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Abstract

We consider the effect of adaptive model selection and regularization by agents on price
volatility and market stability in a simple agent-based model of a financial market. The agents
base their trading behavior on forecasts of future returns, which they update adaptively and
asynchronously through a process of model selection, estimation, and prediction. The addition
of model selection and regularization methods to the traders’ learning algorithm is shown to
reduce but not eliminate overfitting and resulting excess volatility. Our results suggest that
even a high degree of attention to overfitting on the part of traders who are engaged in data
mining is unlikely to entirely eliminate destabilizing speculation. They also accord well with the
empirical “sparse signals” and “pockets of predictability” findings of Chinco, Clark-Joseph and
Ye (2019) and Farmer, Schmidt and Timmermann (2019).

1 Introduction

One source of mispricing in financial models is the overfitting of forecasting rules by market partici-
pants. We explore this mechanism in a simple agent-based model of a financial market. Our agents
base their trading behavior on forecasts of future returns, which they update asynchronously. These
forecasts then collectively drive market prices and feed-back on the data generating mechanism.
It is well-known that under restrictive conditions, adaptive learning in such an environment can
converge to a noisy version of the stationary rational expectations equilibrium (Honkapohja and
Mitra (2003)). However, if agents are uncertain about the true model of the world in which they are
operating, there is substantial room for learning to go further astray. In this context, the adoption
of misspecified forecast rules can lead to additional excess volatility as well as market instability in
the form of asset bubbles and crashes.

The models that economic agents entertain can be misspecified in various ways - e.g., the
exclusion of relevant variables (underparameterization) (Evans and Hohkapohja (2001, Ch. 13),
Branch and Evans (2006), Hommes and Zhu (2014), Gabaix (2014)), or the inclusion of intrinsically
irrelevant variables (Grandmont (1998), Bullard et al. (2008), Georges (2008a,b, 2015), LeBaron
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(2012), Branch, McGough, and Zou (2019)). In much of this literature, attention is given to the
role of the misspecification in driving endogenous market dynamics, but it is often assumed that
agents adopt misspecified rules uncritically and do not attempt to conduct model selection or other
corrective methods in an effort to improve their forecasts. While fully rational expectations is
empirically implausible, it is equally implausible that quantitative traders do not entertain the
possibility that they are over- or underfitting the data. Indeed, this problem has generated a recent
explosion of interest in predictive machine learning algorithms in financial markets.

Misspecification via overparameterization is particularly relevant in financial markets today. Fi-
nancial market participants increasingly find themselves in data rich environments and have access
to sophisticated computational resources. They face model uncertainty as always, but now have
many possible predictors at their disposal and the machine learning tools to consider a wide variety
of functional forms for combining these predictors. I.e., they can now entertain very substantial
model complexity. Machine learning (ML) is a set of high dimensional statistical techniques for
combining potentially large numbers of predictors in flexible ways to generate predictions. Much
attention is given to the substantial scope, introduced by this model complexity, for overfitting the
training data, i.e., for adopting overparameterized rules that perform well in the training sample
but poorly out of sample. Consequently, machine learning typically employs methods for model
regularization (parameter shrinkage), predictor selection, and out of sample testing to temper the
model complexity and mitigate the risk of ovefitting. (E.g., Hastie et al., (2009); Arnott et al.
(2018); Gu et al., (2020); de Prado (2020)).

In the present paper, we focus on overparameterized forcasting rules and draw on the statistical
and machine learning literature to endow our boundedly rational artificial traders with tools for
model selection and regularization to adopt in their learning routines. These agents update their
forecasts on two time scales. Every trading period they update their forecasts based on their
current forecast rules and the most recent data. On a slower time scale, they perform forecast
model selection and estimation based on a longer history of recent data. In our primary machine
learning specification, the agents use the least absolute shrinkage and selection operator (LASSO),
which performs both model selection and regularization using out of sample validation.

We work with a very simple artificial financial market based on Georges (2008a,b) in which all
traders are chartists who use nonlinear autoregressive (AR) rules for forecasting returns. These
rules are over-parameterized but nest the fundamental rational expectations (RE) rule. Thus,
traders are willing to extrapolate trends in the recent data that are not supported by rational
expectations, but they could in principle learn not to follow such trends.

We compare market outcomes under LASSO learning with a corresponding baseline specification
in which agents have fixed forecasting rules and update these with ordinary least squares (OLS).
OLS learners overfit their forecasting rules to the data available to them. Trading on the resulting
forecasts, they generate excess price volatility as well as market instability in the form of occasional
explosive bubbles and crashes. This volatility and instability is increasing in the complexity of the
agents’ forecasting rules.

We find that the addition of LASSO model selection and regularization methods to the traders’
learning algorithm substantially reduces, but does not eliminate, overfitting and the resulting excess
volatility and market instability relative to the OLS baseline. Even though our LASSO learning
traders are quite sophisticated about avoiding overfitting, they will still occasionally identify appar-
ent predictability in the data, setting off a period of heightened volatility. These signals identified
through LASSO tend to be sparse in the sense that only a subset of variables are identified as active
predictors in a given episode. Interestingly, due to the intermittent nature of these discoveries of
apparent predictability, LASSO acts as a powerful mechanism for generating fat tails and clustered
volatility in returns, two near-universal empirical hallmarks of financial markets. The emergence of

2



short-lived pockets of predictability with sparse signals is also supported by the empirical findings of
Chinco, Clark-Joseph and Ye (2019) and Farmer, Schmidt and Timmermann (2019) for U.S. equi-
ties. Further, while LASSO’s parameter shrinkage, variable selection, and out of sample validation
cause estimated forecast rules to be both sparser and less extreme than rules estimated by OLS,
we find that they are still extreme enough to produce occasional bubbles and crashes in the model.
Our results suggest that even a high degree of attention to overfitting on the part of traders who are
engaged in data mining is unlikely to entirely eliminate destabilizing speculation. We also consider
several relevant machine learning alternatives to LASSO – stepwise selection, Ridge regression, and
elastic nets – that similarly address the problem of overfitting and find similar results.

Our artificial traders can be thought of as model representations of either sophisticated human
technical traders or purely algorithmic traders. While financial markets were once fully human
operated, modern markets are hybrid spaces where computer and human trading coexist. The
use of computers in asset markets now comes in many forms ranging from the simple support of
human traders in the scheduling of buying and selling assets to the more sophisticated algorithmic
traders which can learn and autonomously decide which assets they sell or buy (Kirilenko and Lo,
2013). According to Kaya (2016), high frequency trading – just one form of algorithmic trading
– accounted for almost 50% of all the volume traded in the US equity markets in 2014. In a
recent global survey including FinTechs and incumbent financial institutions (Ryll et al., 2020), 60
percent of surveyed investment managers indicated that they are already using artificial intelligence
(AI) in their investment process, with 55 percent implementing AI for asset price forecasting.
These practitioners also overwhelmingly reported expecting AI to become increasingly important
in contributing to investment returns in the next five years.

A central issue with regard to algorithmic trading and other forms of digital automation is
whether this activity has improved overall market quality, thus allowing investors to raise capital
and manage risks more efficiently. Behavioral finance is often skeptical of the efficient market theory,
suggesting that stock prices are to a certain extent predictable due to psychological and social
aspects that lead to financial market inefficiencies (Shiller, 2003). Removing emotional entities from
the market might thus be expected to improve market efficiency (Chaboud et al 2014). However,
algorithms that identify and trade purely on patterns in recent historical data may also deviate
substantially from the efficient markets, rational expectations benchmark. Our results suggest that
such deviations are unlikely to be fully eliminated as algorithms become increasingly sophisticated.

2 Literature Review and Further Motivation

Our current framework follows closely the model in Georges (2008a,b, 2015) in which all traders
are chartists who use AR rules for forecasting returns. These rules are overparameterized but nest
the fundamental RE (or minimum state variable (MSV)) rule. Agents forecast each period with
their current rules and also fit their forecasting rules to recent data asynchronously on a slower
time scale by ordinary least squares (OLS). Georges shows via simulation that when the traders
fit overparameterized forecast rules to the data the learning dynamics can become unstable. The
degree of instability is shown to increase in the rate of learning and in the complexity (degree of
overparameterization) of the forecast rule, and to decrease in the memory of the traders.1 For
nonlinear overparameterization, the instability can persist even with large memories. However,
these agents are uncritical about the structure of the forecast rule and do not make any efforts at
model selection or other means to mitigate overfitting of the data.

1Branch and Evans (2011) and Georges (2015) show that adaptive learning about risk can provide an additional
source of local instability in this context.
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Georges (2008b) includes an example with a simple form of model specification testing that
reduces the selection of overparameterized models by the traders but still leads to intermittent
spikes in volatility. The result is intuitive. An extra (non-MSV) lagged regressor fails a t-test much
of the time, but it occasionally passes and so is adopted. Consequently, long periods of stability are
punctuated by shorter periods of heightened volatility driven by the occasional adoption of a more
complex forecasting rule. This is illustrative, but not particularly rigorous, leading us to wonder
whether agents that were both aggressive about uncovering predictable structure but also smarter
about model misspecification and overfitting the data would generate similar excess volatility and
instability.2

This is precisely the type of problem that machine learning has been developed to handle. We
consider several relevant ML techniques for our agents, but our primary focus is on LASSO. This is
a parameter shrinkage method designed to combat overfitting that can handle very large numbers
of regressors (even many more than the sample size). This approach, which has been referred to
as betting on sparsity, assumes that there are only a handful of strong predictors at any point
in time (Hastie et al. (2009, 2015)). The procedure will tend to shrink the coefficients on many
of the regressors towards zero as well as set some of them equal to zero. This is a distinctive
feature of LASSO relative to other similar regularization methods such as Ridge regression that
by construction will tend to include all predictors in the final estimated model. Hence, LASSO
performs variable selection, and as a result it yields sparse estimated models – that is, models that
involve only a subset of the available variables – which are easier to analyze and interpret.

The extensive improvements in computing power including cloud computing, data storage,
availability of big data and open source software have leveled the playing field for the widespread
adoption of machine learning techniques in trading and investment management (Kaya (2016),
Brummer and Yadav (2019), Buchanan (2019), Ryll et al. (2020)). While a large variety of ML
methods are being employed in financial markets today, we argue that LASSO constitutes an
excellent baseline framework for modeling market participants’ use of these complex methods.

First, LASSO represents a powerful statistical tool for prediction and for combatting the risk of
overfitting. An overfitted model is one that lacks parsimony, that is, it includes more predictors or
more flexibility of functional form than is necessary, and as a result it is prone to act on noise rather
than information, leading to inaccurate out-of-sample forecasts. Quantitative financial analysts are
well aware of this problem. For example, none of the 31 quants at hedge funds and algorithmic
trading firms interviewed by Hansen (2020) between 2017-2019 mentioned underfitting as an issue,
but all of them expressed their concerns about the risk of overfitting.3 There is a growing body
of research showing that machine learning algorithms tend to outperform traditional models in
financial market forecasting (e.g., Gu et al. (2020), Ryll and Seidens (2019)). Yet, no specific
method has been shown to be universally better, and it is often found that simpler ML methods
and models outperform more flexible ones – e.g., that shallower neural nets and sparser regression
trees often outperform deeper ones.

ML methods generally address overfitting by attempting to exploit a bias-variance tradeoff,
permitting some bias in order to reduce the variance of the estimates. In the face of uncertainty

2The analysis of Cho and Kasa (2015) provides some promise that more sophisticated model selection may lead to
more efficient outcomes. However, their analysis is better suited for a single agent, such as a central bank, learning how
to operate in a self-referential environment, rather than an ecology of heterogeneous traders searching for potentially
short-lived unexploited predictability in a financial market.

3The following is an explanation of the problem of overfitting provided by one quantitative analyst interviewed
in Hansen (2020): “A big mistake lots of people make is that they always want to use something really complex to
solve a problem that does not need it. You always want to default to the model with the least complexity. You do
not want to be fitting to an artifact in the dataset. You just want to make sure that what you are seeing is real and
you are not actually kidding yourself with any kind of predictive power.”
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about which of many possible predictors are relevant at a given time, or how flexibly they should
be combined to form predictions, they use regularization to improve robustness by simplifying the
prediction model and making it less responsive to changes in the values of the predictors.4

Nevertheless, no method appears to be immune to overfitting. A case in point is the series of
time-series forecasting competitions run by Spyros Makridakis (e.g., Makridakis et al., 2018), in
which sophisticated machine learning methods have historically had difficulty beating extremely
simple rules of thumb or averages across multiple methods.5

Hastie et al. (2009, 2015) have made the case that LASSO’s bet on sparsity is a good one,
particularly for high dimensional problems. If the true signal is sparse, then LASSO will perform
well. If the true signal is dense, then it is likely that no method will perform well; in other words,
LASSO may still perform relatively well!

Gu et al. (2020) find that ML methods that allow for nonlinearities and predictor interac-
tions perform substantially better in predicting financial returns than methods that do not. We
allow for both under LASSO by specifying the forecasting rules that our agents entertain below as
polynomials that include cross products.

A second reason for us to favor LASSO is evidence that market participants care about in-
terpretability. The interpretability and explainability of AI models are important and growing
concerns for a wide range of actors in financial markets including investors, investment managers,
financial institutions, regulatory authorities, and academic researchers (see for example Bracke et
al. (2019), World Economic Forum (2019), Hansen (2020)). The complexity and opacity of some AI
methods make it difficult to obtain an interpretable explanation for why the system has produced
a given output (Burrell, 2016). With this opacity comes a loss of control and oversight and thus
heightened risk.6 Hansen (2020) finds in his interviews that quants routinely employ a simplicity
heuristic, preferring simpler ML models over more complex ones, both to avoid overfitting and to
increase control and interpretability.7

The model selection feature of LASSO in which only but the strongest predictors are chosen, is
a good representation of this simplicity heuristic. Thus LASSO can act as a representation of either
human based forecasting or algorithmic forecasting. In both cases, model parsimony serves both
humans’ desire to avoid overfitting and their cognitive limitations. The use of LASSO to model the
effects of human cognitive limits is also supported by Gabaix (2014). He proposes a framework for
modeling bounded rationality in which the agent builds a simplified model of the world which is
sparse – considering only the variables of first-order importance – by internally imposing a LASSO

4Gigerenzer and Selten (2001) and Gigerenzer and Brighton (2009) have argued that a similar mechanism explains
why more generally, in complex environments, simple, fast and frugal heuristics can produce better systemic results
than more complicated behavioral heuristics. Similarly, Dosi et al. (2020) show via simulation that, in a complex
macroeconomic environment, very simple forecast heuristics (in their case validated by experiments by Anufriev and
Hommes (2012)) used by firms can lead to substantially better macroeconomic outcomes than when firms try to make
more sophisticated forecasts.

5The winning team of the most recent competition, from Uber Technologies, combined ML and more conventional
statistical methods.

6These are some reflections from market leaders and regulators extracted from the WEF (2019) report: BlackRock
(Head of Liquidity Research): “The industry needs to address the problem of interpretability [. . . ] before putting
investor money into play.”; Capital One Managing Vice-President): “We only roll out machine learning where we
feel comfortable there are no biases or lack of transparency. . . ”; BaFin (Regulator): “Ultimately, [explainability] is a
prerequisite to secure the very principle of responsibility.”; FSB (Financial Stability Board): “Efforts to improve the
intepretability of AI may be important conditions not only for risk management, but also for greater trust from the
general public.”

7In Hanson’s words, “. . . users of machine learning models are concerned that models might learn the wrong things
and thus, become deceitful rather than informative. They use Ockham’s razor as a heuristic to help strike a balance
between simplicity and complexity, and interpretability and accuracy.”
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penalty. I.e., the agent makes sense of the world by focussing on specific signals in the data.8

In a related vein, Lo et al. (2000) note that much of human-based technical analysis involves
the subjective identification of simple non-linear patterns in time series data, and econometrically
evaluate some of the more conventionally used patterns.

The interpretability of machine learning algorithms has also become an issue in academic re-
search in finance. For example, Chinco, Clark-Joseph, and Ye (2019) use LASSO to identify
interpretable pockets of predictability in stock returns that could be associated with changes in
fundamentals. Similarly, Freyberger et al. (2019), Feng et al. (2020), and Kozak et al. (2020)
have used LASSO to choose between various predictors that have already been identified by other
researchers in the literature. Since ML is likely to play an increasingly active role in decision making
and order execution, its use is likely also to be increasingly scrutinized by regulators. Consequently,
while full model interpretability may not be always possible or required, transparency and inter-
pretability are increasingly becoming necessary conditions for the broad and responsible adoption
of these technologies.

It is worth noting that a key feature of machine learning methods, as practiced today compared
to standard econometric analysis, is their focus on prediction rather than causal inference (Varian,
2014). Consequently, independent of the issue of opacity, there has been criticism of these predictive
machine learning methods on the grounds that they are poor tools for inference. For example, the
specific set of regressors selected by LASSO can be sensitive to small changes in the data, and so
the selection or non-selection of specific variables should not be taken to imply that those variables
do or do not matter causally (Giannone et al., 2018). While this is a serious issue for cases in which
drawing causal inference is important, our traders care about prediction, not inference, and as such
can be well served by LASSO and other predictive machine learning methods.9

In our model, the traders believe that they may be in a complex, non-stationary environment,
and so persistently search for predictable patterns in returns. To make our analysis crisp, the actual
environment that we place them in is extremely simple, with stationary underlying fundamentals.
Indeed, the very simple heuristic of forecasting by taking sample averages of past data actually
corresponds to the MSV rational expectations equilibrium, and the traders could in principle learn
this simple heuristic.10 Because rational expectations are static in this model and all price volatility
is excess volatility, our simple modeled environment provides a clean baseline for studying the effect
of expectations formation on market volatility and stability. Further, the adoption of LASSO by our
agents actually biases the agents toward adopting the MSV rule and not chasing spurious trends in
the data. Nevertheless, believing that the environment may be non-stationary, they are constantly
on the search for predictable patterns, including pockets of predictability that may be short-lived
and idiosyncratic.

There is empirical evidence for such predictability in asset prices. Farmer, Schmidt, and Tim-
mermann (2019) present evidence for daily U.S. stock returns based on time-varying regression
methods, finding that return predictability is highly concentrated or local in time and that these
pockets can be long lived. Andersen and Sornette (2008) find shorter pockets in NASDAQ daily
data. At higher frequency, Chinco, Clark-Joseph, and Ye (2019) uses LASSO to identify pockets of
predictability for 1 minute ahead stock return forecasts from a large number of potential predictors.

8Beunza and Stark (2012) document the cognitive overload faced by traders working at an investment bank’s
derivatives trading desk.

9Belloni et al. (2014), and Mullainathan and Spiess (2017) discuss other useful applications in economics of LASSO
as a predictive tool.

10Thus, our results share the ‘simpler is better’ flavor of Gigerenzer and Brighton (2009) and Dosi et al. (2020).
However, this is not because the modeled environment is fundamentally complex, but rather because agents are
simply willing to entertain the possibility that the environment is complex, as in Grandmont (1998).
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They find, for stocks listed on the NYSE, that these pockets are short lived and that the set of
predictors for each pocket is sparse but idiosyncratic and thus difficult to identify by economic
intuition alone. Yet they document that these predictors, as identified by LASSO estimation, do
tend to capture information about changes in relevant fundamentals. Consistent with these pock-
ets of predictability that are short-lived, Brogaard et al. (2014) show that algorithmic traders’
orders predict price changes over very short horizons (measured in seconds) and are correlated with
macroeconomic news.

Finally, there is a set of well documented stylized facts for empirical returns that appear to be
robust, and indeed are often described as universal, for a variety of financial markets at various
frequencies. These include that return autocorrelations are essentially zero except at very high
frequencies, that returns distributions tend to display heavy tails, and that volatility tends to be
clustered temporally (e.g., Mandelbrot (1963), Cont (2000), Lux and Alfarano (2016), LeBaron
(2017)). More specifically, distributions of returns at moderate to high frequencies tend to display
leptokurtosis with tail behavior approximated by a cubic power law,11 and the autocorrelation
functions of measures of volatility such as absolute or squared returns display slow decay (long-
range dependence). We will discuss how the application of ML methods such as LASSO by our
agents acts as a mechanism for producing or accentuating fat tails and volatility clustering in
aggregate returns.

3 Market Structure

The basic market structure follows Georges (2008a,b). We assume that there are two assets, a stock
that pays a dividend dt in each period t and a bond with a fixed rate of return r in each period.
Dividends are given by dt=d+εt, where d is a constant and the εt are iid with zero mean and finite
variance. Pt is the price of the stock at time t.

In each period t, each trader i constructs a forecast F i
t [Pt+1 + dt+1] of the price plus dividend

of the stock in the following period. For simplicity, we assume the market clearing price in period
t is the price that equalizes the forecasted returns on the two assets for an average trader. Hence,
the price of the stock in period t satisfies

Pt =
F t[Pt+1 + dt+1]

1 + r
(1)

where F t[Pt+1 + dt+1] is the forecast of a representative agent.12

There is a unique stationary rational expectations equilibrium (REE) Pt = P ∗ ∀t, where P ∗ = d
r .

As the price is constant in this equilibrium, any volatility in price represents a deviation from the
stationary REE. It will be useful to define xt = Pt + dt and x∗ = P ∗ + d.13

4 Forecast Rules

We assume that traders do not have enough information about the structure of the dividend process
and the other agents’ beliefs to form rational expectations. Rather they formulate forecasts of future

11Estimated tail exponents of daily returns tend to fall between 2 and 4, and are often close to 3. While this
indicates that the variance should be finite, convergence toward normality under time aggregation tends to be slow
due to the non-iid nature of the returns.

12We assume risk neutrality in order to remove additional volatility that can arise from risk sensitivity as in Branch
and Evans (2011) and Georges (2015).

13Note then that at the stationary REE, xt = x∗ + εt ∀t.
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prices inductively. Specifically, we suppose that all agents are technical traders who use forecast
rules with a common polynomial autoregressive functional form

F i
t [xt+1] = P i

t (xt, xt−1, xt−2, ...) (2)

with coefficients a = (ai0t, a
i
1t, ...) that can vary across agents i and time t. An example of such a

forecast rule would be the following quadratic AR(3) rule14 15

F i
t [xt+1] = ai0t + ai1t · xt + ai2t · xt−1 + ai3t · x2t−1 + ai4t · xt−2 + ai5t · x2t−2 + ai6t · xt−1 · xt−2 (3)

We will take the average forecast F used in equilibrium condition (1) to be the algebraic average
of the forecasts (2) over the agents.

4.1 Benchmark Forecast

The stationary REE forecast is
F (xt+1) = x∗ (4)

and so the stationary REE forecast rule is simply the minimum state variable (MSV) forecast rule
F (xt+1) = a0 with a0 = x∗.

Note that our general forecast rule specification (2) nests the MSV rule and thus the stationary
REE rule. For example, for forecast rule (3), the stationary REE forecast rule would be given by
a = (a0, a1, a2, a3, a4, a5, a6)= (x∗,0,0,0,0,0,0).

5 Forecast Rule Updating

All agents will update their forecasts given their current estimated rules in each period. Note that,
since the form of the forecast rule is common across agents, and all agents have access to the same
historical data, all heterogeneity in the model will be due to asynchronous rule updating. Rule
updating will take two forms, updated estimation, and updated model selection.

In the baseline model, the forecast rule is fixed and updating is by least squares estimation.
That is, we assume that agents adopt a specific rule form uncritically. More sophisticated agents,
however, would entertain alternative forecasting models and would also be sensitive to the hazards
of overfitting the available data. In this spirit, we will subsequently incorporate model selection
and other regularization methods to the traders’ learning algorithm.

5.1 Baseline: Least Squares Learning

In the baseline case, the form of the rule (2) is fixed. At the start of each period t, each agent is
selected to update her forecast rule parameters with probability pupdate. If agent i updates her
rule in t, she chooses the rule that minimizes the sum of squared forecast errors over the preceding

14We will assume that xt is not in traders’ information sets at time t, so that traders using rule (3) would form
iterated forecasts of xt+1 by first forecasting the current period’s value xt using the observed values from the preceding
three periods.

15Note that we include cross products in the quadratic specification. Both non-linearity generally and interactions
between predictors specifically were found by Gu et al. (2020) to improve empirical asset returns forecasts.
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M (memory) periods. The new rule parameters aijt minimize

M∑
k=1

(xt−k − F i[xt−k])2 (5)

Thus, agents learn using a finite memory least squares learning algorithm – they periodically update
their rules to the rule that currently best fits the recent data according to OLS. While not all agents
will update their rules in a given period t, each agent who is selected to update her rule at t will
select the same new rule, and therefore join a transitory cohort that shares common forecasts but
progressively dissolves over time.

5.2 LASSO

We now allow the agents to consider the specification of their forecast rules. Our focus is on
the LASSO regression, which is able to mitigate overfitting by using a penalty function that both
shrinks coefficient estimates and removes all but the strongest predictors. LASSO regression is sim-
ilar to least squares but the coefficients are estimated by minimizing a slightly different function.
For time t, the LASSO coefficient estimates (aL0t,a

L
1t,...) are the quantities that minimize

M∑
k=1

(xt−k − F [xt−k])2 + λt ·
p∑

j=1

|ajt| (6)

where λt ≥ 0 is a tuning parameter to be determined separately and p is the number of regressors
(predictors) in the regression.16 As with least squares, the LASSO regression looks for coefficient
estimates that fit the data well. However, the second term, called a shrinkage penalty, is small when
the coefficients aj are close to zero, and so it has the effect of shrinking the parameter estimates
towards zero.17 But different from other similar (but denser) regularization methods, such as Ridge
regression, the particular structure of the penalty function allows the LASSO to exploit a bet on
sparsity. While Ridge regression will tend to generate a model involving all predictors, the LASSO
will not only shrink coefficient estimates but it will also force some coefficient estimates to be equal
to zero. In this sense, the LASSO performs variable selection.18 To see this, consider the solution
to equation (6) when there is only one predictor, xt – i.e., the forecast rule (2) is linear AR(1).
Suppressing the time and agent indexes,

aL1 =

{
Sign[aO1 ] · (|aO1 | − λ) if|aO1 | ≥ λ
0 otherwise

(7)

where aO1 represents the OLS coefficient for the single predictor computed as in equation (5).
So if the OLS coefficient is more extreme than the LASSO’s penalty parameter, |aO1 | > λ, then the
LASSO will estimate a shrunken version of the OLS coefficient, namely, aL1 = sign[aO1 ] · (|aO1 |−λ).

16p = 6 in (3).
17Note that the shrinkage penalty is not applied to the intercept (a0). We do not want to shrink the intercept

which represents the mean value of the response when aj = 0 for all j 6= 0.
18This is a distinctive feature of LASSO, relative to its cousin Ridge regression, in that it yields simpler and more

interpretable models that involve only a subset of predictors.
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Whereas, if the OLS coefficient is less extreme than the penalty parameter, the LASSO will esti-
mate aL1 =0.

5.2.1 Selecting the tuning parameter

Implementing LASSO requires a method for selecting the value for the tuning parameter λ. Cross-
validation (CV) provides a simple way to address this consistent with the goal of minimizing
overfitting. In particular, our agents employ k-fold CV that involves randomly dividing the set of
observations into k groups [folds] of equal size. The first fold is treated as a validation set, and the
LASSO regression is fit on the remaining k-1 folds. The mean squared error, MSE1, is computed
with the observations in the held-out fold. This procedure is repeated k times where a different
fold of observations is treated as the validation set. The process yields k estimates of the test error,
MSE1, MSE2,..., MSEk. The k-fold CV error is the average of these values,

CV(k) =
1

k
·

k∑
i=1

MSEi (8)

There is a bias-variance trade-off associated with the choice of λ and thus k. It is thus common
practice to perform k-fold CV using k = 5 or k = 10 as these values have been shown empirically
to produce test error rate estimates with relatively small bias and variance. We have our agents
use 10-fold CV.

So, following this standard practice, we assume that agents who are updating their forecasts
using LASSO choose a grid of λ values, compute the cross-validation error for each value of λ, and
select the tuning parameter value for which the cross-validation error is smallest. Finally, they
estimate their model using all of the available observations and the selected value of the tuning
parameter, and use this estimated model to make their forecasts.

6 Comparison of Estimated Forecast Rules for Exogenous Artifi-
cial Data

To gain some intuition before turning to the full simulation model, we first consider forecast rule
updating under OLS and LASSO when the feedback between forecasts and prices is shut down.
Specifically, we generate a purely exogenous random series xt = x∗+εt, where the εt are iid uniform
on (-0.5, 0.5),19 and consider the evolution of the estimated forecast rule parameters under OLS
and LASSO for two specifications of the forecast rule (2).

The first forecast rule specification is linear AR(2):

F i
t [xt+1] = ai0t + ai1t · xt + ai2t · xt−1 (9)

Re-estimating (9) in each period under OLS and LASSO yields (aO0t, a
O
1t, a

O
2t) and (aL0t, a

L
1t, a

L
2t),

the sequence of rules that minimize the loss functions (5) and (6) in each time period for the
artificial xt history. These would be the estimated rules adopted by all agents if they experienced

19This shock range matches that of the dividend series in the next section.
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this artificial time series and updated their estimates in every period using these two model fitting
approaches.

The second forecast rule specification is the moderately more complex quadratic AR(3) given in
(3) above. Repeating the estimation for this specification yields a second set of parameter estimates
(aO0t, a

O
1t, a

O
2t, a

O
3t, a

O
4t, a

O
5t, a

O
6t) and (aL0t, a

L
1t, a

L
2t, a

L
3t, a

L
4t, a

L
5t, a

L
6t).

We report on single example runs with a common exogenous xt history for each of these
forecast rule specifications and estimation methods. We consider memory M of 50, 100, and
500, and OLS and LASSO updating over 2000 rounds for each run. Estimated forecast rules
under all specifications vary over time and are roughly centered on the stationary REE rule:
(a0, a1, a2, ...) = (x∗, 0, 0, ...). Table 1 shows the standard deviations of the series of two of these
estimated parameters: a1 and a2 (the coefficients on the first and second linear lags). We can see
that the degree of variation of the parameter estimates under both estimation methods decreases as
memory increases, i.e., as the estimation sample size increases. Further, the inclusion of additional
regressors (from (2)) as we move from the simpler forecast rule (9) to the more complex forecast
rule (3) increases the variability of parameter estimates for both methods (particularly for a2 in
this example). Increasing the complexity of the forecast rule increases the scope for overfitting each
sample and so increases the variance of the estimators. So in these regards, the behavior of OLS
and LASSO is similar. However, Table 1 also illustrates that LASSO tends to yield a substantial
reduction in variance relative to OLS updating. This is to be expected, as LASSO performs variable
selection and shrinkage of coefficient estimates in order to mitigate overfitting of the data.20

Table 1: Standard deviation of estimated forecast rule parameters

OLS

M Forecast Model

(9) (3)
a1 a2 a1 a2

50 0.118 0.141 0.129 14.122
100 0.078 0.095 0.079 10.209
500 0.020 0.030 0.021 6.679

LASSO

M Forecast Model

(9) (3)
a1 a2 a1 a2

50 0.061 0.087 0.062 3.947
100 0.041 0.052 0.035 3.359
500 0.004 0.010 0.008 3.023

7 Model Simulations

We saw in the last section that if there was no feedback between forecasts and prices, there would
still be some variation in the forecasts due to finite memories, and that the degree of variation
depends on the memory of the agents, the complexity of the forecast rule, and the estimation

20The reduction in variance occurs at the expense of some increase in bias.
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method used. We now turn to the full simulation model to examine how the feedback between
forecasts and prices affects the volatility and the stability of the price dynamics. Recall that all
price volatility is excess volatility in this model.

7.1 Excess Volatility Under OLS and LASSO Learning

We first consider the case in which all agents i use MSV forecast rules, namely, F i
t [xt+1] = ai0, and

updating is by least squares. If it were the case that for all agents ai0 = x∗, then the market would
be at the stationary REE. As documented in Georges (2008a,b), simulations exhibit persistent
dynamics in the forecast rule parameter ai0 and thus in the price level Pt as a result of the finite
memory and dividend shocks. These dynamics become centered on the REE values x∗ and P ∗ and
excess returns hover around 0. Thus, price and expectations dynamics converge to a noisy version
of the stationary REE, as in Honkapohja and Mitra (2003). OLS and LASSO are the same under
the MSV rule because there are no parameters to shrink; ai0t does not enter in the penalty function
in (6).

As we move to overparameterized forecast rules, we can compare simulation outcomes under
OLS and LASSO rule updating. In both cases, we still observe a general attraction to the stationary
REE, with forecast rule parameter values fluctuating around (x∗,0,0,0,...) and the price levels
fluctuating around P ∗.

We also find that the average forecast rule parameters wander broadly and continuously under
OLS updating, whereas under LASSO updating, they switch between periods in which newly
estimated rules take an MSV form and periods in which traders are drawn to include AR terms
in their estimated rules. Much of the time, LASSO induces traders to select no autoregressive
components, but occasionally they are led to believe that there is a window of predictability that
can be identified with a more complex forecast rule. These windows can be initiated by purely
random sequences of dividend shocks but then become amplified by the feedback between the
forecast rule estimates and the forecast-driven stock prices. Thus, these windows correspond to
periods of punctuated volatility that emerge endogenously from periods of quiescence in the price
dynamics. These results for LASSO accord well with the empirical “sparse signals” and “pockets of
predictability” findings of Chinco, Clark-Joseph, and Ye (2019). This is in contrast to OLS, under
which, as an artifact of overfitting, the data appears to the traders to be predictable at every time
period.

The upshot for the price and returns dynamics is that, under LASSO, volatility is generally
lower, but is punctuated by more pronounced volatility clustering (with lower variance but greater
time separation) and greater excess kurtosis than under OLS updating. An illustration is provided
in Figures 1 and 2. There, we show the evolution of price, return,21 and average forecast rule
coefficients for a representative run in which agents use the non-linear AR(3) forecast rule (3).22

Comparing Figures 1 and 2 we can clearly see the correspondence for the LASSO run between the
windows of predictability, in which more LASSO coefficients become non-zero, and the punctuated
volatility of returns. A similar feedback between forecast rule estimation and returns is at work in
the OLS run, but it is more pervasive and exhibits far less clustering in time.

21The returns reported here and in Table 2 below are log changes in price, lnPt − lnPt−1, i.e., continuously
compounded returns net of dividends.

22The run is representative among runs in which an explosive bubble or crash does not emerge – see below.
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Figure 1: Run with memory M=100 and pupdate=0.5. Forecast rules are of nonlinear AR(3)
form as specified in (3), for which the number of predictors p is 6. d = 0.5, r=0.05, and so
P ∗=10. Dividend shocks are uniformly distributed on (-0.05, 0.05) and occur with probability 0.8
in any period. Shown here are prices and returns for 3,500 rounds (rounds 4300-7800) taken from
representative 10,000 round runs with OLS and LASSO updating. The runs share the same random
seed.
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Figure 2: Additional output from previous specification. Shown here are average rule param-
eters (a0,...,a6) under OLS and LASSO updating. The corresponding stationary REE rule is
(10.5,0,0,0,0,0,0).
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Indeed, we can see here that LASSO’s regularization properties act as a mechanism for accentu-
ating fat tails and long-memory in volatility. As noted above, these are features of empirical returns
seen across a wide range of financial markets and at a variety of time scales. We are not interested
here in replicating these empirical regularities in any detail, as the model has been simplified to be
able to specifically highlight the role of overfitting in generating excess volatility and the capacity
of machine learning methods to mitigate that overfitting. However, the careful search for pockets
of predictability using LASSO produces periods of quiescence punctuated by clusters of volatility,
and so provide one mechanism for understanding the sources of these stylized facts.

In Table 2, we provide statistics for 10,000 periods of returns data generated by the same
representative runs under OLS and LASSO learning that we exhibited above in Figures 1 and
2. In Figure 3, we display the corresponding returns distributions (along with their Gaussian
counterparts) as well as autocorrelation function (ACF) plots for absolute and squared returns.

Table 2: Statistical Features of Returns

Mean Std Dev OLS
Mean Std Dev Return Return Skewness Kurtosis Hill Q-Ratio
Price Price (*100) (*100) Estimator

OLS 10.0264 0.1403 0.0002 0.8256 -0.0973 7.0833 2.9846 1.7976
(0.0097)

LASSO 9.9665 0.1119 -0.0003 0.3414 -0.0684 22.3553 1.7218 2.7745
(0.0125)

Same runs as displayed in Figures 1 and 2. Estimated std errors for Hill Estimator in parens.

In Table 2, we see that price is centered approximately on the stationary REE value of 10, and
that average (excess) returns are essentially zero under both the OLS and LASSO simulations.23

In both cases, the distribution of returns display greater probability mass in their center and tails
than their respective Gaussian distribution counterparts, as can be seen also in the plots in Figure
3. We see that this excess kurtosis is substantially more pronounced under LASSO than under OLS
learning. This is confirmed by two more robust measures of tail shape, the OLS Hill estimator,
which provides an estimate of the power-law exponent for extreme returns,24 and the Q-ratio, which
is the ratio of the 1 percent returns quantile divided by the 5 percent quantile. This ratio takes a
value of 1.3 for the Gaussian distribution, and larger values indicate relatively fatter tails. The Hill
estimate for OLS is in line with the near-universal empirical findings of an approximate cubic law
in (extreme) daily returns across a wide range of financial markets, whereas the LASSO returns
exhibit even more extreme fat tails. Both estimates indicate that the 4th moments of the return
distributions may well not be finite, and so sample kurtosis may not be a reliable measure. 25

Similarly, the Q-ratios indicate fatter than Gaussian tails in both cases, with relatively fatter tails
under LASSO. Interestingly, the variance of returns is lower for LASSO than OLS, so the fatter

23These returns are period by period log changes in price, here multiplied by 100.
24Estimation of the tail exponent presents a classic bias-variance trade off problem. The estimate bias increases

as we include more observations located deeper into the distribution. On the contrary, as we move out to include
observations located further into the tail, we end up with a smaller sample, and we now face a problem of variance
in the estimate. To address this, we estimate the OLS Hill Estimator which uses the bias adjusted estimator of the
tail exponent developed in Huisman et al. (2001).

25Early power-law estimates that found evidence for the tail exponents of approximately 1.7 as we see in the LASSO
experiment and which would indicate that even the second moment is not finite (Mandelbrot, 1963) have since been
superseded by substantial evidence that tail exponents typically lie between 2 and 4, as we indicated in section 2.
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tails for LASSO are accompanied by lower overall volatility.

Figure 3: Returns Distributions and ACF Plots for Absolute and Squared Returns
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Both the OLS and LASSO experiments also generate clustered volatility in returns; large price
changes have the tendency to be followed by large price changes. We can see in Figure 3 that the
ACFs of both absolute and squared returns exhibit slow decay under both OLS and LASSO, with
substantially slower decay (longer-range dependence) under LASSO.26 27

So both OLS and LASSO learning generate fat tails in the market returns distributions and
time dependence in volatility, both hallmarks of empirical financial markets, with these effects
being more pronounced for LASSO. At the same time, LASSO experiments exhibit lower overall
returns volatility. These comparisons between OLS and LASSO are intuitive. OLS overfits the
forecast rules, leading traders to observe apparently predictable patterns in the data at each time
step. LASSO updating is designed to combat overfitting by shrinking parameter estimates toward
zero and frequently setting parameter estimates to zero, as guided by out-of-sample testing. Thus,

26Tail exponent estimates for these ACFs are 0.5278 for the OLS simulation and 0.3813 for the LASSO simulation.
Empirically, these values tend to fall between 0.2 and 0.4, so here the LASSO returns series is consistent with the
empirical regularity, while the ACF from the OLS simulation decays too rapidly. These estimates were computed as
functions of the estimated Hurst exponent as in Lux and Ausloos (2002).

27The slower decay of the ACF for absolute returns than squared returns is also widely observed in empirical
returns data (e.g., Ding et al., 1993).
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under LASSO updating, the windows of predictability in which forecast rule coefficients become
non-zero become infrequent and the average size of non-zero coefficients relatively smaller than
under OLS learning. Only occasionally do agents perceive there to be predictable trends to try to
exploit. With asynchronous updating, once some agents have acted on this perception, others may
observe the same patterns and pile on, and the endogenous price response will feed back into this
process creating a period of heightened volatility and complex dynamics. Thus, LASSO updating
lowers overall volatility relative to OLS updating, but at the same time amplifies the fat tails and
volatility clustering seen in this artificial market under OLS since it promotes periods of quiescence,
in which traders follow an MSV rule or something close to it, punctuated by periods of speculation
which are still tempered relative to the OLS case.28 It is important to note that even the extreme
tail behavior under LASSO is less extreme than under OLS, which will become apparent when we
turn to the incidence of extreme bubbles and crashes below.

In summary, attempts by our market agents to mitigate overfitting through regularization and
cross-validation using LASSO serves as a mechanism for generating and amplifying fat tails and
volatility clustering. We reiterate that we are not attempting here to calibrate this model to
empirical data, and indeed we see in the experiment above that LASSO learning, when practiced
by all agents, produced substantially fatter tails than is observed empirically. This suggests that
this mechanism can be a relatively powerful generator of these phenomena.

7.2 Large Bubbles and Crashes

The last section explored what we might call “normal” price and forecasting dynamics, when these
dynamics remain stable. However, under both OLS and LASSO updating, we also observe the
development of occasional extreme events, explosive price bubbles and crashes, in which the price
level deviates substantially and persistently from its stationary REE value of d̄/r. In this section,
we report on Monte Carlo experiments in which, for each combination of parameter values that
we select, we run the simulation for 2000 trading periods 500 times (with different random seeds)
and count the number of runs that exhibit bubbles or crashes (extreme prices).29 Restricting our
attention for now to cases in which the number of predictors p is less than the memory M of the
agents (which is a requirement for identification via OLS), we find that, for both OLS updating and
LASSO, the incidence of bubbles and crashes is generally increasing in the speed of learning and
decreasing in the traders’ memory. As noted above, this has been previously documented for OLS
updating by Georges (2008a,b, 2015). More rapid learning (more frequent re-estimation of the rules
by the traders) causes the traders to herd on similar observed trends in recent returns, creating
more destabilizing feedback between these trends and the average forecast. On the contrary, greater
memory reduces the response of forecasts to recent trends and thus tempers the feedback between
these rules and the pricing mechanism.

While these patterns are similar for both OLS and LASSO, here we also observe that the
incidence of explosive bubbles and crashes is substantially higher for OLS than for LASSO, and
that this difference is more pronounced as the complexity of the forecast rule (2) is increased. As
documented in Georges (2008a,b, 2015), the incidence of these extreme events under OLS learning
is increasing in the complexity of the forecast rules. However, this relationship is more ambiguous

28This switching between periods of MSV forecasts and overparameterized forecasts share some similarity with the
switching between fundamentalists and chartists in popular two type heterogenous agent models (HAMs) (see e.g.,
Dieci and He, 2018) but is more continuous and organic here. Our forecast rules admit a continuum of agent types.
All are chartists, but they can learn to follow MSV forecasts, and so could learn to be fundamentalists in this simple
environment.

29We selected the pair of runs in Figures 1 and 2 from the roughly half of 500 pairs of runs with the same parameter
settings for which neither the OLS or LASSO runs resulted in an explosive bubble or crash in the 2000 periods.
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under LASSO learning. As the number of lags and the order of the polynomial in (2) are increased,
LASSO has more predictors to select among, which can lead to increased or decreased volatility
and incidence of bubbles and crashes.

These results are illustrated in Figures 4a - 4b and 5a - 5b, which indicate the frequency of the
formation of explosive bubbles or crashes for different specifications of forecast rule and learning
technology.30 In Figure 4, agents employ low complexity linear AR(2) forecasting rules (9), with
number of predictors p = 2, and in Figure 5, they employ modestly more complex non-linear
AR(3) rules (3), with p = 6. In both cases, the ability of LASSO to perform variable selection
and parameter shrinkage lowers the incidence of extreme rules which in turn lowers the frequency
and magnitude of large price movements. Moving from Figure 4 to Figure 5, we see this difference
becoming more striking as the number of predictors p grows. Nevertheless, traders using LASSO
periodically identify pockets of predictability and switch from MSV rules to complex rules. Even
though LASSO imposes parameter shrinkage on these complex rules, and so they tend to be less
extreme than rules estimated by OLS, they are still extreme enough to produce occasional bubbles
and crashes driven by positive feedback between these rules and the pricing mechanism.31

30The extreme (bubble or crash) price thresholds are set at 0 and 20. P ∗ = 10 as in the example in Figure 1.
31Note that, while we exogenously specify the memory available to the traders in these experiments, actual traders

may not wish to employ long histories of data if they perceive their environment to be non-stationary and are looking
for momentary pockets of predictability. LeBaron (2012) considers endogenous heterogeneity in the weights placed
by traders on recent data. Note also that for sufficiently high memories, bubbles and crashes will not be observed in
our experiments but will emerge (with low frequency) over sufficiently long observation windows.
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Figure 4: Frequency of runs out of 500 in which an explosive bubble or crash forms within 2,000
trading periods for 90 combinations of memory M and learning rate pupdate. Figures 4a-4c repre-
sent different updating technologies for the linear AR(2) forecast rule (9), for which p = 2. Model
parameters are otherwise as in Figures 1 and 2.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10 0 0 0.064 0.314 0.694 0.902 0.986 0.998 0.998
20 0 0 0.006 0.042 0.078 0.188 0.294 0.38 0.46
30 0 0 0.002 0.002 0.008 0.008 0.034 0.058 0.07
40 0 0 0 0 0.006 0.002 0 0.014 0.006
50 0 0 0 0 0 0 0 0 0
60 0 0 0 0 0 0 0 0 0
70 0 0 0 0 0 0 0 0 0
80 0 0 0 0 0 0 0 0 0
90 0 0 0 0 0 0 0 0 0

100 0 0 0 0 0 0 0 0 0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10 0 0 0.006 0.048 0.162 0.308 0.516 0.646 0.756
20 0 0 0 0.004 0.016 0.042 0.09 0.092 0.132
30 0 0 0 0 0.002 0.002 0.01 0.012 0.026
40 0 0 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0 0 0
60 0 0 0 0 0 0 0 0 0
70 0 0 0 0 0 0 0 0 0
80 0 0 0 0 0 0 0 0 0
90 0 0 0 0 0 0 0 0 0

100 0 0 0 0 0 0 0 0 0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10 0 0.002 0.03 0.162 0.414 0.692 0.862 0.93 0.988
20 0 0 0.004 0.006 0.018 0.064 0.118 0.166 0.18
30 0 0 0.002 0.002 0.004 0.008 0.006 0.024 0.028
40 0 0 0 0 0 0 0 0 0.002

Memory 50 0 0 0 0 0 0 0 0 0
60 0 0 0 0 0 0 0 0 0
70 0 0 0 0 0 0 0 0 0
80 0 0 0 0 0 0 0 0 0
90 0 0 0 0 0 0 0 0 0

100 0 0 0 0 0 0 0 0 0

Memory

Forward Stepwise

Fig. 4c: Forecast rules are linear AR(2) with Forward Stepwise updating

Fig. 4a: Forecast rules are linear AR(2) with OLS updating

OLS

Pupdate

Memory

Fig. 4b: Forecast rules are linear AR(2) with LASSO updating

LASSO
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Figure 5: Frequency of runs out of 500 in which an explosive bubble or crash forms within 2,000
trading periods for 90 combinations of memory M and learning rate pupdate. Figures 5a-5c repre-
sent the same model parameters and updating technologies as in Figure 4, but here agents employ
the more complex quadratic AR(3) forecast rule (3), for which p = 6.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10 1 1 1 1 1 1 1 1 1
20 1 1 1 1 1 1 1 1 1
30 0.976 1 1 1 1 1 1 1 1
40 0.866 0.982 0.99 1 1 0.996 0.998 1 1
50 0.734 0.886 0.948 0.974 0.972 0.984 0.986 0.996 0.99
60 0.552 0.726 0.832 0.88 0.914 0.952 0.942 0.962 0.974
70 0.432 0.588 0.656 0.766 0.826 0.854 0.866 0.874 0.92
80 0.35 0.48 0.576 0.646 0.732 0.748 0.754 0.784 0.81
90 0.262 0.374 0.48 0.534 0.626 0.616 0.642 0.656 0.678

100 0.186 0.278 0.38 0.416 0.52 0.492 0.562 0.566 0.586

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10 0 0.01 0.142 0.36 0.6 0.8 0.868 0.938 0.978
20 0.004 0.024 0.068 0.094 0.19 0.284 0.354 0.398 0.466
30 0.004 0.048 0.072 0.102 0.116 0.154 0.192 0.208 0.244
40 0.012 0.05 0.07 0.072 0.07 0.124 0.128 0.154 0.156
50 0.006 0.038 0.056 0.058 0.068 0.08 0.088 0.122 0.104
60 0.01 0.034 0.028 0.048 0.036 0.06 0.068 0.08 0.078
70 0 0.022 0.032 0.042 0.032 0.05 0.046 0.064 0.048
80 0.01 0.02 0.016 0.014 0.022 0.046 0.03 0.054 0.06
90 0.008 0.016 0.026 0.01 0.026 0.032 0.02 0.024 0.05

100 0 0.008 0.006 0.012 0.028 0.018 0.028 0.032 0.022

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10 1 1 1 1 1 1 1 1 1
20 0.324 0.7 0.846 0.912 0.952 0.988 0.992 0.996 0.998
30 0.074 0.206 0.326 0.382 0.468 0.558 0.63 0.664 0.744
40 0.034 0.068 0.106 0.16 0.232 0.248 0.28 0.334 0.348
50 0.014 0.042 0.046 0.104 0.088 0.128 0.118 0.15 0.176
60 0.016 0.022 0.028 0.04 0.056 0.05 0.062 0.074 0.094
70 0.01 0.008 0.016 0.008 0.028 0.044 0.042 0.04 0.054
80 0.006 0.01 0.01 0.014 0.016 0.036 0.024 0.032 0.032
90 0 0 0.004 0.008 0.01 0.02 0.018 0.02 0.022

100 0.002 0.002 0.002 0.012 0.01 0.01 0.008 0.008 0.016

Memory

Forward Stepwise

Fig. 5c: Forecast rules are quadratic AR(3) with Forward Stepwise updating

Memory

Fig. 5a: Forecast rules are quadratic AR(3) with OLS updating

OLS

Pupdate

Memory

Fig. 5b: Forecast rules are quadratic AR(3) with LASSO updating

LASSO

20



8 Can Agents Do Better than LASSO?

A concern that generally motivates the adoption of machine learning procedures is the potential for
severe over-fitting in high dimensional settings. LASSO protects against overfitting the recent price
data by a combination of coefficient estimate shrinkage and variable selection (setting sufficiently
small estimates to zero). Further, above we followed the standard procedure of selecting the penalty
parameter λ by cross-validation so that it is optimized for out of sample fit.

As we discussed in Section 2, there are good reasons to favor the variable selection aspect of
LASSO as our main specification over denser regularization methods. It certainly represents a
convenience for the researcher, as it facilitates the monitoring and interpretation of the real time
updating of forecast rules and its implications (e.g., volatility increases when agents turn on more
regressors). However, we also believe that it squares well from a behavioral standpoint for modeling
both human based and algorithmic forecasting.

However, since our general approach is to push our agents to do their best to avoid overfitting, we
need to consider the possibility that they could do better than LASSO, either intuitively or with
the assistance of machines. Behaviorally, it is also possible that more opaque machine learning
algorithms better describe some of the intuitive identification of trading opportunities made by
human traders. Further, computing technology is continuing to revolutionize the way financial
assets are traded. In handling orders without immediate human intervention, computer algorithms
increasingly are used to identify trading opportunities, make trading decisions, submit orders and
manage these afterwards, all at tremendous speeds. The machine learning methods currently used
in these processes for identifying trading opportunities certainly include highly dense and opaque
prediction methods, such as deep neural networks, which are often treated as black box prediction
machines.

For these reasons, we consider both a different model selection method – stepwise selection –
as well as denser regularization methods – Ridge regression and elastic net – in order to comment
on how robust our results are to relaxing the assumption of LASSO.

8.1 Stepwise Selection

As an alternative method for model selection and estimation, we first consider forward stepwise
selection. Under this framework, when an agent is selected to reestimate her model, she takes
the set of possible regressors available in (2) and sequentially searches for the best next regressor
(in terms of smallest RSS). Once she has exhausted this sequence, she then selects among the
resulting best models with 1, 2, 3, ... , p regressors to minimize the Bayesian Information Criterion
(BIC). Hence, this form of model selection focuses on variable selection but does not perform
additional regularization through shrinkage. Our prior is that this will generate greater overfitting
and consequently greater volatility than under LASSO.

8.2 Ridge Regression

Ridge regression is similar to the LASSO but the coefficients are estimated by minimizing a slightly
different function. Coefficient estimates (aR0 ,aR1 ,...) are the quantities that minimize

M∑
k=1

(xt−k − F [xt−k])2 + λt ·
p∑

j=1

a2jt (10)

where λt ≥ 0 is the tuning parameter to be determined separately using cross-validation. Comparing
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(6) and (10), we observe that LASSO and Ridge regression have similar specifications. The only
difference is that |ajt| is replaced by a2jt, i.e., the l1 penalty is replaced with an l2 penalty. This

penalty is still small when (aR1t,a
R
2t,...) are close to zero, and so still has the effect of shrinking

coefficient estimates towards zero, but now it does not force some coefficients to be exactly equal
to zero.

8.3 Elastic Net

The elastic net combines the LASSO and Ridge regression penalties. Coefficient estimates (aE0t,a
E
1t,...)

are the quantities that minimize

M∑
k=1

(xt−k − F [xt−k])2 + λt ·
p∑

j=1

[(1− α)a2j + α|ajt|] (11)

where α ∈ [0, 1] is a parameter that determines the balance between Ridge and LASSO penalties
and λt ≥ 0 is the penalty tuning parameter chosen using cross-validation.32

Both Ridge and elastic net may perform better than LASSO when regressors are highly cor-
related. As with OLS, when regressors are correlated, the LASSO estimator will suffer from high
variance. Ridge will tend to yield similar and less variable estimates for coefficients of correlated
variables – thus clustering these variables. However, as discussed in Abadie and Kasy (2019), there
is no one method for regularization that is universally optimal.33

8.4 Simulations

Simulations confirm our intuition that, when practiced by our agents, forward stepwise selection
produces instability that is intermediate, between the OLS and LASSO results. We find that the
variability of the estimated rule coefficients, prices and returns as well as the incidence of explosive
bubbles or crashes tend to fall between the cases of OLS and LASSO updating. The intermediate
incidence of bubbles and crashes is illustrated in Figures 4c and 5c. LASSO protects better against
overfitting than stepwise selection by adding parameter shrinkage to parameter selection, and so
yields less self reinforcing trend chasing.34

Figures 6a-6c illustrate the frequency of the formation of bubbles or crashes for the two denser
regularization methods for the case of quartic AR(6) forecast rules (p = 31). In this example, runs
for elastic net with α = 0.5 are broadly in line with LASSO results while Ridge regression (elastic
net with α = 0) yields significantly lower instability. In our context, these results suggest that due
to endogenous feedback, non-zero coefficients under LASSO may be more extreme than the smaller
but more numerous coefficient estimates under Ridge, which leads to greater feedback and thus
endogenous instability.

However, results for substantially more complex forecast rules (more lags and powers in the
forecasting rule (2)) suggest an interesting come back of LASSO relative to Ridge regression in
terms of producing similar or lower instabilities as the number of regressors climbs into the hundreds.

32α is an additional tunning parameter. It can be determined at the researcher’s discretion or using cross-validation.
33Abadie and Kasy (2019) also show that the choice of tuning parameters using cross-validation is guaranteed to

work well in high-dimensional estimation and prediction settings under relatively mild conditions.
34Since the number of predictors in this experiment is modest, we also perform simulations with agents using

exhaustive selection, rather than forward stepwise selection, and find a similar intermediate incidence of bubbles and
crashes, which tends to be somewhat higher (rather than lower) than under stepwise selection. Exhaustive selection
quickly becomes computationally infeasible as the number of predictors increases (see e.g., Aragones et al., 2005),
and so we focus on stepwise selection above.
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For example, simulations with forecast rule (2) with 21 lags and 20 powers (number of predictors
p = 591) yield very similar levels of instability for both Ridge and LASSO cases, while increasing
the complexity to 26 lags and 25 powers (p = 926) yields modestly lower instability for LASSO
than Ridge. A distinctive feature of Ridge in contrast to LASSO is that it allows shrinkage without
shrinking some observations all the way to zero. However, as the share of true zeros (redundant
predictors) increases – which is likely to be the case with substantially more complex forecast rules
– the relative performance of Ridge deteriorates. We find in our simulations that, for p > M , as
p grows large, the performance of Ridge continues to slowly deteriorate, while the performance of
LASSO stabilizes and can eventually even improve on the margin.35

We thus confirm that no method universally dominates. The relative performance of the differ-
ent regularization methods depends on whether traders entertain simpler or more complex forecast
rules.

35With the number of predictors p greater than the number of available observations n, LASSO will select at most
n predictors to have non-zero coefficient estimates, whereas Ridge will tend to use all of the available regressors.
There is also an interesting discontinuity that we observe with all three regularization methods for more complex
(large p) rules as memory (and thus the number of observations n in agent regressions) is increased and we pass from
p > n to p < n. Instability is high at low memory, decreases as memory is increased, but jumps back up somewhat
when p becomes lower than n, and then continues to fall again as memory increases further. This can be observed in
Figure 6, for which the number of predictors (regressors) in the forecasting rule is p = 31.
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Figure 6: Frequency of runs out of 500 in which an explosive bubble or crash forms within 2,000
trading periods for 90 combinations of memory M and learning rate pupdate. Figures 6a-6c repre-
sent different updating technologies for a quartic AR(6) forecast rule (number of regressors p = 31).
Model parameters are otherwise the same as in the previous Figures.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10 0.008 0.146 0.49 0.734 0.864 0.928 0.972 0.992 0.994
20 0 0.018 0.074 0.142 0.212 0.286 0.336 0.38 0.464
30 0 0.006 0.022 0.044 0.082 0.114 0.13 0.13 0.144
40 0.042 0.082 0.144 0.21 0.19 0.278 0.316 0.306 0.366
50 0.032 0.036 0.112 0.104 0.166 0.174 0.192 0.21 0.248
60 0.014 0.05 0.076 0.082 0.086 0.122 0.098 0.14 0.158
70 0.012 0.024 0.042 0.058 0.09 0.092 0.094 0.092 0.09
80 0.002 0.016 0.02 0.024 0.054 0.04 0.068 0.078 0.074
90 0.004 0.022 0.018 0.024 0.044 0.042 0.034 0.064 0.04

100 0.004 0.014 0.01 0.028 0.022 0.028 0.054 0.042 0.042

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10 0.002 0.122 0.45 0.688 0.856 0.926 0.98 0.984 0.994
20 0 0.016 0.066 0.12 0.172 0.238 0.292 0.338 0.404
30 0 0.004 0.012 0.044 0.064 0.074 0.098 0.104 0.128
40 0.032 0.088 0.144 0.228 0.244 0.25 0.288 0.258 0.308
50 0.026 0.048 0.088 0.098 0.166 0.184 0.232 0.208 0.218
60 0.012 0.05 0.076 0.088 0.08 0.12 0.11 0.14 0.162
70 0.014 0.03 0.038 0.052 0.09 0.086 0.088 0.102 0.098
80 0.006 0.02 0.022 0.032 0.046 0.04 0.062 0.076 0.072
90 0.004 0.022 0.024 0.028 0.042 0.048 0.044 0.052 0.038

100 0.006 0.008 0.01 0.026 0.012 0.026 0.054 0.054 0.04

 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10 0 0 0.002 0.002 0.016 0.032 0.082 0.128 0.206
20 0 0 0 0 0 0 0 0 0.002
30 0 0 0 0 0 0 0 0 0
40 0 0.002 0.004 0.018 0.016 0.022 0.038 0.03 0.054
50 0 0.004 0 0.006 0.01 0.014 0.012 0.02 0.024
60 0 0.002 0.002 0.002 0.004 0.008 0.004 0.008 0.012
70 0 0 0 0 0.002 0 0 0.006 0.004
80 0 0 0 0.002 0.002 0.002 0.002 0 0.004
90 0 0 0 0 0 0 0 0.002 0.002

100 0 0 0 0 0 0 0 0 0.002

Elastic Net

Memory

Fig. 6a: Forecast rules are quartic AR(6) with LASSO updating

Fig. 6b: Forecast rules are quartic AR(6) with Elastic Net (α=0.5) updating

Fig. 6c: Forecast rules are quartic AR(6) with Ridge updating

Pupdate
Ridge

Memory

Memory

Pupdate
LASSO

Pupdate
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It is also worth noting that, while Ridge estimation does not set forecast rule parameters
exactly equal to zero, in our simulations, it does often set some parameters very close to zero, thus
performing a kind of near model selection. Consequently, we tend to observe clustering of volatility
in average forecast rule parameters and in returns that are closer to the LASSO case than the OLS
case, again indicating that dynamics are driven by apparent pockets of predictability, in this case
with near-sparse signals.

9 Conclusion

The overparameterization of traders’ forecast rules exascerbates overfitting which increases market
volatility and instability. LASSO mitigates this problem: traders who use LASSO to search for
predictable price movements while attempting to avoid overfitting the data available to them are
less likely to overparameterize their forecast models and overfit the data than are traders using
OLS without model selection or regularization. Nevertheless, as in Grandmont (1998), they are
willing to entertain a wide range of possible price forecasts. Thus, they will still occasionally
chase apparently predictable dynamics in ways that generate heightened excess volatility or more
dramatically destabilize the market. The occasional emergence of apparent pockets of predictability
accords with the empirical results of Andersen and Sornette (2008), Chinco, Clark-Joseph and Ye
(2019) and Farmer, Schmidt and Timmermann (2019). The simulation results reported here suggest
that even a high degree of attention to overfitting on the part of traders who are engaged in data
mining is unlikely to entirely eliminate destabilizing speculation.
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