd = 1)

(a)

(b)

(c)

(d)

(e)

. (3)

In equation (3), part (a) is the average e¤ect, purely due to the intervention and

separate from the observable and the unobservable. Part (b) is the average di¤erence

between the T and C groups in the pre-treatment observables. The group di¤er-

ence due to the interaction between observables and the treatment is represented by

part (c). Part (d) is the group di¤erence due to pre-treatment unobservables, which

causes omitted variable bias (OVB). Finally, part (e) reveals the group di¤erence

due to the interaction between the treatment and the unobservables, which causes

sorting or selectivity bias. For example, a positive conditional expectation of the

potential treatment gain, u1 � u0, implies cream skimming as happens when a pro-

gram or treatment is assigned only to individuals who can bene�t from it, so as to

maximize the program e¤ectiveness. Identifying the treatment e¤ect on a randomly

selected individual of a population (ATE) requires the initial identi�cation of part

(a) plus E [g1(z�)� g0(z�)]. The dual nature of the RD design can take into account

several sources of selection bias� selection on the observables (part b), selection on

the unobservables (part d), and selection on treatment e¤ect heterogeneity (parts c

and e).
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For a fuzzy RD design, the selection equation becomes:

d = 1f�0 + �1z + �2z� + v > 0g, and

z = 1fz� 6 0g, �1 6= 0, v � Fv(�), (4)

where v represents the unobservables in the selection process with distribution Fv(�).

The variable z� can be observed and used for the selection eligibility (z), which uses

0 as the cuto¤ point (selection threshold). The fuzzy RD design forces �1 to be

nonzero. The eligible (z = 1) members of the population are more likely to receive

the treatment (d = 1) if �1 is positive. Identifying ATE hinges on the relationship

between v and uj (j = 0; 1), because if v and uj are independent (�q�), selection

on observables exists, which implies E(yjjd) 6= E(yj), but E(yjjd; z�) = E(yjjz�) for

the observables, z�. The treatment status (d) becomes exogenous (or �randomly as-

signed�) to potential outcomes (yj) on average after controlling for the observables

(z�). If v and uj are not independent, selection on unobservables occurs, which im-

plies E(yjjd; z�) 6= E(yjjz�), but E(yjjd; z�; �) = E(yjjz�; �) for observables (z�) and

some unobservables (�).10 In addition, OVB occurs if either u0 or u1 is not inde-

pendent of v. Selectivity or sorting bias arises if the potential gain, u1 � u0, is not

independent of v. Note that an RD�s eligibility criterion (z) can change a potential

treatment status exogenously if the threshold is unexpected or z� cannot be manip-

ulated perfectly.11 The preceding selection equation implies that the eligibility (z)

induces a nonsmoothness only in the selection process, not in the potential outcome.

It therefore provides a valid exclusion restriction for the outcome equation and serves

as a powerful predictor for treatment status. It is worth noting that this article is the

�rst to examine the use of RD�s eligibility as an instrument to deal with selection on

10See Lee (2005) for formal de�nitions.
11Such a situation may be detectable by checking whether the density of the selection variable is

discontinuous at the cuto¤ point (McCrary, 2008).
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the unobservables, namely, part (d) in equation (3), and selection due to unobserved

heterogeneities in the treatment e¤ects, or part (e) in equation (3).

Current theoretical RD papers focus instead on treatment e¤ects at the cuto¤,

assuming selection only on the observables, in which case the bias due to part (e)

in equation (3) gets excluded and the bias due to part (d) in equation (3) can be

di¤erenced out at the cuto¤ where E(u0jz�) is continuous. The emphasis therefore

is on how to control for g0(�) and g1(�) (Hahn, Todd, and Van der Klaauw, 2001;

Imbens and Lemieux, 2008) to minimize the selection bias due to parts (b) and (c) in

equation (3) and estimate the e¤ect at the cuto¤. In contrast, this study reformulates

RD according to the preceding regression model and focuses on ATE for a prede�ned

population away from the threshold to take into account multiple selection biases, that

is, parts (b) to (e) in equation (3). The research question therefore entails the solution

to two problems. The �rst pertains to how to control for part (b) in equation (3)

without specifying g0(�) and deal with part (c) in equation (3) with �exible parametric

assumptions on g1(�) � g0(�) and thus identify ATE in the absence of parts (d) and

(e) in equation (3) for a population near the selection threshold. In this setting,

the cuto¤ selected for an initial program can be reassessed by policymakers. The

second problem to solve then becomes how to correct for the impacts of part (d) in

equation (3), or the OVB, and part (e) in equation (3), or the sorting bias, on ATE

when they are present. This setting allows for forecasting the relative bene�ts of a

policy change when policymakers consider extending the initial program to a larger

population, farther away from the threshold.

The response to the �rst problem proposes a new estimator, an RD robust estima-

tor, for the ATE of a population near the selection threshold. It has greater external

validity than existing estimators aimed at measuring the e¤ect only at the threshold.

It also achieves good internal validity, in the sense that it controls for part (b) in

equation (3) with g0(�) unspeci�ed, and the parameterization of g1(�) � g0(�), which
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can be made �exible, is necessary only when treatment e¤ect heterogeneity exists due

to the observables (i.e., part (c) in equation (3)). Unlike the alternatives proposed

by Hahn, Todd, and Van der Klaauw (2001), this estimator is based on the moment

restrictions derived from the conditional mean independence between the unobserv-

ables in the potential outcomes and the unobservable in the selection equation, when

the selection is based only on the observables. The orthogonality conditions are de-

rived from the residual, that is, the di¤erence between the actual treatment status

and the conditional treatment probability (or the propensity score).12 With selection

on observables, the exclusion restriction in the RD design increases the e¢ ciency of

the RD robust estimator.

To address the second problem, a second estimator, the correction function esti-

mator, considers the ATE of a population away from the threshold, where selection

on unobservables is pertinent. It takes into account the OVB, or part (d) in equation

(3), and the sorting bias, which is part (e) in equation (3), using RD�s eligibility as

the IV for the actual treatment status to correct for (d) in equation (3) and adding

correction terms for (e) in equation (3) to the outcome equation. The construction of

the correction terms relies on a cubic polynomial moment restriction on the potential

treatment gain, u1�u0, conditional on v. This restriction allows for a nonlinear sort-

ing pattern, but it is less restrictive than a joint-distributional assumption for (u0, u1,

v), which is su¢ cient to account for (d) and (e) in equation (3) simultaneously. This

correction function estimator therefore permits the estimation of ATE in the presence

of OVB and heterogeneous sorting. It also has greater external validity, in the sense

that it bears richer policy implications for a larger population (i.e., farther away from

the threshold). However, its internal validity is limited by the parameterization of

12Note that the estimators with selection on observables, such as matching (Rosenbaum and
Rubin, 1983a, 1983b) or inverse probability weighting (Hogan and Lancaster, 2004; Wooldridge,
2007), are of limited applicability for a fuzzy RD. The overlapping or common-support identi�cation
assumption is di¢ cult to meet, and it is completely violated for a sharp RD design.
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g0(�) and g1(�). This proposed estimator is based on Wooldridge�s (2002) work, but

it extends existing results to allow for a nonlinear sorting pattern because it adds the

cubic polynomial sorting correction terms to the linear speci�cation. This extension

is important when both cream skimming and adverse selection may be concerns.

The rest of this article is organized as follows: Section 2 derives identi�cation

results and the associated estimators. Section 3 evaluates the estimators��nite sam-

ple performances. Section 4 reexamines an empirical study by Chay, McEwan, and

Urquiola (2005) to demonstrate the improvement in the e¢ ciency-bias trade-o¤, using

the evaluation of an education program allocated on the basis of test score cuto¤s.

Both estimators are easy to implement using standard software. Section 5 concludes.

2 Identi�cation and Estimation of Treatment Ef-

fects

Removing or correcting for selection biases when identifying ATE hinges on moment

restrictions imposed on the unobservables in both the selection and outcome equa-

tions. To exploit RD�s dual nature, on the one hand, its borderline experiment can

establish the RD robust estimator, such that the impacts of (d) and (e) in equation (3)

can be plausibly removed close to the threshold; on the other hand, its IV nature, as

implied by the selection rule, serves as the correction function estimator to deal with

(d) and (e) in equation (3), which also suggests a falsi�cation test for the assumption

of selection on observables. For ATE conditional on z�, we consider two cases: a ho-

mogeneous treatment e¤ect that implies a constant di¤erence between E(y1jz�) and

E(y0jz�), and a heterogeneous treatment e¤ect that varies with the observable (z�)

and the unobservable (�).

Assumption 1 E(y1 � y0jz�) = � = �, where g1(z�) = g0(z
�), u1 = u0, and � is
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constant.

Assumption 2 E(y1 � y0jz�) = E(�) + �(z�), where g1(z�) � g0(z�) = �(z�), and

�q (d; z�); �(z�) is the treatment e¤ect heterogeneity due to observables, and � is the

treatment e¤ect heterogeneity due to unobservables.

According to Assumption 2, the observed outcome (y) can be written as

y = g0(z
�) + (� + �(z�))d+ e, where e � u0 + d(u1 � u0). (5)

It then can be rewritten in terms of ATE (�) as

y = g0(z
�) + �d+ (�(z�)� E(�(z�)))d+ ee, where ee � e+ d(� � E(�)). (6)

According to Assumption 1, this model can be simpli�ed to

y = g0(z
�) + �d+ u0. (7)

In either case, the observed outcome (y) takes a partially linear form. The main ob-

stacles to identifying � are the presence of g0(z�), �(z�), and the relationship between

(u0, u1) and v. Identifying ATE in the presence of �(z�) thus requires an additional

parametric assumption.

Assumption 3 �(z�) = w0
, where w is a vector including the polynomials of z�.

The following identi�cation results re�ect the assumption of selection on observ-

ables when (u0, u1) and v are independent and selection on unobservables when (u0,

u1) and v are correlated.
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2.1 Selection on Observables

According to Assumption 2, the central idea of identifying ATE (�) is to use the

conditional moment restrictions derived from selection on observables to generate

orthogonality conditions that will remove selection biases, that is, parts (b) and (c)

in equation (3), due to g0(z�) and �(z�), respectively. If selection is only on the

observables, then E(eejd; z; z�) = 0 = E(eejz; z�), which implies E[(d�E(djz; z�))ee] = 0.
Note that E[(d�E(djz; z�))jz�] = 0 as well, which implies E[g0(z�)(d�E(djz; z�))] = 0.

Therefore, the residual in the selection equation, ev = d�E(djz; z�), can orthogonalize
both g0(z�) and ee in

y � �d = g0(z�) + d(�(z�)� E(�(z�))) + ee, (8)

and also obtain

� =
E[y(d� E(djz; z�))]� E[(�(z�)� E(�(z�)))V(djz; z�)]

E[d(d� E(djz; z�))] . (9)

The identi�cation of � becomes complicated by the presence of �(z�). However,

if there are only innocuous treatment e¤ect heterogeneities, where �(z�) = � (a

constant), then � can be identi�ed as follows:

� = E(� + �) =
E[y(d� E(djz; z�))]
E[d(d� E(djz; z�))] . (10)

The following theorem gives the identi�cation results for � in the presence of �(z�),

where �(z�) 6= � (a constant).

Theorem 1 With selection on observables, Assumption 2, and Assumption 3, � �
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(�; 
0)0 can be identi�ed as follows:

� = E�1 (xx0)E (xy) ,

where13

x � (x1;x02)
0 , x1 � d� E(djz; z�), x2 � (d� E(djz; z�))(w � E(w)).

Furthermore, ATE (�) is given by

� =
E(x1y)� E(x1x02)E�1(x2x02)E(x2y)
E(x21)� E(x1x02)E�1(x2x02)E(x1x2)

,

and the explicit treatment e¤ect heterogeneity (
) is given by


 =
�
E(x2x02)� E(x1x2)E�1(x21)E(x1x02)

��1 E(x2y)
� E�1(x2x02)E(x1x2)E(x1y)
E(x21)� E(x1x02)E�1(x2x02)E(x1x2)

,

where

E(x21) = E(V(djz; z�)), E(x1x2) = E[V(djz; z�) (w � E(w))],

E(x2x02) = E[V(djz; z�) (w � E(w)) (w � E(w))
0],

E(x1y) = E [(d� E(djz; z�)) y] , and E(x2y) = E [(d� E(djz; z�))(w � E(w))y] .

Proof. See Appendix A.

Note that identifying treatment e¤ects with an RD design and selection on ob-

servables is similar to matching (or inverse probability weighting, IPW). Both hinge

on a propensity score, E(djz; z�). However, unlike matching (or IPW), the identi�ca-

tion strategy proposed here for the fuzzy RD uses randomness (near the cuto¤)� the

13E�1 (xx0) � [E (xx0)]�1.
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deviation between the actual treatment status and the associated propensity score�

to orthogonalize both observables and unobservables and accredits the di¤erence in

observed outcomes (between the treated and the untreated) to the treatment. The

resultant two-stage estimator to be constructed uses, in the �rst stage, a consistent

estimator for E(djz; z�), then includes the following regressors for the second stage:

bx � h�d� bE(djz; z�)� ;�d� bE(djz; z�)� (w �w)0i0 , (11)

where w is a vector including the polynomials of z�. We plug bx and y into the RD
robust estimator and attain:

b�RD-robust =  NX
i=1

bxibx0i
!�1 NX

i=1

bxiyi! . (12)

We next present the estimator�s large sample properties with its asymptotic variance

adjusted in accordance with the generated regressors, which come from the �rst-stage

residuals.

Theorem 2 With selection on observables, Assumption 2, Assumption 3, and a para-

metric assumption E(djz; z�) = p(z; z�;�), we have

p
N
�b�RD-robust � �� d�! N

�
0; A�10 
A

�1
0

�
,

where

A0 � E(xx0), 
 � V (x (y � x0�)�B0r(�)) , B0 � E
�
(� 
 x0)0 @x

@�0

�
x �

�
(d� p(z; z�;�)) ; (d� p(z; z�;�)) (w � �)0

�0
, and

p
N(b�� �) = N�1=2

NP
i=1

ri(�) + op(1), E(ri(�)) = 0.

Proof. See Appendix B.
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There is no �rst stage involving E(yjz; z�), which distinguishes this approach from

Robinson�s (1988) two-stage estimator. The intuition behind this estimator is to

use the �rst stage to control for selection on the observables (z and z�), then use the

�cleaned�residual (bev) from the �rst stage to generate orthogonality conditions, based
on the selection-on-observables assumption, to form a moment-based estimation of �

in the second stage. This estimator removes selection bias due to (b) in equation (3)

by orthogonalizing g0(z�), and w controls for the bias due to (c) in equation (3). It is

robust in the sense that it controls for (b) in equation (3) with g0(z�) unspeci�ed, and

the parameterization of g1(z�)� g0(z�) using w can be �exible if necessary to control

for treatment e¤ect heterogeneity due to observables, represented by (c) in equation

(3). When selection is only on the observables, the exclusion restriction imposed by

a fuzzy RD�s eligibility cuto¤ (z) also brings e¢ ciency gains to this estimator.

2.2 Selection on Unobservables

Identifying treatment e¤ects with an RD design requires that the selection variable

(z�) should not be manipulated perfectly. Otherwise, there will be correlations be-

tween the observable (z�) and the unobservable (u0, u1, v), which make the eligibility

indicator (z) endogenous and thus invalidate RD�s IV nature.14 Without manipulat-

ing the selection variable, identifying ATE with selection on unobservables requires

dealing with two additional biases. One is OVB, where Cov(u0; vjz�) or Cov(u1; vjz�)

is not zero, and the other is a sorting (or selectivity) bias, where Cov(u1�u0; vjz�) is

not zero. Possible solutions to these identi�cation problems rely on either the control

14In practice, several cases can e¤ectively prevent manipulation. First, the cuto¤ point is unex-
pected. If the cuto¤ point for eligibility comes entirely as a surprise, and no one anticipates such
a selection rule, the manipulation of the selection variable is completely avoided. The eligibility
criterion is therefore de�ned by a predetermined selection variable, which is simply not manipulable.
Second, individuals only have imperfect control over selection variables. In some cases, manipulation
is possible but not perfect. Even for an anticipated threshold, within a small neighborhood, there
will be some randomness that prevents perfect manipulation (Lee, 2008).
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function or the IV approach. The former, aimed at ATE, follows Heckman�s (1979)

approach, which obtains E(yjd; z�) directly from the distributional assumption for

(u0; u1; v) by adding two control functions, for both OVB and sorting bias, back to

the outcome equation. The latter solution, aimed at LATE instead, replaces the dis-

tributional assumption for (u0; u1; v) with a restriction that the potential treatment

status should respond to the instrument assignment monotonically. The LATE can

still be useful for policy analysis, because it measures the impact of the program on

�compliers,�de�ned by their potential treatment responses to all possible instrument

assignment status. The ATE often appears more useful for forecasting the impact of

policies under consideration on a randomly selected individual from the study popula-

tion. The correction function approach proposed herein provides a middle ground be-

tween the two aforementioned methods. Speci�cally, the proposed approach addresses

E(yjz; z�) instead of E(yjd; z; z�), and therefore, it requires adding E(d(u1�u0)jz; z�)

back to the outcome equation to remove the sorting bias (which is assumed away in

LATE). It identi�es ATE through a conditional moment restriction on E(u1 � u0jv),

which is assumed to be polynomial in v, instead of a joint distribution for (u0; u1; v).

This correction function approach derives from a correlated random coe¢ cient model

used by Wooldridge (1997, 2002, 2003) but relaxes Wooldridge�s (2002) assumption

that E(u1 � u0jv) is linear in v to the case that E(u1 � u0jv) can be nonlinear, or at

least cubic, in v. The extension to a more �exible correlation structure between the

unobservable in the selection (v) and the potential treatment gain (u1 � u0), which

is unobservable to an econometrician, accommodates cases with important economic

implications. For example, adverse selection occurs when E(u1 � u0jv) is negative,

and cream skimming exists when E(u1 � u0jv) is positive. The following theorem

presents the correction terms required for E(d(u1 � u0)jz; z�), which corresponds to

part (e) in equation (3), that is, the sorting bias.
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Theorem 3 With selection on unobservables, Assumption 2, and the following as-

sumptions:

E(u1 � u0jv; z�) = E(u1 � u0jv) = �1v + �2v2 + �3v3, and v � N(0; 1),

we have the following three correction terms for E(d(u1 � u0)jz; z�),15

E(d(u1 � u0)jz; z�) = �1�(�0 + �1z + �2z
�) +

�2 [�(�0 + �1z + �2z
�)� (�0 + �1z + �2z�)�(�0 + �1z + �2z�)] +

�3
�
2�(�0 + �1z + �2z

�) + (�0 + �1z + �2z
�)2�(�0 + �1z + �2z

�)
�
.

Proof. See Appendix C.

With three correction terms for E(d(u1 � u0)jz; z�) added back to the outcome

equation:

y = g0(z
�) + �d+ d(�(z�)� E(�(z�)) + E(d(u1 � u0)jz; z�) + ee (13)

ee � u0 + d(u1 � u0)� E(d(u1 � u0)jz; z�) + d(� � E(�)), E(eejz; z�) = 0, (14)
ATE (�) can be identi�ed, as suggested by Wooldridge (2002), by using E(djz; z�)

or z as the IV for d. We next propose the correction function estimator for � in the

presence of multiple selection biases, that is, parts (b) to (e) in equation (3). The

OVB, or part (d) in equation (3), can be dealt with according to the IV provided by

RD�s eligibility cuto¤. The sorting bias, part (e) in equation (3), is controlled for by

using the correction terms. To control for (b) and (c) in equation (3), we need the

parameterization, g0(z�) = �0 +w
0�1, plus Assumption 3 for the outcome equation.

To simplify the notation, we de�ne � � (�0; �
0
1; �; 


0; �1; �2; �3)
0, � � (�0; �1; �2)

0,

15Here, �(�) denotes the normal probability density function (pdf), and �(�) denotes the normal
cumulative distribution function (cdf).
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�� E(w), and ez � (1; z; z�). Similar to the RD robust estimator, there are two

stages required to implement the correction function estimator. In the �rst stage, we

estimate a probit model for d to obtain �(ez0b�). In the second stage, the regressors
and the instruments in the outcome equation are as follows:

bx � (1;w0; d; d(w � b�)0; �(ez0b�);�(ez0b�)� (ez0b�)�(ez0b�); 2�(ez0b�) + (ez0b�)2�(ez0b�))0, and
bz � (1;w0;�(ez0b�);�(ez0b�)(w � b�)0; �(ez0b�);�(ez0b�)� (ez0b�)�(ez0b�); 2�(ez0b�) + (ez0b�)2�(ez0b�))0.
Note that some of the regressors and the instruments are generated from the �rst

stage, due to the estimation of b� and b� (b� = w). Therefore, the actual model used
for a random sample (i = 1; 2; � � � ; N) is:

yi = bx0i� + eeei = bx0i� + (xi � bxi)0� + eei, E(eeijezi) = 0, and
di = 1fez0i� + vi > 0g, where vi � i.i.d. N(0; 1).

An IV-like correction function estimator (b�crrf ) is:
b�crrf =  NX

i=1

bzibx0i
!�1 NX

i=1

bziyi! . (15)

We next present the estimator�s large sample properties, with its asymptotic variance

adjusted due to the generated regressors.

Theorem 4 With selection on unobservables, Assumption 2, Assumption 3, and the

following assumptions:

E(u1�u0jv) = E(u1�u0jv; z�) = �1v+�2v2+�3v3, v � N(0; 1), and g0(z�) = �0+w0�1,
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we have b�crrf p! �, and

p
N(b�crrf � �) d�! N

�
0; A�10 
A

0�1
0

�
,

where

A0 � E(zx0), 
 � V(zee�B0r(�)�B1(w � �)), ee � y � x0�,
B0 � E

��
2�3 � (ez0�)2 + �2ez0� � �1� (ez0�)�(ez0�)zez0� , B1 � �E (dz) 
0, and

r(�) � E�1
�

�2(ez0�)ezez0
�(ez0�) (1� �(ez0�))

�
�(ez0�)ez(d� �(ez0�))
�(ez0�) (1� �(ez0�)) .

Proof. See Appendix D.

The variance in the limit distribution of
p
N(b�crrf � �) can be estimated by the

sample moments. This correction function estimator deals with the OVB, (d) in

equation (3), and the sorting bias, (e) in equation (3), through a two-stage procedure.

In the �rst stage, we use a probit model to obtain b� and an estimated propensity score
�(ez0b�). In the second stage, there are separate roles for b� and �(ez0b�). We use b� to
construct the correction terms for the sorting, based on Theorem 3. Meanwhile, we

use either �(ez0b�) or simply the eligibility indicator (z) of the RD design as the IV for
the actual treatment status (d) to correct for OVB. If the selection occurs only on the

observables, we can use the deviation (ev) between d and �(ez0�), which is exogenous to
u0 and u1, to orthogonalize the observables (g0(z�)) and the unobservables (ee), as the
RD robust estimator does. This approach leaves g0(z�) completely unspeci�ed and

therefore enhances the study�s internal validity. However, if selection also occurs on

the unobservables, such orthogonality conditions do not exist, because the deviation

ev between d and �(ez0�) will be correlated with u0, u1, or u1 � u0. The correction
function estimator requires parameterizing g0(z�) to control for selection bias due to

(b) in equation (3). Note that both estimators require Assumption 3 to control for
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the treatment e¤ect heterogeneity due to the observables, that is, (c) in equation (3).

The correction function estimator has greater external validity than the RD robust

estimator, because it can deal with selection bias due to (d) and (e) in equation (3),

but it has less internal validity due to the parameterization of g0(z�). In the presence

of multiple selection biases, that is, parts (b) to (e) in equation (3), the choice between

the RD robust estimator and the correction function estimator represents a balance

between a study�s internal and external validity. Such a balance can be guided by

the research question or the study population of interest. The RD robust estimator

also can be useful for assessing an initial eligibility cuto¤ if it may need to change in

the future. In this situation, evaluating the program�s impact for a population close

to the initial cuto¤ point would be necessary. If policymakers want to either extend

the initial program to a larger population (�farther away�from the eligibility cuto¤

point) or make the program mandatory for the entire population, they must identify

ATE in the presence of multiple selection biases, that is, parts (b) to (e) in equation

(3), and also consider the correction function estimator.

3 Monte Carlo Experiments

In this section, we conduct a series of Monte Carlo experiments to investigate the

�nite sample performance of the proposed estimators with various sample sizes.16

We also demonstrate the trade-o¤ between e¢ ciency and bias in estimating the ATE

when the e¤ects covary with observables and unobservables.

16The series of Monte Carlo experiments uses sample sizes of 100, 200, 300, 400, 500, 600, 700,
800, 900, 1,000, 2,000, 3,000, 4,000, 5,000, and 10,000. All simulations are based on 1,000 trials.
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3.1 Design and Estimators

We specify the data-generating process (DGP) as follows: For the selection process, we

assume that the selection variable, z�, is uniformly distributed with support [�1; 1].

Therefore, E(z�) = 0, and V(z�) = 1=3. The eligibility indicator, z, is a binary

variable de�ned (without loss of generality) as 1fz� 6 0g. The binary treatment

status, d, is de�ned as 1f�0 + �1z + �2z� + v > 0g, where the unobservable in the

selection process, v, is assumed to have a standard normal distribution, N(0; 1).

An RD design ensures that �1 will be nonzero, so in the treatment probability, a

discontinuity occurs when z� equals 0. The magnitude of this discontinuity is

� � lim
z�#0

Pr(d = 1jz�)� lim
z�"0

Pr(d = 1jz�). (16)

We specify the expectation of the untreated potential outcome, conditional on the

selection variable (z�), E(y0jz�), which corresponds to (b) in equation (3), as follows:

E(y0jz�) � g0(z�) =

8><>: �0 + �1 cos(h) + �2h
2

�0 + �1 cos(z
�) + �2z

�2

(�h 6 z� 6 h)

(else),
(17)

and the error term, u0, is given by u0 = �0v + ", where " has a standard normal

distribution, N(0; 1), and is independent of v. For the expectation of the treated

potential outcome, conditional on the selection variable (z�), E(y1jz�), we specify the

following:

E(y1jz�) � g1(z�) =

8><>: �0 + �1 cos(h) + �2h
2 + E(�)

�0 + �1 cos(z
�) + 
1z

� + (�2 + 
2)z
�2 + E(�)

(�h 6 z� 6 h)

(else),

(18)

and the error term, u1, is given by u1 = (�0 + �1)v + �2v
2 + ". The �, assumed to

be normally distributed as N(1; 1), represents the e¤ect due solely to the treatment,
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which is independent of z�. This point corresponds to part (a) in equation (3). We

focus on two models for gj(z�) (j = 0; 1) based on the DGP: Model I with h set

to be 0 represents the case when E(yjjz�) is a non-constant function of z�, which

accommodates the situation in which treatment e¤ect heterogeneity exists due to z�,

that is, the presence of part (c) in equation (3). Model II with h set to be 1 represents

the case when yj is mean-independent from z� within the interval [�1; 1], precluding

the presence of part (c) in equation (3). The ATE conditional on z� is therefore

E(y1 � y0jz�) =

8><>: E(�)


1z
� + 
2z

�2 + E(�)

(�h 6 z� 6 h)

(else).
(19)

Throughout the experiments, we keep the values of the following parameters �xed:

� = 0:5, �0 = ���1((�+1)=2), �1 = 2��1((�+1)=2), �2 = �1, �0 = 1, �1 = 1,

�2 = 1, 
1 = 1, and 
2 = 3. Therefore, we have

ATE � E(y1 � y0) =

8><>: 2 (Model I: h = 0)

1 (Model II: h = 1).
(20)

The treatment e¤ect heterogeneity (g1(z�) � g0(z�)) due to observables can be ex-

plained by 
1z
� + 
2z

�2, which corresponds to part (c) in equation (3). The correla-

tion among the three unobservables, u0, u1, and v, depends on �0, �1 and �2. Given

that E(u1 � u0jv) is equal to �1v + �2v2, according to the DGP, the treatment e¤ect

heterogeneity (u1�u0) due to unobservables will correlate with v, which corresponds

to part (e) in equation (3), unless both �1 and �2 are equal to 0. We vary the values

of �0, �1, and �2 to investigate four cases that di¤er in terms of how the treatment

e¤ects covary with observables and unobservables. The �rst case occurs when treat-

ment selection relies only on observables such that all �0, �1, and �2 are set to 0. In

this case, the selection bias is due to observables, that is, part (b) in equation (3), and
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the treatment e¤ects covary with the observable (z�), that is, part (c) in equation (3).

Note that the eligibility indicator (z) can be used as an excluded IV in estimating

ATE. In the second case, the treatment selection is based on unobservables but only

with OVB, or part (d) in equation (3), where �0 is set to 1, but both �1 and �2 are

0. Treatment selection based on unobservables induces both OVB and sorting bias in

the third case, and all �0, �1, and �2 are set to 1. In this case, treatment e¤ects covary

nonlinearly with the unobservable (v), which corresponds to part (e) in equation (3).

The last case is the same as the third case, except that �2 is 0, so the treatment

e¤ects covary with the unobservable (v) only linearly. This case also implies that the

joint distribution of these three unobservables (u0; u1; v) is consistent with a trivariate

normal distribution.

In each trial, based on four criteria� mean bias, median bias, root mean squared

error (RMSE), and median absolute error� we evaluate the performance of the RD

robust estimator and the correction function estimator compared with the other three

estimators in Model I and Model II. To simplify the notation, we de�ne � and ez
as � � (�0; �1; �2)

0 and ez � (1; z; z�). We also denote b� as the estimate from a

probit model for d. For the proposed RD robust estimator (robust), in Model I, we

regress y on d � �(b�0ez) and �d� �(b�0ez)� (w �w) by ordinary least squares (OLS),
where w = (z�; z�2). In Model II, we regress y on d by IV using d � �(b�0ez) as the
instrument for d. To gauge the e¢ ciency loss on the basis of no speci�cation errors,

we compare this RD robust estimator with Robinson�s (1988) two-stage estimator. In

both models, in the �rst stage, we regress y on w by OLS, obtaining the residual ey; in
the second stage, we regress ey on d��(b�0ez) and �d� �(b�0ez)� (w�w) by OLS, where
w = (z�; z�2). For the proposed correction function estimator (corr func), in Model

I, we regress y on 1, d, w1, d(w2�w2), �(b�0ez), and �(b�0ez)� (b�0ez)�(b�0ez) by lV using
�(b�0ez) and �(b�0ez)(w2�w2) as the (excluded) instruments for d and d(w2�w2), where

w1 = (cos(z
�); z�), and w2 = (z�; z�2). In Model II, we regress y on 1, d, �(b�0ez), and

22



�(b�0ez)�(b�0ez)�(�0ez) by lV using�(b�0ez) as the (excluded) instrument for d. To focus on
the bias reduction in estimating ATE due to the correction function estimator�s ability

to deal with OVB and sorting, we preclude its speci�cation errors in g0(z�) and g1(z�).

We also compare this correction function estimator with the control function estimator

(ctrl func), on the basis of no speci�cation errors, to gauge the e¢ ciency loss if there is

only linear sorting (�2 equal to 0) and the bias reduction if the sorting is nonlinear (�2

not equal to 0). In Model I, we regress y on 1, d, w1, d(w2 �w2), d(�(b�0ez)=�(b�0ez)),
and (1� d)(�(�b�0ez)=�(�b�0ez)) by OLS, where w1 = (cos(z�); z�) and w2 = (z

�; z�2).

In Model II, we regress y on 1, d, d(�(b�0ez)=�(b�0ez)), and (1 � d)(�(�b�0ez)=�(�b�0ez))
by OLS. We also consider the OLS estimator with speci�cation errors in g0(z�) and

g1(z
�). In Model I, we regress y on 1, d, z�, and d(z� � z�). In Model II, we regress

y on 1 and d. We use the OLS estimator as the baseline for evaluating the e¢ ciency-

bias trade-o¤ of the RD robust estimator and the correction function estimator in

estimating ATE in the presence of multiple selection biases.

3.2 Results and Discussion

The Monte Carlo experiments show that the proposed estimators perform reasonably

well in �nite samples. The e¢ ciency-bias trade-o¤ in estimating ATE with various

selection biases considered� (b) to (e) in equation (3)� persists in large samples.

The results in Table 1 are based on a small sample with 100 observations and a

relatively large sample with 1,000 observations. The associated �gures demonstrate

the estimators�performance relative to the alternative based on three criteria� mean

bias, median bias, and RMSE� with a range of sample sizes from 100 to 10,000. All

simulations use 1,000 trials.

When the selection bias is only due to observables, in the presence of (b) and (c) in

equation (3), the results in Table 1 for Model I reveal that with the fuzzy RD design,
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the OLS estimator su¤ers from severe attenuation bias due to its misspeci�cation in

g0(z
�) and g1(z�). The downward bias is approximately 30% in terms of mean bias

and 29% in terms of median bias with a small sample of 100 observations. Such a

downward bias remains near 28% in terms of both mean bias and median bias when

the sample size reaches 1,000 observations. Furthermore, this attenuation bias is

approximately 30% for both mean bias and median bias, even with a sample of 10,000

observations, as we show in Figure 1. In contrast, the proposed RD robust estimator,

which avoids specifying g0(z�) and uses the RD�s eligibility indicator as an IV in the

d-equation, reduces the attenuation bias to 3% and 4% in terms of mean and median

bias, respectively, with 100 observations. The usefulness of this RD robust estimator

in removing the attenuation bias due to the misspeci�cation of g0(z�) becomes clear

with a relatively large sample of 1,000 observations. It results in a slightly upward

mean and median bias of 0.4% and 0.1%, respectively. The improvement on the

attenuation bias relies on using the �rst-stage residual, d � E(djz; z�), as an IV to

orthogonalize g0(z�) and the error terms in the second stage. Those orthogonality

conditions largely remove speci�cation errors in g0(z�) and the measurement errors.

In Model I, the RD�s eligibility indicator, which serves as an IV in the d-equation helps

reduce the attenuation bias signi�cantly, as Table 1 and Figure 1 show. Furthermore,

compared with the Robinson (1988) two-stage estimator and according to the correct

speci�cation of g0(z�) and g1(z�), the e¢ ciency loss that occurs from using the RD

robust estimator becomes fairly small when the sample size reaches 200 observations.

The kink point in the RMSE panel of Figure 2 demonstrates this loss.

When the OVB and nonlinear sorting bias are both present, the OLS estimator

su¤ers from a severe upward bias in both mean and median bias and in both Model I

and II. Figures 3 and 4 show that the magnitude of the upward bias stays relatively

constant across the entire range of the sample, from 100 to 10,000 observations. In

sharp contrast, in the presence of OVB and nonlinear sorting bias, with a small
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sample of 100 observations under Model II, the correction function estimator reduces

the upward bias to -24% in mean bias and down to -0.005% in median bias. Thus, the

correction function estimator can be sensitive to outliers in a small sample. However,

Table 1 shows that in Model II, when the sample size increases to 1,000 observations,

the correction function estimator cuts the upward bias down to 4% and 3% in mean

and median bias, respectively. Therefore, the correction function estimator appears

more reliable in bias reduction as the sample size increases. When OVB and nonlinear

sorting exist, Figure 3 shows that the correction function estimator is uniformly more

robust, in terms of the reduction in mean and median bias, than is the control function

estimator in Model II. Furthermore, Figure 4 shows that if Model II contains only

linear sorting and the underlying joint distribution of (u0, u1, v) is consistent with a

trivariate normal distribution, the e¢ ciency loss of the correction function estimator,

traded for its bias reduction, can be greatly reduced when the sample size reaches

400 observations. In Model I, with treatment e¤ect heterogeneity due to z�, the

correction function estimator does not work well in terms of mean and median bias

with moderate sample sizes unless the sample size gets very large.

4 Empirical Application

In this section, we reexamine an education program evaluation studied by Chay, McE-

wan, and Urquiola (2005) based on a fuzzy RD design. We show the improvement

associated with using the proposed RD robust estimator on bias reductions and e¢ -

ciency gains relative to the two-stage least squares (2SLS) estimator used by Chay,

McEwan, and Urquiola (2005). When the treatment selection is based on observables

only, the RD robust estimator reduces the bias, because it can eliminate speci�cation

errors in the untreated potential outcome. Such speci�cation errors may occur when

estimating the conditional expectation of the observed outcome using 2SLS. The RD
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robust estimator also o¤ers e¢ ciency gains because of the over-identifying restriction

imposed by the RD�s eligibility criterion, which is exclusive to the selection process,

and the propensity score estimated in the �rst stage (Hirano, Imbens, and Ridder,

2003). This improvement with selection on observables can be falsi�ed by the pres-

ence of sorting bias. When heterogeneous treatment e¤ects are induced by sorting,

ignoring the sorting will misstate the actual program e¤ects. The correction func-

tion estimator suggests a speci�cation test based on the signi�cance of its correction

terms.17 If sorting is detected in a study�s chosen population, the assumption of se-

lection on observables should be rejected. Such a speci�cation check is implied by the

RD�s IV nature; the construction of those correction terms is detailed in Theorem 3.

The signs of the correction terms indicate the existence of cream skimming or adverse

selection.

To improve school performance, Chile�s government initiated the �900 School Pro-

gram�(P-900, henceforth), a countrywide intervention to target low-performing and

publicly funded schools (Chay, McEwan, and Urquiola, 2005) in 1990.18 Eligibility

for this program, based on which approximately 900 schools would be selected, is

determined by school-level average test scores of fourth graders in 1988. Speci�cally,

this program�s participation was largely determined by whether a school�s average

test score fell below a cuto¤ score in its region, chosen by the Ministry of Education.

As Chay, McEwan, and Urquiola (2005) emphasize, the schools�1988 test scores were

17Because these correction terms are constructed from the data, we confront the problem of
generated regressors. Wooldridge (2002) shows that inferences based on the usual t-statistic, under
the null hypothesis, are still valid. However, if the null hypothesis is suspected, a correction should
be made for the generated regressor problem. The bootstrap can be used to deal with such problems.
18There are four interventions associated with this program: (1) infrastructure improvement, such

as building repairs; (2) new instructional materials, including textbooks for students from grades 1 to
4, small classroom libraries, cassette recorders, and copy machines; (3) training workshops (focusing
on teaching language and mathematics) for school teachers conducted by local supervisors of the
Ministry of Education; and (4) after-school tutoring workshops for third and fourth graders who
did not perform well enough relative to their grade level. Each workshop was guided by two trained
aides recruited from graduates of local secondary schools. Interventions (1) and (2) were the focus
of the �rst two years (1990 and 1991), and P-900 was expanded to include (3) and (4) in 1992.
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collected under a di¤erent political regime, at which time there was no anticipation

of such an intervention. Therefore, it is plausible that schools had no incentive to

manipulate their test performance in 1988 to qualify for the P-900.

The actual P-900 assignment involved two stages. During the �rst stage in 1988,

the Ministry of Education administered countrywide achievement tests to the popula-

tion of fourth graders. O¢ cials of the Ministry then calculated each school�s average

test scores in language and mathematics and the average of both averages. These

scores were ranked from the highest to the lowest in each of Chile�s 13 administra-

tive regions. Separate cuto¤ scores for each region were determined by the Ministry.

Schools for which the overall average fell below the within-region�s cuto¤ score were

eligible to participate in the P-900. In the second stage, regional teams of o¢ cials

added two criteria to �lter out some eligible schools. First, to lower program costs,

some very small or inaccessible schools were excluded, in part because a parallel pro-

gram was designed to accommodate them. Second, schools were removed from the

preselected list if they had managerial problems, such as misreported enrollment. Us-

ing their own discretion, the regional teams also included certain schools that were

ineligible according to the �rst-stage criteria.19 From a school�s perspective, there was

no incentive to forgo participation, because the national government covered the full

costs. Accordingly, the deviation of schools�P-900 status from their initial eligibility

is largely due to unobserved criteria introduced by the program�s administers.20

To be consistent with Chay, McEwan, and Urquiola (2005), we focus on whether P-

900 had signi�cant e¤ects on the test score (mathematics and language) gains of fourth

graders over the period 1988-1992. As they point out, average test scores in 1988 may

provide a noisy measure of school performances and a misleading ranking of schools.

For example, a school�s appearance at the bottom of the ranking and its selection

19For details, see table 2 in Chay, McEwan, and Urquiola (2005).
20For the outcomes of the actual two-stage program assignment and the deviations from the test-

score based initial eligibility, see �gure 3 in Chay, McEwan, and Urquiola (2005).
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into P-900 may be the result of transitory bad luck in the testing year. Because

transitory noise can be mean reverting, test scores in this school would rebound in

the next period, even in the absence of the P-900 intervention, unless that bad luck

is persistent. Thus, ignoring the mean-reversion noise will overstate P-900�s actual

e¤ect.21 As Chay, McEwan, and Urquiola (2005) suggest, we can e¤ectively remove

the impact of the mean-reversion noise by controlling for a smooth function of the

1988 test score, close to the cuto¤ point, using RD�s borderline experimental nature.

Because schools closer to the assignment cuto¤ are more likely to be randomized into

the treatment, mean-reversion noises experienced by these schools are more likely to

be similar on average. Thus, the direct impact of a common mean-reversion noise can

be absorbed by the intercept term included in the outcome equation. The indirect

impact of the mean-reversion noise goes through the 1988 test score, so we can use the

1988 test score as a proxy variable for the transitory noise.22 The RD design�s selection

cuto¤ provides a unique tool to deal with the direct impact of unobservables, such

as the mean-reversion noise. However, as we focus on the population near the cuto¤,

where OVB can be precluded by removing the direct impact of the mean-reversion

noise, as argued by Chay, McEwan, and Urquiola (2005), we still need to deal with

the sorting bias due to the interaction between the treatment and the unobservables.

To detect such sorting biases, we use a t-test for the correction terms, as suggested

by Wooldridge (2002).

Table 2 provides estimates of P-900 e¤ects. To deal with selection bias due to

observables, we follow Chay, McEwan, and Urquiola (2005), controlling for school-

21Chay, McEwan, and Urquiola (2005) �nd that �transitory noise in average scores, and the
resulting mean reversion, lead conventional estimation approaches to overstate greatly the positive
impact of P-900. For example, di¤erence-in-di¤erences estimates suggest that P-900 increased 1988-
1992 test score gains by 0.4 to 0.7 standard deviations; yet using P-900-type assignment rules, we
can generate similar e¤ects during earlier periods in which the program was not yet in operation
(1984-88).� Figure 5 in Chay, McEwan, and Urquiola (2005) provides evidence of mean-reversion
noises and the program�s impact.
22In this case, the mean-reversion noise turns into a classical measurement error in the actual 1988

test score.
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level socioeconomic status (SES),23 because P-900 may have encouraged the children

of some households to exit or enter the treated schools if parents interpreted program

selection as a signal that the institution was not adequately serving their children or if

they thought their children could bene�t from additional resources. The construction

of the correction terms follows Theorem 4.

The 2SLS in Panel A is the one proposed by Chay, McEwan, and Urquiola (2005),

which uses the eligibility indicator as the instrument for the P-900 treatment status.

We propose the RD robust estimator in Panel A, which uses a probit model for the

P-900 treatment status. The regressors included in the probit model in addition to

the eligibility indicator (the excluded instrument) are cubic polynomials for the 1988

average test scores, SES in 1990, and the changes in SES between 1990 and 1992. The

RD robust estimator uses the �rst-stage residual, which is the deviation between the

P-900 treatment status and the estimated treatment probability, as the instrument

for the actual treatment status. The correction function estimator with the cubic

polynomial correction terms that we propose appears in Panel B. The correction

function estimator with only the linear sorting correction term in Panel B has been

proposed by Wooldridge (2002). For cases (1)-(4) in Panels A and B, we include in

the outcome equation the P-900 dummy, cubic polynomials for the 1988 average test

score, SES in 1990, and the changes in SES between 1990 and 1992, to be consistent

with Chay, McEwan, and Urquiola (2005, table 5).

The results depicted in this table highlight the following: First, in Panel A, case

(1), the e¢ ciency-bias trade-o¤ emerges when 2SLS is applied. With the full sample,

the P-900 e¤ect, which is approximately 0.32 standard deviations in both mathemat-

ics and language, is statistically signi�cant. However, in the presence of OVB and

the sorting bias, which are likely to exist in the full sample, this estimate is biased

23The SES index measures student SES, as reported by the Junta Nacional de Auxilio Escolar y
Beca. It is scaled 0-100, with higher values indicating higher SES.

29



and loses the ATE interpretation, because the sorting bias has been detected by the

quadratic correction term in the correction function estimator, as shown in Panel B

and the �Full Sample� column. As we focus on the schools close to the selection

threshold, the OVB can be removed because the direct impact of the mean-reversion

noise is likely to be similar on average between schools just above and those just below

the threshold. Without the sorting bias near the selection threshold, the estimates of

P-900 e¤ects will regain the ATE interpretation, though at the cost of e¢ ciency. As

columns ��5 Points�and ��2 Points�in Panel A show, the 2SLS estimates become

statistically insigni�cant.

Second, in Panel A, case (2), the RD robust estimator improves on the e¢ ciency-

bias trade-o¤. Similar to 2SLS, the RD robust estimator shows that P-900 has a

signi�cant e¤ect of roughly 0.31 standard deviations in both mathematics and lan-

guage with the full sample. However, such e¤ects can be biased in the presence of

OVB and the sorting bias, which suggests they have limited internal validity. Con-

sidering the schools near the threshold for which the impacts of unobservables on

average can be removed and internal validity therefore enhanced, the RD robust es-

timator detects P-900 e¤ects between 0.22 and 0.34 standard deviations at 1% to 5%

signi�cance levels. Compared with the existing RD estimators focusing on the e¤ect

only at the threshold, this proposed RD robust estimator can obtain the ATE for a

prede�ned population local to the threshold with greater external validity. Compared

with the commonly used 2SLS in empirical RD applications, this estimator also has

greater internal validity because it can avoid speci�cation errors that 2SLS incurs

when estimating the conditional expectation of the untreated outcomes.

Third, the correction terms in Panel B, case (3), controlling for the sorting, are

useful for testing the selection-on-observables assumption on which the 2SLS and the

RD robust estimator rely. With the full sample, the sorting bias gets detected by

the quadratic sorting correction terms of the correction function estimator (for both
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mathematics and language). Thus, the estimated P-900 e¤ect for the full sample,

given by either the 2SLS or the RD robust estimator in Panel A (roughly 0.3 standard

deviations and statistically signi�cant), is biased and has limited internal validity. In

contrast, in the columns ��5 Points�and ��2 Points�in Panel B, none of the sorting

correction terms of the correction function estimator are statistically signi�cant, which

suggests the absence of either adverse selection or cream skimming. In this sense, the

RD robust estimator provides the estimated ATE for P-900, which is roughly 0.3

standard deviations for a population of schools close to the selection threshold. The

correction terms of the correction function estimator in Panel B, case (3), con�rm the

validity of this ATE interpretation.

Fourth, the correction function estimator proposed byWooldridge (2002), in Panel

B, case (4), forces the sorting to be globally linear, either positive (cream skimming)

or negative (adverse selection). The contrast in the P-900 e¤ect estimates appears

for both mathematics and language in cases (3) and (4) in the �Full Sample�column.

The proposed correction function estimator detects a U-shaped sorting pattern, based

on the positive sign of the quadratic sorting correction term. Furthermore, the cubic

sorting correction term is insigni�cant for both mathematics and language, which

con�rms the U-shaped sorting pattern. In contrast, Wooldridge�s (2002) estimator

detects the negative sorting only, which leads to a possibly over-estimated program

e¤ect when the positive sorting is ignored. For both the mathematics and language

gain scores, the magnitude of Wooldridge�s (2002) P-900 estimates is approximately

55%-60% greater than those given by the proposed correction function estimator with

cubic correction terms, which can take into account the nonlinear sorting.

The correction function estimator also has greater external validity than the RD

robust estimator, because the former is aimed at the ATE for the entire population,

which is the e¤ect for a treatment that is supposed to be mandatory for every subject

in the population. The latter instead applies to a population close to the selection

31



cuto¤. However, this gain in external validity comes at the cost of internal validity,

because the parametric assumptions imposed by the correction function estimator

make it susceptible to speci�cation errors. In contrast, the RD robust estimator

trades external validity for greater internal validity, because it can avoid certain spec-

i�cation errors and therefore gives compelling estimates for a chosen population near

the threshold. In Table 2, the estimated program e¤ect given by the RD robust es-

timator shows that the 1988-1992 gain score of P-900 schools is approximately 0.3

standard deviations higher than the non-P-900 schools. Therefore, the average P-

900 school achieves approximately 62% of the non-P900 school distribution, which

suggests a moderate improvement for a population of schools close to the selection

threshold. On the basis of this estimate, P-900 e¤ectiveness can be used to construct

some cost-bene�t measures, such as the per-student expenditure necessary to raise

average test score by 0.1 standard deviation. To conduct a cost-bene�t analysis for

the entire population of schools, not just those close to the selection threshold, we

would need to use the correction function estimator. In the absence of speci�cation

errors, this estimator gives the program�s impact on a randomly selected school from

the entire population, which is the approximately 0.7 standard deviations gain shown

in Table 2.

The RD robust estimator also gives compelling ATE estimates for a population

near the selection threshold, whereas the correction function estimator with correct

parameterization o¤ers ATE estimates for the entire population. The plausibility of

the ATE identi�cation using the correction function estimator depends on the point in

the distribution at which the discontinuity occurs. Choosing between the RD robust

estimator and the correction function estimator represents the balance between a

study�s internal and external validity, which should be guided by the research question

or the population of interest, well before any estimations take place. The RD robust

estimator further allows for the e¢ cient estimation of an average e¤ect in a range
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of observations local to the discontinuity. Within that range, the correction function

estimator suggests speci�cation tests for the validity of an ATE interpretation, which

will be invalidated in the presence of sorting. In the P-900 example, comparing

the gains of schools just above and just below the RD�s selection cuto¤ e¤ectively

eliminates the direct impact of mean-reversion noises. The RD robust estimator

thus appears able to improve the e¢ ciency-bias trade-o¤ that arises in the presence

of treatment e¤ect heterogeneity. On the one hand, these bene�ts depend on the

validity of the RD design�s borderline experiments; on the other hand, the RD design�s

instrumental nature provides a speci�cation check for the plausibility of this quasi-

experiment and the validity of an ATE interpretation for the chosen population.

The strategies illustrated herein, which integrate the RD design�s dual nature for

compelling inference, should be applicable whenever tests or other �prescores�with

observable selection cuto¤s serve to allocate a program and the cuto¤s themselves

induce variations that are exclusive to the selection process.

5 Conclusion

Previous work on the RD design emphasizes the identi�cation and estimation of an

e¤ect at the selection threshold, which pinpoints the measurement of the size of the

discontinuity. This paper discusses treatment e¤ect evaluations with the virtue of the

RD design�s dual nature� that is, a borderline experiment provided near the thresh-

old and a strong and valid exclusion restriction provided in the selection equation for

the choice of treatment. Focusing on the fuzzy RD design, this paper proposes two

new estimators to deal with multiple selection biases. The �rst, RD robust estimator,

is applicable to a population close to the threshold, where selection on observables can

be justi�ed by RD�s borderline experiment. This estimator avoids speci�cation errors

in the conditional expectation of the untreated potential outcome. The e¢ ciency gain
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associated with this estimator is due largely to RD�s exclusion restriction, as provided

in the selection equation. It also allows for the interaction between the observables

and the treatment, which requires parametric assumptions about the treatment e¤ect

heterogeneity. To deal with selection on unobservables, this paper attempts to inte-

grate RD literature with broader literature on selection biases when one has a valid

exclusion restriction and thus proposes a second estimator� the correction function

estimator� that takes into account the heterogeneous sorting through moment restric-

tions between unobservables in the selection and potential outcome equations. This

proposed estimator shares the same parametric nature with Wooldridge�s (2002) cor-

rection function estimator, but it extends the existing approach to the case in which

a nonlinear sorting pattern (with both cream skimming and adverse selection) is

allowed and can be detected by adding the cubic polynomial correction terms to

Wooldridge�s (2002) linear speci�cation. Both proposed estimators are easy to im-

plement using standard software. In addition, this research examines their large and

small sample performances through a series of Monte Carlo experiments. We reex-

amine an existing empirical study to show the improvement that both estimators

bring to the e¢ ciency-bias trade-o¤ in evaluating an education program assigned on

the basis of test score cuto¤s. Choosing between the RD robust estimator and the

correction function estimator involves a careful balance between a study�s internal

validity and its external validity, and this balance should be guided by the research

question or the population of interest. For example, evaluating the program impact

for a population close to the initial cuto¤ point would be necessary if the cuto¤might

be changed later, and the RD robust estimator can be useful in this assessment. If the

program is likely to be made mandatory for the entire population, identifying ATE

in the presence of selection bias due to both observables and unobservables would be

necessary, and the correction function estimator therefore should be considered.
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A Proof of Theorem 1

In Section 2.1, the observed outcome is written as

y = g0(z
�) + �d+ (�(z�)� E(�(z�)))d+ ee, ee � e+ d(� � E(�)), e � u0 + d(u1 � u0)

) y � E(yjz; z�) = �(d� E(djz; z�)) + (�(z�)� E(�(z�))(d� E(djz; z�)) + ee. (21)

Note that with selection on observables, Assumption 2, and � q (d; z�), we have24

E(eejz; z�) = E(u0 + d(u1 � u0)jz; z�) + E(djz; z�)E(� � E(�))

= E(djz; z�)E(u1jz; z�)� E(djz; z�)E(u0jz; z�) (because u0 ? djz� and u1 ? djz�)

= 0. (22)

We next verify two moment equations:

0 = E[(d� E(djz; z�))ee] and (23)

0 = E[(d� E(djz; z�))(�(z�)� E(�(z�))ee]. (24)

With selection on observables and Assumption 2, we have

E[(d� E(djz; z�))eejz�] = E[(d� E(djz; z�)) (u0 + d(u1 � u0) + d(� � E(�))) jz�]

= 0 + E[(� � E(�))E(V(djz; z�))] = 0, (25)

which implies

E[(d� E(djz; z�))ee] = EfE[(d� E(djz; z�))eejz�]g = 0, and
E[(d� E(djz; z�))(�(z�)� E(�(z�))ee] = 0. (26)

24We use �?�for orthogonality.
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Under Assumption 3, we have:

0 = E[(d� E(djz; z�))ee], (27)

0 = E[(d� E(djz; z�))(w � E(w))0
ee], and (28)

ee = y � E(yjz; z�)� �(d� E(djz; z�))� (d� E(djz; z�))(w � E(w))0
. (29)

To simplify notations, we de�ne the following:

x1 � d� E(djz; z�),

x2 � (d� E(djz; z�))(w � E(w)), and

ey � y � E(yjz; z�),

and we have ey = �x1 + x02
 + ee, with the following orthogonality conditions:
E(x1ee) = 0 and E(x2ee) = 0. (30)

Therefore, 264 E(x21) E(x1x02)

E(x1x2) E(x2x02)

375 �
264 �



375 =
264 E(x1ey)
E(x2ey)

375 , (31)
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where

E(x21) = E[ (d� E(djz; z�))2] = E(V(djz; z�)),

E(x1x2) = E[ (d� E(djz; z�))2 (w � E(w))] = E[V(djz; z�) (w � E(w))],

E(x2x02) = E[V(djz; z�) (w � E(w)) (w � E(w))0],

E(x1ey) = E [(d� E(djz; z�)) (y � E(yjz; z�))] = E [(d� E(djz; z�)) y]

= E(x1y), and

E(x2ey) = E [(d� E(djz; z�))(w � E(w)) (y � E(yjz; z�))] = E [(d� E(djz; z�))(w � E(w))y]

= E(x2y).

Then we de�ne � � (�; 
0)0 and x � (x1;x
0
2)
0, and we attain the following �least

squares�estimator:

� = E�1 (xx0)E (xy) . (32)

x = (d� E(djz; z�); (d� E(djz; z�))(w � E(w))0)0 . (33)

We next solve for � and 
 separately, using results from Amemiya (1985, p. 460):

264 E(x21) E(x1x02)

E(x1x2) E(x2x02)

375
�1

=

264 E�1 �E�1BD�1

�D�1CE�1 F�1

375 , (34)

where

A � E(x21), B � E(x1x02), C � E(x1x2), D � E(x2x02),

E = A�BD�1C = E(x21)� E(x1x02)E�1(x2x02)E(x1x2), and

F = D � CA�1B = E(x2x02)� E(x1x2)E�1(x21)E(x1x02).
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Thus, we have

� = E�1
�
E(x1y)�BD�1E(x2y)

�
=

E(x1y)� E(x1x02)E�1(x2x02)E(x2y)
E(x21)� E(x1x02)E�1(x2x02)E(x1x2)

� ATE, (35)

and


 = �D�1CE�1E(x1y) + F�1E(x2y)

=
�
E(x2x02)� E(x1x2)E�1(x21)E(x1x02)

��1 E(x2y)
� E�1(x2x02)E(x1x2)E(x1y)
E(x21)� E(x1x02)E�1(x2x02)E(x1x2)

. (36)

B Proof of Theorem 2

This proof is largely based on Wooldridge�s (2002) Chapter 6, Appendix 6A. The

regressors included in the model de�ned at the population are:

x �
�
(d� p(z; z�;�)) ; (d� p(z; z�;�)) (w � �)0

�0 � f(d; z; z�;w;�;�). (37)

Some of the regressors included in the actual model are generated from a random

sample, i = 1; 2; � � � ; N :

bx � [(d� p(z; z�; b�)); (d� p(z; z�; b�)) (w � b�)0]0 � f(d; z; z�;w; b�; b�) (38)

The actual model used for estimation, based on a random sample, is

yi = bx0i� + h(z�i ) + eeei = bx0i� + (xi � bxi)0� + h(z�i ) + eei, E(eeijz�i ) = E(eeijdi; z�i ) = 0, and
h(z�i ) = g0(z

�
i ) + �p(zi; z

�
i ;�) + p(zi; z

�
i ;�) (wi � �)

0 
, where p(z; z�;�) � E(djz; z�).
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The RD robust estimator is:

b�RD-robust =  NX
i=1

bxibx0i
!�1 NX

i=1

bxiyi! . (39)

We next show the consistency and asymptotic normality of b�RD-robust.
� Consistency

Because b� = w and � � E(w), the consistency b� p! � holds because of the

law of large numbers. If b� p! � also holds, then, by Slutsky�s theorem, we have

p(z; z�; b�) p! p(z; z�;�) and bx p! x. Therefore,

1

N

NX
i=1

bxibx0i p! E(xx0) � A0. (40)

Given that E(eejz�) = E(eejd; z�) = 0, we have
b�RD-robust = � +

 
1

N

NX
i=1

bxibx0i
!�1 

1

N

NX
i=1

bxi(xi � bxi)0� + 1

N

NX
i=1

bxih(z�i ) + 1

N

NX
i=1

bxieei!
p! � + E�1(xx0) [E(xh(z�)) + E(xee)] = �. (41)

Consistency is established straightforwardly.

� Asymptotic Normality

For the RD robust estimator, we have:

p
N
�b�RD-robust � �� =  1

N

NX
i=1

bxibx0i
!�1 

1p
N

NX
i=1

bxi[(xi � bxi)0� + yi � x0i�]
!
. (42)

Consider a �rst-order Taylor expansion for bx � f(d; z; z�;w; b�; b�) at (�0;�0)0:
1p
N

NX
i=1

bxi(xi � bxi)0� = 1p
N

NX
i=1

(� 
 bx0i)0 (xi�bxi), (43)

39



where

1p
N

NX
i=1

(� 
 bx0i)0 (xi�bxi)
=

1p
N

NX
i=1

(� 
 bx0i)0��@xi
@b�0 (b�� �)� @xi

@b�0 (b�� �) + op(1)
�

= �B0
p
N(b�� �) + op(1) (44)

with the following de�nition:

B0 � E
�
(� 
 x0)0 @x

@�0

�
. (45)

Now, we have

p
N
�b�RD-robust � �� =

 
1

N

NX
i=1

bxibx0i
!�1 

1p
N

NX
i=1

bxi[(xi � bxi)0� + h(z�i ) + eei]
!

= A�10
1p
N

NX
i=1

(xi (yi � x0i�)�B0ri(�)) + op(1), and

p
N(b�� �) =

1p
N

NX
i=1

ri(�) + op(1), (46)

where ri(�) is the in�uence function with E(ri(�)) = 0. With selection on observables,

we also have E(xi (yi � x0i�)) = E(xi(h(z�i ) + eei)) = 0. Applying the central limit

theorem to

p
N
�b�RD-robust � �� = A�10 1p

N

NX
i=1

(xi (yi � x0i�)�B0ri(�)) + op(1), (47)
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we obtain

p
N
�b�RD-robust � �� d�! N

�
0; A�10 
A

�1
0

�
, where 
 � V (x (y � x0�)�B0r(�)) ,

(48)

together with the in�uence function for
p
N(b�� �):

p
N(b�� �) = 1p

N

NX
i=1

ri(�) + op(1), E(ri(�)) = 0. (49)

Asymptotic normality is thus established.

C Proof of Theorem 3

Apply the law of iterated expectation:

E(d(u1 � u0)jz; z�) = Ev[dE((u1 � u0)jz; z�; v)jz; z�]

= Ev[d(�1v + �2v2 + �3v3)jz; z�]

= �1Ev(dvjz; z�) + �2Ev(dv2jz; z�) + �3Ev(dv3jz; z�). (50)

Compute the following:

�1Ev(dvjz; z�) = �1

Z +1

�1
1f�0 + �1z + �2z� + s > 0gs�(s)ds

= �1

Z +1

��0��1z��2z�
s�(s)ds = �1

Z +1

��0��1z��2z�
��0(s)ds

= �1�(�0 + �1z + �2z
�) (51)
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and

�2Ev(dv2jz; z�) = �2

Z +1

�1
1f�0 + �1z + �2z� + s > 0gs2�(s)ds (52)

= �2

Z +1

��0��1z��2z�
s2�(s)ds = �2

Z +1

��0��1z��2z�
(�00(s) + �(s))ds

= �2 [�(�0 + �1z + �2z
�)� (�0 + �1z + �2z�)�(�0 + �1z + �2z�)]

and

�3Ev(dv3jz; z�) = �3

Z +1

�1
1f�0 + �1z + �2z� + s > 0gs3�(s)ds (53)

= �3

Z +1

��0��1z��2z�
s3�(s)ds = �3

Z +1

��0��1z��2z�
(3s�(s)� �000(s))ds

= �3
�
2�(�0 + �1z + �2z

�) + (�0 + �1z + �2z
�)2�(�0 + �1z + �2z

�)
�
.

D Proof of Theorem 4

This proof is largely based on Wooldridge�s (2002) Chapter 6, Appendix 6A. The

regressors included in the model de�ned at the population are:

x � (1;w0; d; d(w � �)0; �(ez0�);�(ez0�)� (ez0�)�(ez0�); 2�(ez0�) + (ez0�)2�(ez0�))0
� f(d;ez;w; �;�). (54)

Some of the regressors included in the actual model are generated from a random

sample, i = 1; 2; � � � ; N :

bxi � (1;w0
i; di; di(wi � b�)0; �(ez0ib�);�(ez0ib�)� (ez0ib�)�(ez0ib�); 2�(ez0ib�) + (ez0ib�)2�(ez0ib�))0

� f(di;ezi;wi; b�; b�). (55)
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The instruments (both included and excluded) used in the population model are

z � (1;w0;�(ez0�);�(ez0�)(w � �)0; �(ez0�);�(ez0�)� (ez0�)�(ez0�); 2�(ez0�) + (ez0�)2�(ez0�))0
� g(ez;w; �;�). (56)

Similarly, some of the instruments included in the actual model are generated from a

random sample, i = 1; 2; � � � ; N :

bzi � (1;w0
i;�(ez0ib�);�(ez0ib�)(wi � b�)0; �(ez0ib�);�(ez0ib�)� (ez0ib�)�(ez0ib�); 2�(ez0ib�) + (ez0ib�)2�(ez0ib�))0

� g(ezi;wi; b�; b�). (57)

The actual model used for estimation, based on a random sample, is

yi = bx0i� + eeei = bx0i� + (xi � bxi)0� + eei, E(eeijezi) = 0.
di = 1fez0i� + vi > 0g, where vi � i.i.d. N(0; 1).

The correction function estimator is:

b�crrf =  NX
i=1

bzibx0i
!�1 NX

i=1

bziyi! . (58)

We next show the consistency and asymptotic normality of b�crrf .
� Consistency

Because b� = w and � � E(w), the consistency b� p! � holds because of the

law of large numbers. If b� p! � also holds, then, by Slutsky�s theorem, we have
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�(ez0b�) p! �(ez0�) and �(ez0b�) p! �(ez0�). Therefore, we have
bzi � g(ezi;wi; b�; b�) p! g(ezi;wi; �;�) � zi.bxi � f(di;ezi;wi; b�; b�) p! f(di;ezi;wi; �;�) � xi.

(59)

1

N

NX
i=1

bzibx0i p! E(zx0) � A0. (60)

Given that E(eejz) = 0,
b�crrf =  1

N

NX
i=1

bzibx0i
!�1 

1

N

NX
i=1

bziyi! p! E�1(zx0)E(zx0)� + E(zee) = �. (61)

Consistency is established straightforwardly.

� Asymptotic Normality

Since v � N(0; 1), b� is obtained from a probit model, and b� p�! �. For the cor-

rection on the asymptotic variance of b�crrf, recall the in�uence function representation
of a probit model:

p
N(b� � �) =

1p
N

NX
i=1

ri(�) + op(1). (62)

ri(�) � E�1
�

�2(ez0i�)eziez0i
�(ez0i�) (1� �(ez0i�))

�
�(ez0i�)ezi(di � �(ez0i�))
�(ez0i�) (1� �(ez0i�)) , and E (ri(�)) = 0.

Similarly, for b� = w, b� has the following asymptotic properties:
b� p! � and

p
N(b�� �) d! N(0;�w), where �w � V(w). (63)

For the correction function estimator, we have:

p
N(b�crrf � �) =  1

N

NX
i=1

bzibx0i
!�1

1p
N

NX
i=1

bzi[(xi � bxi)0� + eei]. (64)
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Consider a �rst-order Taylor expansion for bzi � g(ezi;wi; b�; b�) at (�0;�0)0:
1p
N

NX
i=1

bzieei
=

1p
N

NX
i=1

zieei + (65)

1

N

NX
i=1

�
@g(ezi;wi; �;�)

@b�0 eeipN (b� � �) + @g(ezi;wi; �;�)
@b�0 eeipN (b�� �)�+ op(1).

Because E(eeijezi) = 0, we obtain the following results:
1

N

NX
i=1

@g(ezi;wi; �;�)
@b�0 eei p! E

�
@g(ezi;wi; �;�)

@b�0 eei� = 0) 1

N

NX
i=1

@g(ezi;wi; �;�)

@b�0 eei = op(1).
1

N

NX
i=1

@g(ezi;wi; �;�)
@b�0 eei p! E

�
@g(ezi;wi; �;�)

@b�0 eei� = 0) 1

N

NX
i=1

@g(ezi;wi; �;�)

@b�0 eei = op(1).
Because

p
N (b� � �) = Op(1), pN (b�� �) = Op(1), and op(1)Op(1) = op(1),

1p
N

NX
i=1

bzieei = 1p
N

NX
i=1

zieei + op(1). (66)

Similarly, we consider a �rst-order Taylor expansion for bxi � f(di;ezi;wi; b�; b�) at
(�0;�0)0:

1p
N

NX
i=1

bzi(xi � bxi)0� = 1p
N

NX
i=1

(� 
 bz0i)0(xi � bxi), (67)

where

1p
N

NX
i=1

(� 
 bz0i)0(xi � bxi)
=

1p
N

NX
i=1

(� 
 bz0i)0��@f(di;ezi;wi; �;�)

@b�0 (b� � �)� @f(di;ezi;wi; �;�)
@b�0 (b�� �) + op(1)�

= �B0
p
N (b� � �)�B1pN (b�� �) + op(1), (68)
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with the following de�nitions:

B0 � E
�
(� 
 z0)0@f(d;ez;w; �;�)

@�0

�
= E

��
2�3 � (ez0�)2 + �2ez0� � �1� (ez0�)�(ez0�)zez0� , and

B1 � E
�
(� 
 z0)0@f(d;ez;w; �;�)

@�0

�
= �E (dz) 
0. (69)

Combining the expansion results for both bzi � g(ezi;wi; b�; b�) and bxi � f(di;ezi;wi; b�; b�),
we attain

p
N(b�crrf � �) = A�10

 
�B0

p
N (b� � �)�B1pN (b�� �) + 1p

N

NX
i=1

zieei!+ op(1).
(70)

We next derive the in�uence function representation for b�crrf, substituting the results
from the probit model:

p
N(b�crrf � �) = A�10 1p

N

NX
i=1

[zieei �B0ri(�)�B1(wi � �)] + op(1). (71)

According to the condition E(eejz) = 0, E (ri(�)) = 0, we note
E(zieei �B0ri(�)�B1(wi � �)) = E(zieei)� E(B0ri(�))� E(B1(wi � �)) = 0. (72)

Applying the central limit theorem to

p
N(b�crrf � �) = A�10 1p

N

NX
i=1

[zieei �B0ri(�)�B1(wi � �)] + op(1), (73)

we obtain

p
N(b�crrf � �) d�! N

�
0; A�10 
A

0�1
0

�
, where 
 � V(zee�B0r(�)�B1(w��)). (74)

Asymptotic normality is thus established.
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Table 1:  Estimating ATE in the Presence of Multiple Selection Biases

100 observations Mean Bias Median Bias

1,000 replications (1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

Selection biases: part (b) to part (e) in equation (*) Robust Robinson Corr Func Ctrl Func OLS Robust Robinson Corr Func Ctrl Func OLS

Model I (h  = 0, ATE = 2):

part (b) and (c): eligibility indicator not used in d ­equation ­0.0289 ­0.0355 ­0.4948 ­0.1695 ­0.5875 ­0.0923 ­0.0346 ­0.4342 ­0.0565 ­0.5742
part (b) and (c): eligibility indicator used in d ­equation 0.0600 0.0177 ­0.4948 ­0.1695 ­0.5875 0.0316 0.0003 ­0.4342 ­0.0565 ­0.5742

part (b), (c), and (d): OVB and no sorting 1.9880 1.8957 0.9826 ­0.3382 0.9911 1.9636 1.8905 0.7736 ­0.0810 0.9975

part (b), (c), (d), and (e): OVB and nonlinear sorting bias 4.9471 4.7455 ­2.1060 ­0.2735 3.2545 4.8245 4.6439 2.7350 0.5569 3.2298

part (b), (c), (d), and (e): OVB and linear sorting bias 2.9462 2.8456 0.8983 ­0.5721 1.7829 2.9318 2.8206 1.3526 ­0.0897 1.7892
Model II (h  = 1, ATE = 1):

part (b) and (c): eligibility indicator not used in d ­equation 0.0386 0.0462 1.0394 ­0.0491 0.0120 0.0310 0.0301 ­0.0736 ­0.0239 0.0107

part (b) and (c): eligibility indicator used in d ­equation 0.0458 0.0351 1.0394 ­0.0491 0.0120 0.0428 0.0245 ­0.0736 ­0.0239 0.0107

part (b), (c), and (d): OVB and no sorting 1.9047 1.8784 2.0628 ­0.0743 0.8115 1.9127 1.8954 ­0.0138 ­0.0326 0.8117

part (b), (c), (d), and (e): OVB and nonlinear sorting bias 4.5638 4.5124 ­0.4807 0.3376 2.2141 4.4952 4.4672 ­0.0001 0.3868 2.2186

part (b), (c), (d), and (e): OVB and linear sorting bias 2.8240 2.7889 1.4917 ­0.0955 1.2019 2.8308 2.7867 0.0928 ­0.0502 1.1882

100 observations RMSE Median Absolute Error

1,000 replications (1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

Selection biases: part (b) to part (e) in equation (*) Robust Robinson Corr Func Ctrl Func OLS Robust Robinson Corr Func Ctrl Func OLS

Model I (h  = 0, ATE = 2):

part (b) and (c): eligibility indicator not used in d ­equation 4.7466 0.6957 80.6383 3.3987 0.7497 0.6117 0.3426 3.2847 0.9785 0.5786

part (b) and (c): eligibility indicator used in d ­equation 4.9457 1.2013 80.6383 3.3987 0.7497 0.5983 0.3498 3.2847 0.9785 0.5786

part (b), (c), and (d): OVB and no sorting 5.4217 2.2156 143.4809 3.3286 1.1281 2.0164 1.8968 4.9119 1.1340 0.9990

part (b), (c), (d), and (e): OVB and nonlinear sorting bias 7.4264 5.0734 145.8808 6.4366 3.3715 4.8596 4.6470 8.0034 2.3219 3.2298

part (b), (c), (d), and (e): OVB and linear sorting bias 5.9474 3.1365 157.4204 4.8014 1.8877 2.9806 2.8218 6.0211 1.3537 1.7892

Model II (h  = 1, ATE = 1):

part (b) and (c): eligibility indicator not used in d ­equation 0.3862 0.3745 37.0338 1.0361 0.2600 0.2560 0.2525 0.9038 0.2504 0.1726
part (b) and (c): eligibility indicator used in d ­equation 0.4094 0.3970 37.0338 1.0361 0.2600 0.2725 0.2681 0.9038 0.2504 0.1726

part (b), (c), and (d): OVB and no sorting 1.9543 1.9279 64.3438 1.4231 0.8721 1.9127 1.8954 1.1769 0.2949 0.8117

part (b), (c), (d), and (e): OVB and nonlinear sorting bias 4.6374 4.5885 21.4470 1.5451 2.2740 4.4952 4.4672 1.9441 0.5508 2.2186

part (b), (c), (d), and (e): OVB and linear sorting bias 2.8681 2.8344 41.1054 1.4485 1.2645 2.8308 2.7867 1.4154 0.3757 1.1882

1,000 observations Mean Bias Median Bias

1,000 replications (1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

Selection biases: part (b) to part (e) in equation (*) Robust Robinson Corr Func Ctrl Func OLS Robust Robinson Corr Func Ctrl Func OLS

Model I (h  = 0, ATE = 2):

part (b) and (c): eligibility indicator not used in d ­equation ­0.1268 ­0.0562 2.3446 0.0077 ­0.5608 ­0.1282 ­0.0603 ­0.1677 0.0212 ­0.5558
part (b) and (c): eligibility indicator used in d ­equation 0.0078 0.0041 2.3446 0.0077 ­0.5608 0.0022 0.0024 ­0.1677 0.0212 ­0.5558

part (b), (c), and (d): OVB and no sorting 1.9199 1.9142 2.5725 ­0.0024 1.0280 1.9193 1.9134 0.4549 0.0326 1.0199

part (b), (c), (d), and (e): OVB and nonlinear sorting bias 4.7720 4.7614 4.5130 0.6272 3.3182 4.7813 4.7564 0.7100 0.7258 3.3195

part (b), (c), (d), and (e): OVB and linear sorting bias 2.8768 2.8700 2.3658 ­0.0142 1.8234 2.8782 2.8709 0.4865 0.0419 1.8162
Model II (h  = 1, ATE = 1):

part (b) and (c): eligibility indicator not used in d ­equation 0.0056 0.0272 0.0192 ­0.0016 0.0013 0.0020 0.0254 0.0177 ­0.0054 ­0.0001

part (b) and (c): eligibility indicator used in d ­equation 0.0046 0.0033 0.0192 ­0.0016 0.0013 0.0040 0.0037 0.0177 ­0.0054 ­0.0001

part (b), (c), and (d): OVB and no sorting 1.8614 1.8590 0.0668 0.0002 0.8119 1.8570 1.8521 0.0377 0.0037 0.8113

part (b), (c), (d), and (e): OVB and nonlinear sorting bias 4.5318 4.5270 0.0875 0.4177 2.2190 4.5366 4.5321 0.0594 0.4230 2.2213

part (b), (c), (d), and (e): OVB and linear sorting bias 2.7913 2.7880 0.0953 0.0002 1.2170 2.7887 2.7851 0.0630 0.0047 1.2171

1,000 observations RMSE Median Absolute Error

1,000 replications (1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

multiple selection biases Robust Robinson Corr Func Ctrl Func OLS Robust Robinson Corr Func Ctrl Func OLS

Model I (h  = 0, ATE = 2):

part (b) and (c): eligibility indicator not used in d ­equation 0.2383 0.1347 66.7925 0.3876 0.5770 0.1570 0.0957 2.1130 0.2546 0.5558

part (b) and (c): eligibility indicator used in d ­equation 0.2093 0.1241 66.7925 0.3876 0.5770 0.1295 0.0875 2.1130 0.2546 0.5558

part (b), (c), and (d): OVB and no sorting 1.9318 1.9189 56.2045 0.4598 1.0397 1.9193 1.9134 2.9991 0.2974 1.0199

part (b), (c), (d), and (e): OVB and nonlinear sorting bias 4.7801 4.7672 104.0578 1.1280 3.3278 4.7813 4.7564 5.0853 0.8800 3.3195

part (b), (c), (d), and (e): OVB and linear sorting bias 2.8845 2.8739 69.7028 0.5888 1.8322 2.8782 2.8709 3.7616 0.3940 1.8162

Model II (h  = 1, ATE = 1):

part (b) and (c): eligibility indicator not used in d ­equation 0.1110 0.1122 0.3521 0.1052 0.0775 0.0754 0.0759 0.2210 0.0664 0.0488
part (b) and (c): eligibility indicator used in d ­equation 0.1174 0.1151 0.3521 0.1052 0.0775 0.0842 0.0822 0.2210 0.0664 0.0488

part (b), (c), and (d): OVB and no sorting 1.8657 1.8632 0.4750 0.1367 0.8173 1.8570 1.8521 0.3085 0.0956 0.8113

part (b), (c), (d), and (e): OVB and nonlinear sorting bias 4.5385 4.5338 0.7774 0.4732 2.2245 4.5366 4.5321 0.4884 0.4230 2.2213

part (b), (c), (d), and (e): OVB and linear sorting bias 2.7952 2.7919 0.5994 0.1699 1.2227 2.7887 2.7851 0.3733 0.1182 1.2171
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Table 2: P-900 E¤ects on 1988-1992 Gain Scores within Bands of the Selection Threshold
Full Sample �5 Points �2 Points

Math Language Math Language Math Language
Panel A:
(1) 2SLS
(existing study)

2:51��

(1:07)
2:35��

(0:93)
1:82
(1:31)

1:58
(1:20)

1:90
(2:20)

1:44
(1:98)

Standard deviation gain 0:32 0:32 0:23 0:21 0:24 0:19

(2) RD robust
(this paper)

2:38���

(0:68)
2:32���

(0:61)
1:74��

(0:83)
2:05���

(0:71)
2:34��

(1:17)
2:51���

(0:93)
Standard deviation gain 0:31 0:31 0:22 0:28 0:30 0:34

Panel B:
(3) Correction function
(this paper)

5:42�

[2:95]
5:56��

[2:30]
4:80
(3:81)

4:94
(3:55)

�0:51
(7:09)

�1:73
(6:94)

Standard deviation gain 0:69 0:75 0:62 0:67 �0:06 �0:23

Correction term 1
(linear correction)

�16:24
[10:48]

�7:32
[8:99]

�3:24
(12:22)

2:86
(11:52)

26:44
(23:33)

22:86
(21:93)

Correction term 2
(quadratic correction)

14:01��

[7:04]
9:52�

[5:34]
�0:93
(5:91)

�1:99
(5:06)

�5:89
(11:40)

�5:80
(10:32)

Correction term 3
(cubic correction)

�1:90
[6:74]

�5:77
[5:30]

�0:01
(5:81)

�3:62
(5:15)

�11:85
(9:99)

�8:59
(8:55)

�2(2) 4:34 3:77 0:01 0:38 1:14 0:83
Pr > �2 0:114 0:152 0:987 0:687 0:321 0:435

(4) Correction function
(Wooldridge, 2002)

8:74���

[2:54]
8:62���

[2:14]
4:66
(3:05)

5:99��

(2:89)
5:97
(5:76)

2:97
(5:45)

Standard deviation gain 1:12 1:16 0:60 0:81 0:77 0:40

Correction term
(linear correction)

�10:12���
[3:58]

�10:67���
[3:02]

�4:05
(4:38)

�6:08
(4:16)

�4:78
(7:89)

�1:44
(7:19)

Sample size 2; 591 938 392

* Signi�cance at 10% level; ** Signi�cance at 5% level; *** Signi�cance at 1% level.
Notes : To be consistent with Chay, McEwan, and Urquiola (2005), the sample includes urban schools with 15

or more students in the fourth grade in 1988. The dependent variables are the 1988-1992 gain scores in math and
language. Regressors, in addition to the P-900 dummy, include cubic polynomials for the 1988 average test score,
SES in 1990, and the changes in SES between 1990 and 1992. The columns correspond to subsamples of schools with
1988 test scores relative to the cuto¤ score in the chosen range. The 2SLS in Panel A is proposed by Chay, McEwan,
and Urquiola (2005). The RD robust estimator in Panel A is the one proposed by this paper, which uses the �rst-
stage residual, which is the deviation between the actual treatment status and the estimated treatment probability,
as the instrument for the actual treatment status. The correction function estimator with the cubic polynomial
sorting correction terms in Panel B is proposed by this paper. The correction function estimator with only the linear
sorting correction term in Panel B is proposed by Wooldridge (2002). A �2-test and associated p-value for the joint
signi�cance of the quadratic and the cubic correction terms are provided. Standard errors robust to heteroskedasticity
are in parentheses; bootstrapped standard errors based on 2,000 replications are in square brackets.
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Figure 1: Selection bias due to observables (Model I)
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Figure 2: Selection bias due to observables with eligibility used in d-equation

(Model I)
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Figure 3: Selection bias due to OVB and nonlinear sorting (Model II)
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Figure 4: Selection bias due to OVB and linear sorting (Model II)
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