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1. Introduction
Explore the consequences of the prediction technologies available to
trader/investors for market volatility and instability.

Focus on the role of regularization in forecasting for driving
empirical regularities in financial market data

Traders are in a competitive battle to uncover fleeting predictable
structure and exploit it before others do so. They face:

▶ access to a wealth of data
▶ model uncertainty
▶ non-stationary environment
▶ over-regularization of the forecasting model will potentially leave

predictable structure on the table.
▶ under-regularization will potentially cause them to chase spurious

trends.

In our model, dynamic L1 regularization can generate empirical
regularities and can mimic two type models endogenously.

Further, ML methods that forecast well on exogenous data may have
little empirical content in a self referential context.
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Some Background
In a world of deep complexity/uncertainty + big data + competition

Tension between predictability and overfitting (e.g., D’amour et al.,
(2020), Nagel (2021))

Simple heuristics (e.g., Anufriev and Hommes (2012)) may
outperform more complicated prediction methods

▶ Effectively negotiate bias-variance tradeoff (e.g., Gigerenzer and
Brighton (2009), Hansen (2020))

▶ Interpretability (for risk management, regulatory compliance, marketing
– e.g., Hansen (2020))

▶ Systemic efficiency (e.g., Dosi et al. (2020))

ML is explicitly designed to navigate this tension – has had increasing
success in TS forecasting

▶ early on, complex methods were dominated by simpler statistical
methods or model averaging - e.g., M4 (Makridakis et al., 2018;
Slawek, 2020).

▶ substantially more success recently – e.g., NNs, LightGBM
⋆ M5, M6 competitions (Makridakis et al., 2022, 2023)
⋆ Gu et al. (2020), Ryll and Seidens (2019), Kelly and Xiu (2023)

Georges (Hamilton College) Prediction, Heuristics, and Excess Volatility WEHIA 2024 3 / 44



ML essentially entertains wide variety of predictors and highly
non-linear relationships with target variables, and uses
regularization and out of sample testing to mitigate overfitting.

Regularization constrains the complexity of the forecasting model,
often by adding a complexity penalty

Still will generally have overfitting
▶ driven by purely random patterns in the data
▶ as well as propagation via trader behavior
▶ aggravated if relaxation of degree of caution

Below, endogenous selection of degree of regularization can be
a powerful driver of volatility patterns.

▶ and can mimic two type model, via endogenous selection

Note that success in forecasting in e.g., M6 is on exogenous data.
Here we are interested in empirical validity in self referential
environments.
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2. Thought Experiment: Fitting and Overfitting an
Exogenous Time Series

Universal approximation theorem (Hornik et al. (1989), Cybenko
(1989)): implies that a feed forward NN with enough nodes in a
single hidden layer can (over)fit any training data to arbitrary
precision. Below we provide an illustration on purely artificial data.

Consider purely exogenous artificial data: xt = x∗ + ϵt , where x∗

is a constant (below set to 10.5), and ϵ is a mean zero dividend shock
(below uniform on (-0.5,0.5)) .

For reference, the RE prediction in this case is that x will be
x∗ = 10.5 in every period. If x∗ was unknown, it could be consistently
estimated with the sample mean.

Now consider prediction with a single layer feed forward NN for
which the predictors are p lags of xt . Increasing the number of
nodes in NN or increasing the number of available predictors p will
increase the fit in the training sample, thus overfitting the time series.
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Figure 1: Fitted and target values of exogenous artificial x series from neural
network with 5 predictors and 2 nodes in a single hidden layer. Here the MAD
from the RE forecast is 0.033, and the MAE is approx. 0.194. For reference the
corresponding MAE under the RE prediction for the 200 period training set would
be approx. 0.191.
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x and fitted x for aritificial data xt = x∗ + εt
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Figure 2: Fitted and target values of exogenous artificial x series from neural
network with 5 predictors and 10 nodes in a single hidden layer. Here the MAD
from the RE forecast is 0.059, and the MAE is approx. 0.177
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Figure 3: Fitted and target values of exogenous artificial x series from neural
network with 5 predictors and 100 nodes in a single hidden layer. Here the
MAD from the RE forecast is 0.161, and the MAE is approx. 0.101
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Figure 4: Fitted and target values of exogenous artificial x series from neural
network with 10 predictors and 100 nodes in a single hidden layer. Here the
MAD from the RE forecast is 0.191, and the MAE is approx. 0.048. Fitted
network has 1100 kernel weights with Frobenius norm approx. 7.679.
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So the NN is prone to extreme overfitting, ...unless mitigated via
regularization.
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Figure 5: Fitted and target values of exogenous artificial x series from neural
network with 10 predictors and 100 nodes in a single hidden layer. L1
regularization 0.005. Here the MAD from the RE forecast is 0.035, and the
MAE is approx. 0.189. Frobenius norm of kernel weights approx. 0.426.
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x and fitted x for aritificial data xt = x∗ + εt
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Figure 6: Fitted and target values of exogenous artificial x series from neural
network with 10 predictors and 100 nodes in a single hidden layer. L1
regularization 0.01. Here the MAD from the RE forecast is 0.009, and the MAE
is approx. 0.192. Frobenius norm of kernel weights approx. 0.006.
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NN: 10 predictors, 1 hidden layer w. 100 nodes, L1 reg 0. 01

x and fitted x for aritificial data xt = x∗ + εt

So with a high enough regularization penalty, the NN selects the simplicity
heuristic.
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So here we can see the tension between the desire to uncover
predictable structure and the ease of overfitting (fitting noise).

▶ With sufficient regularization (e.g., a large enough penalty in the loss
function) the NN will select the simplicity heuristic

▶ But this would also rule out the possibility of exploiting predictable
structure, if such structure were to exist.

We can also see that with a given level of regularization intensity
(L1 penalty), random patterns in the data can still pull the prediction
away from x∗.

Further, as we will see below, if forecasters select this regularization
intensity dynamically (e.g., by CV), this intensity will vary over
time and itself be driven by patterns in the data. I.e., there will be
episodes in which the data appears to be relatively more predictable,
and so traders will jump to exploit these fleeting windows or “pockets
of predictability” (Farmer et al, 2023, Chinco et al, 2019), setting off
further volatility.
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3. Model Environment

Simple (toy) workhorse market model with stationary fundamentals.
Extends Georges and Pereira (2021).

The agents are chartists, forecast returns, uncertain about
fundamentals and the beliefs of the other traders – willing to
entertain a wide range of patterns

▶ A strong simplicity heuristic is consistent with RE (fundamentals)
▶ They can in principle learn the simplicity heuristic, but have to fight

overfitting the available data
▶ Agents dynamically select of L1 regularization intensity by CV
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Market Structure and Price Determination

Two assets:
▶ a stock with stochastic dividend dt = d + εt and price Pt

▶ a bond with known fixed return r.

A risk neutral trader i would be indifferent between holding the
stock or the bond if her forecast satisfied

Pt =
F i
t [Pt+1 + dt+1]

1 + r
(1)

Arbitrage: assume the market price in period t satisfies (1) for an
average risk neutral trader:

Pt =
F t [Pt+1 + dt+1]

1 + r
(2)
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Prediction Architecture for Agents

The agents know r but do not know the dividend process and must
forecast xt+1 ≡ (Pt+1 + dt+1).

We give the agents a common prediction technology:
▶ A modeling famework
▶ An estimation method: may include model selection, regularization,

cross validation

Heterogeneity: estimation is asynchronous, each period some subset
of the population re-estimates, so fitted models are heterogeneous

Agents forecast each period given their current fitted models
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4. Example Prediction Architecture: Polynomial
Regression

Example Modeling Framework: All agents use forecast rules with a
common polynomial autoregressive functional form,

F i
t [xt+1] = Poly(xt , xt−1, xt−2, ...) (3)

with coefficients a = (ai0t , a
i
1t , ...) that vary across agents i and time t.

Specific Example: quadratic AR(3) rule,

F i
t [xt+1] = ai0t + ai1t · xt + ai2t · xt−1 + ai3t · x2t−1 + ai4t · xt−2 (4)

+ai5t · x2t−2 + ai6t · xt−1 · xt−2
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Example Estimation Methods for this case:
▶ Georges and Pereira (2021) focus on comparing:

⋆ OLS (“least squares learning”)
⋆ LASSO (“penalized regression”)

▶ LASSO is similar to OLS but with a complexity penalty added to the
loss function. The LASSO coefficient estimates (aL0t ,a

L
1t ,...) minimize

M∑
k=1

(xt−k − F [xt−k ])
2 + λt ·

p∑
j=1

|ajt | (5)

where p is the number of regressors (predictors) in the regression.1

▶ LASSO’s L1 regularization forces some or all slope parameter estimates
to zero, generating a sparse and relatively interpretable fitted model.
If all are estimated to be zero we have our simplicity heuristic.

1p = 6 in (4).
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Given polynomial AR forecasting model, Lasso with k-fold CV to
dynamically select the penalty hyperparameter λt (G&P, 2021):

▶ generates simple interpretable fitted prediction models
▶ substantially mitigates overfitting by the agents, and so
▶ reduces volatility and instability in the market
▶ however, does not entirely eliminate overfitting – survival of apparent

pockets of predictability, as empirically documented by e.g., Chinco,
Clark-Joseph, and Ye (2019) and Farmer, Schmidt, and Timmermann
(2023).

▶ agents spend much of their time selecting the minimal simplicity
heuristic -just averaging recent values of x – (here consistent with
RE), but periodically become active chartists.

▶ this is a strong mechanism for driving volatility clustering (with
slow decay) and fat tails – indeed often too strong

▶ Akin to the switching in two type models. Here all agents are
chartists, and there is a continuum of chartist types, but chartists
frequently select a corner solution where they behave like
fundamentalists.

▶ Further investigation (Georges, 2022) highlights the importance of
the endogenous penalty under CV in driving this intermittency
between periods of stasis and pockets of predictability and volatility.
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Figure 7: LASSO: AR(3) Quadratic (p = 6)(Rule (4)). Prices, returns, and penalties. for

2,500 rounds of a representative run with LASSO updating and CV selection of λt .
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Figure 8: Optimal agent rule parameters (a0,...,a6) – run in Figure 7.
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Figure 9: Cross Correlation Function: absolute returns and penalty parameter. Run in Figure 1
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Compare to the same model with agents using unpenalized OLS updating
rather than Lasso:

Figure 10: OLS Updating, AR(3) Quadratic (p = 6): Same as Figure 1 except OLS

estimation without penalty.
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Figure 11: Optimal Agent rule parameters: Figure 4.
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Figure 12: Bubble formation in the last run in subsequent simulation rounds.
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5. Neural Networks
The p predictors are now just p lags of xt (no non-linear
pre-processing of the inputs).

Neural Networks:
Suppose e.g., that the neural network has a single hidden layer with h
nodes, and a single output with linear activation.

▶ The p predictors are each fed to the h nodes in the hidden layer,
linearly combined, these sums nonlinearly transformed by the activation
function, and the product combined linearly to produce the single
output value, which serves as a prediction of xt+1. Then we have

F [xt+1] = b2 + w ′
2g(b1 +W1xt) (6)

▶ Where the b’s and w’s are coefficients or “weights” with the b’s often
called “biases.” g() is a non-linear activation function (e.g., tanh, or
relu). Here b2 is a scalar, w2 and b1 are vectors, and W1 is an hxp
matrix.

▶ The weights are akin to the coefficients of the linear regression
model, and indeed, if g() was linear, the entire network would reduce
to a linear AR(p) model.
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This simple structure allows for substantial flexibility and is akin to
Facebook’s AR-Net approach (Triebe et al., 2019). Vs. more complex
NN frameworks for TS forecasting (convolutional, recurrent/LSTM,
transformers).

Can add hidden layers to get deeper network (deep learning) and add
regularization via penalization, dropout, early stopping, etc.

▶ We include L1 complexity penalty selection via CV.
▶ We also favor the simplicity heuristic by normalizing the predictors

by the theoretical equilibrium mean x∗ and σd as well as by having
training start with the kernel weights distributed around 0 but the
output bias initialized at x∗. So training starts in the neighborhood of
the RE-consistent simplicity heuristic.
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Figure 13: Neural Network: Returns and Penalties for 2000 period NN run (TF)
with CV. Here there is a single hidden layer with 50 nodes, the predictors are 5
lags of x , and the penalties selected by CV can take values 0.001, 0.01, or 0.1.
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Figure 14: Neural Network: Returns and Penalties for 1000 period NN run (TF)
with CV on a broader penalty set. Single hidden layer with 20 nodes, the
predictors are 5 lags of x , and the penalties selected by CV can take values 0, 0.1,
0.3, 0.5, 0.7, 1.0.
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6. Regression Trees, Random Forests, and Gradient
Boosting Machines

Regression Trees, Random Forests, and Gradient Boosting
Machines:

Regression Tree: partition the space of predictors (features)
sequentially to minimize a loss function. Prediction for each resulting
“leaf” is the average value of the outcome variable in sample at that
leaf.

Random Forest: model averaging over a set of regression trees

Gradient Boosting Machine: sequentially train simple trees (weak
learners) on the residuals from the last fitting

Regularization: can again be imposed via penalty selected by CV, by
limiting the depth of the trees, etc.

Advantages: tend to perform reasonably well off the shelf.
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Figure 15: GBM: Returns and Penalties for 2,500 period LightGBM run with CV.
Here the predictors are 5 lags of x , agent memory is 200 periods, and cross
validation is over the penalty parameter which can take values of 4 or 6.

Forcing relatively large values of the penalty parameter.
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Figure 16: Returns and Penalties for 4,000 period LightGBM run with CV on less
extreme penalty set: 0.0, 0.05, 0.1.

And if add larger values of penalty in CV (as in Fig. 14), they tend not to
be selected.
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7. 3rd Party ML TS Packages

Prophet (Meta): variable trend + seasonality, L1 regularization

TSMixer (Google), TimesNet, PatchTST, N-BEATS, N-HiTS:
NN based (deep learning)

TimesFM (Google), TimeGPT (Nixtla), Chronos (Amazon):TS
foundation models

etc...
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Prophet:

GAM (general additive model) w. flexible trend + seasonality

bayesian estimation

trend switch points selection with L1 regularization (sparse priors)

seasonality by Fourier series, also with L1 regularization

requires us to change how updating works – keep forecast until
reestimate

Georges (Hamilton College) Prediction, Heuristics, and Excess Volatility WEHIA 2024 33 / 44



Figure 17: Prophet: Returns for 4000 period Prophet run with L1 regularization
but not CV. Agents who refit the model keep the same forecast until they refit.
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Summary from Illustrative Simulations
▶ Dynamic regularization (selection of penalty by CV) by agents can be a

universal driver of fat tails and clustered volatility. Akin to dynamic
model selection.

▶ Effects vary across ML methods under endogenous dynamics.
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8. Calibration

Combination of manual calibration and Franke and Westerhoff (2011)
MSM approach

▶ Start with latin hypercube samples.
▶ Match moments via Nelder-Mead algorithm to minimize a weighted

quadratic distance measure.
▶ Moments include measures of autocorrelation, and fat tails of returns

as well as long memory in volatility.
▶ Calibrated parameters include learning rate, memory, dividend shock

variance, bond return.
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Some Details:
▶ 9 Moments:

⋆ mean of absolute returns (volatility)
⋆ first order AC of raw returns
⋆ ACs of absolute returns for lags 1,5, 10, 25, 50, 100) (long memory in

volatility)
⋆ Hill estimator for tail index of absolute returns (fat tails of returns)

▶ Empirical moments based on returns from daily S&P prices from
1991-2021 (approx 7700 days)

▶ Distance measure: J = (msim −memp)′W (msim −memp)
⋆ where m is 9x1 and W is a 9x9 weighting matrix: inverse of estimated

variance-covariance matrix of memp by bootstrap

▶ Calibrated parameters include:
⋆ learning rate
⋆ memory
⋆ dividend shock variance
⋆ ML algorithm specific parameters
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Some Preliminary Calibration Results:
▶ Lasso with CV tends to favor excessive fat tails and persistence in

volatility.
▶ Dynamic penalty selection matters for this. Lasso without CV and OLS

underperform on these measures.
▶ Tree methods and Prophet tend to underperform on these measures

generally: both for no CV or (for tree methods) CV with broad allowed
penalty range. Weak capacity for extrapolating trends out of sample.

▶ Some weak convergence properties – particularly with Prophet (e.g., at
higher pupdate). Also for OLS, NN and Lasso at low memory – not
reflected in J.
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Preliminary Calibration Findings:

Table 1: Selected Statistical Features of Returns: Empirical (S&P) and Simulations

ACF 1 ACF 5 ACF 10 ACF 25 ACF 50 ACF 100 Hill
Abs Abs Abs Abs Abs Abs Estimator J

Return Return Return Return Return Return Abs Ret Value

S&P 0.2714 0.3216 0.2765 0.1854 0.1292 0.0788 2.7448 —

OLS1 0.3825 0.14005 0.1208 0.0917 -0.0219 -0.0210 3.597 337.6
OLS2 0.3892 0.2438 0.24215 0.1525 0.0427 0.0134 3.479 180.5
Lasso1 0.5843 0.4564 0.4132 0.3520 0.2795 0.1968 2.134 235.1
Lasso2 0.4993 0.3627 0.3408 0.2190 0.0392 -0.0317 3.076 223.9
Lasso3 0.5514 0.4480 0.3856 0.2146 0.0618 -0.0381 2.1565 196.7
NN2 0.3600 0.1078 0.1271 0.075 0.0451 0.0246 3.3682 241.1
LGBM1 0.3867 0.0836 0.0659 0.0876 0.0536 0.0306 4.333 599.0
Prophet2 0.0899 0.1289 0.1139 0.0816 0.0819 0.1398 3.779 339.3

By method and method parameters. Based on 5000 round runs except NN 2000 rds.
OLS2: fewer predictors; Lasso2 fixed penalty (no CV); Lasso3 lower memory
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A few observations:
▶ Overall fits are somewhat weak due to first order AC and overall

volatility. Weights put low value on Hill. J values are quite sensitive to
random seeds.

▶ We are particularly interested in fat tails (Hill) and slow decay of
volatility (long memory). Lasso tends to generate too much fat
tailedness (under CV), OLS (no CV), LightGBM (under CV) and
Prophet (no CV) too little. NN still tbd!

▶ Dynamic selection of penalty can act as universal driver of
intermittency, clustered volatility, fat tails. However it may be too
strong (Lasso) or may not be chosen by the agents via automated CV
(LGBM). Behavioral question.

▶ A method (e.g., GBTs or NNs) that does well at forecasting
exogenous financial time series (M5, M6, Gu, etc.) may have little
empirical content in an endogenous setting with market feedback.
E.g., tree methods are poor at extrapolating forecasts outside of the
historical training data, so complex dynamics may not emerge in the
market. Similarly with Prophet which relies heavily on trend and stable
calendar effects.

▶ OLS and Prophet exhibit weak convergence properties and tend to drift
far from the stationary equilibrium.
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Figure 18: S&P500: Daily prices for S&P500 1991-2021
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Figure 19: S&P500: Daily returns for S&P500 1991-2021
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OLS1 spec has 2 lags 2 powers pupdate=.5 memory=100 lags=powers=2
shockrange=0.5; 5000 rds for all of these OLS2 has lags=powers=1
(better fit); Lasso1 has memory=100 pupdate=.2 shockrange 1.5 (need
large shock range to get mean abs rets large enough); Lasso2 drops CV
on penalty (uses an average value); Lasso3 has mem50 pup0.1 shkrg0.85
LGBM has CV on penalties (0,.01,.1,1,3) - 3 rarely gets selected and isn’t
large enough to make much diff, if add 5, never selected, so never get
much intermittency unless force CV on large values of penalty NN2 20
nodes, m100, pup0.2, shkrg0.5, CV 0 0.01, 0.02, 0.03, 0.05, 0.07, 0.1 only,
2000 rds only, DF, would select larger CV penalties if allowed but already
well above necessary Prophet2 m200, pup0.1, shockrange 0.85 DF
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