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Abstract

We consider a simple market environment in which traders with finite memory
update forecasting rules at random intervals by OLS. In this context, changes in
the perception of market risk can trigger volatility and bubbles. Consequently,
higher degrees of risk response among traders can have a destabilizing effect on
price dynamics. We consider the interaction of this effect with memory, the speed
of learning, and the nature of the forecasting rules.
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1. Introduction

We report on the behavior of artificial agents who base their trading decisions
on returns forecasting rules which they fit to recent data by OLS. The rules are
overparameterized relative to the fundamentals of the market. Further, memory is
limited, and agents face random wait times between OLS updates.

In Georges (2008a, 2008b), we found through simulation of an agent based
model with these features that if traders use minimum state variable forecasting
rules, price dynamics conform to a noisy version of the fundamental rational ex-
pectations equilibrium as predicted by Honkapohja and Mitra (2003). However,
when traders fit overparameterized forecast rules to the data, the learning dynam-
ics can become unstable. This instability tends to increase in the rate of learning
(the frequency of OLS updating) and decrease in the memory of the traders. For
nonlinear overparameterization, the instability can persist even with relatively large
memories. Thus, the correspondence between the learning equilibrium and the fun-
damental rational expectations equilibrium is fragile.

In those papers, traders were assumed to be risk neutral, and respond only
to expected returns. In the present paper, we introduce risk preference among the
traders. Since changes in these agents’ perceptions of risk will alter their trading
behavior, their reactions to risk can either dampen or amplify volatility in the
market. Indeed, we find in simulations that volatility, and particularly the incidence
of speculative bubbles is increasing in the deviation of traders’ preferences from risk
neutrality, regardless of whether these agents tend to be risk averse or risk loving.
Further, for any degree of risk preference, instability continues to be increasing in
the rate of learning and the degree of over parameterization of returns forecasting
rules, and decreasing in memory. Additionally, the feedback between the level and
volatility of prices due to risk preference can lead to the formation of bubbles even
when traders use minimum state variable (MSV) forecast rules for returns, which
is not the case in the absence of risk preference.

2. Background

That risk preference can propagate volatility and set off bubbles has been noted
elsewhere. Branch and Evans (2011) and LeBaron (2012) show that, under constant
gain learning about return and volatility, volatility shocks can trigger both persis-
tence in volatility and bubbles and crashes. LeBaron focusses on the heterogeneity
of gains in forecast updating and is able to reproduce a wide variety of stylized facts
on stock prices. Branch and Evans are able to generate some analytical results when
the perceived model for returns is AR(1).

Here we focus on the dependence of unstable (bubble) dynamics on memory, the
speed of learning, the degree of sophistication (overparameterization) of forecasting
rules, and the strength of risk preference.

The traders considered below have bounded memory and forcast both returns
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and volatility using recent data on returns that are, themselves, generated collec-
tively by their own trading behavior. The behavior of the model is studied by
means of simulation. This exercise falls under the rubric of agent-based computa-
tional economics.

3. The Simple Market Environment

As in Georges (2008a, 2008b), there are two assets, a stock that pays a stochas-
tic dividend dt in each period t, and a bond with a fixed rate of return r in each
period. Dividends are given by dt = d̄ + εt, where d̄ is constant and the εt are iid
with zero mean and finite variance σ2

ε . Denote the price of the stock in period t,
Pt.

In each period t, each trader i constructs a forecast F i
t [Pt+1 +dt+1] of the price

plus dividend of the stock in the following period as well as an estimate F i
t [σ

2
t+1]

of the variance of her forecast error in that period. As in Georges (2008b) we
will assume that the market price is determined by an average trader’s behavior
at any time. However, this behavior is now driven by that trader’s forecasts of
both return and volatility. Following the convention of assuming mean-variance or
CRRA preferences for simplicity, we will assume the market clearing price of the
stock in period t satisfies

(1) Pt =
F̄t[Pt+1 + dt+1] − ā · F̄t[σ

2
t+1]

1 + r

where F̄t[·] is the forecast of a representative agent (to be defined below), and ā is
the risk factor associated with the representative agent.

In Georges (2008a, 2008b), ā = 0, whereas here ā may be <
>

0.

4. Rational Expectations Benchmark

In this simple model, there is a unique stationary rational expectations equilib-

rium: Pt = P ∗ ∀t, where P ∗ ≡
d̄−āσ2

ε

r
. Thus, given the dividend process assumed

above, any volatility in price represents a deviation from the stationary REE.

It will be useful to define xt ≡ Pt + dt and x∗ ≡ P ∗ + d̄ =
(1+r)·d̄−ā·σ2

ε

r
, and

note that the stationary REE can be expressed as xt = x∗ + εt ∀t.

5. Forecast Rules

We suppose that all agents are technical traders who forecast returns using
forecast rules with a common functional form

(2) Fi
t[xt+1] = ai

0t+ai
1txt+ai

2t ·xt−1+ai
3t ·x

2
t−1+ai

4t ·xt−2+ai
5t ·x

2
t−2+ai

6t ·xt−1 ·xt−2
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where ai
0t,...,a

i
6t are scalars that can vary across agents i and time t. 1 2 Func-

tional form (2) is arbitrary but simple and follows the spirit of Grandmont’s (1998)
“uncertainty principle” as well as Gigerenzer and Selten’s (2001) “fast and frugal
heuristics.” It also nests the MSV forecast rule, which is consistent with the sta-
tionary REE, as well as simple trend chasing rules such as the AR(1) rule used by
Branch and Evans (2011).

We take the average return forecast F̄ [xt+1] used in equilibrium condition (1)
to be the forecast (2) using the algebraic averages (ā0t, ā1t, ...) of the traders’ rule
parameters. Note that the stationary REE forecast rule is given by (ā0, ā1, ā2, ā3,
ā4, ā5, ā6) = (x∗,0,0,0,0,0,0).

For volatility forecasts F [σ2
t+1], we assume that each trader simply calculates

the mean squared forecast error from the previous M periods (where M stands for
memory).

(3) Fi
t[σ

2
t+1] =

M∑

k=1

1

M
· (xt−k − F i

t−k−1 [xt−k])2

6. Return Forecast Rule Updating

At the start of each period t, each agent updates her returns forecast rule (2)
parameters (ai

jt) with common probability pupdate. If agent i updates her rule
in t, she chooses the rule that minimizes the sum of squared forecast errors over
the preceding M periods. Thus, agents learn about returns using a finite memory
asynchronous least squares learning algorithm. Note that, given pupdate < 1, not
all agents will update their rules (by OLS) in a given period t. However, each
agent who is selected to update her rule at t observes the same returns history and
therefore will select the same new rule (i.e., the same parameter values ai

jt).

In each period t, each agent (regardless of when she last updated her returns
forecast rule by OLS) forms a new forecast of next period’s return and volatility
using her current rules (2-3). Note that volatility forecasts are common, whereas
returns forecasts are heterogeneous due to the asynchrony of OLS updating.

1 We condition forecasts on the level of x rather than on deviations of x from its stationary
REE expected value as in the previous papers as the latter value now depends on the volatility of
returns which tends to be systematically larger under learning than under rational expectations.

2 Assuming that xt is not in traders’ information sets at time t, traders form iterated forecasts
of xt+1 by first forecasting the current period’s value xt using the observed values from the
preceeding three periods.
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7. Simulations

For any given degree of risk preference, we continue to see the three broad
patterns observed in Georges (2008a, 2008b). The incidence of explosive bubbles
and crashes is generally increasing in the degree of overparameterization of returns
forecast rules, decreasing in memory M , and increasing in the rate of OLS updating
pupdate (i.e., in the rate of learning). We now also observe a fourth general pattern,
which is that the incidence of explosive bubbles and crashes is increasing in the
deviation of the risk preference parameter a from zero, |a|.
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Figure 1: The frequency (in blue) with which bubbles emerge as the risk
preference parameter a is varied from -4 to 4. For each of 81 values of a

between -4 and 4 (increments of 0.1) we conduct 1000 runs of the model,
each with 10,000 trading periods and identical parameter values except for
the random seed. The blue curve plots, for each value of a, the percent
of runs in which there is a bubble, defined as the price reaching an upper
or lower threshold far from the stationary REE. Returns forecast rules are
of form (2). Results are shown for memory M = 200 and rate of learning
pupdate = 0.5. Also shown separately is the frequency of upward bubbles
(in red) and downward bubbles (in green).

We see that the incidence of bubbles is increasing in |a|.3 Further, positive val-
ues of a (risk aversion) are more likely to produce downward bubbles, and negative
values of a are more likely to produce upward bubbles, while there is roughly the
same incidence of upward and downward bubbles at a = 0. When agents detect an

3 In these simulations d̄ = 0.5, r = 0.05, and ε is distributed uniformly on [-0.25,0.25] so that
σ2

ε
≈ 0.02. The upper and lower price thresholds for a bubble to be recorded are 20 and 0. These

thresholds are far from both the stationary rational expectations equilibria and the normal (non-
bubble) price dynamics of the model under simulation. Thus, the recorded bubbles reflect shifts
from stable to explosive trajectories.
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increase in the variance of returns, they will tend to sell as a result if risk averse,
and buy if risk loving, driving price down or up in the two cases respectively. This
may further increase perceived volatility and thus trigger further price changes in
the same direction. This feedback is in addition to, and interacts with, the feedback
through returns learning.

Figures 2 and 3 illustrate that previous results still hold for any given level
of risk preference. The incidence of bubbles is decreasing in memory (Figure 2)
and increasing in the rate of learning and the degree of overparameterization of the
returns forecasting rule (Figure 3).
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Figure 2: The frequency of bubbles as risk preference a and memory M are
varied. pupdate = 0.5. The case M = 200 (blue) is the same as in Figure
1.
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Figure 3: The frequency of bubbles as risk preference a and the rate of
learning pupdate are varied. Additionally, here agents are using a restricted
linear AR(2) version of rule (2) where the ai

jt are set to zero for j=3,4,5,
and 6. M = 25. With less overparameterization of the forecast rule, the
incidence of bubbles is reduced, as is illustrated by the case pupdate = 0.5
(red) which corresponds to the case M = 25 (red) in Figure 2.

Increasing the degree of overparameterization and reducing M increases the
variance of the OLS parameter estimates and thus promotes the incidence of extreme
rules. Increasing pupdate increases the number of agents who adopt new rules in
any period. When a new rule is extreme, it can lead to large price movements
which in turn feedback onto the selection of rules, as well as the perception of risk,
in subsequent periods.

A fifth further new result is that bubbles can now emerge for positive |a| even
in the case of MSV returns forecasting rules. This is not the case when a = 0. In
the MSV case, not only does risk preference tend to increase the volatility of the
price process, but it can also cause enough positive feedback to generate explosive
bubbles.4

8. Conclusion

The response of traders to risk is shown to provide an additional channel for
the propagation of bubbles in the simple framework of Georges (2008a, 2008b) while

4 Indeed, for sufficiently large |a|, bubbles can emerge in the MSV case even when the rate of
OLS updating is reduced to zero. Raising the OLS updating rate further amplifies this process
and increases the incidence of these bubbles.
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preserving the dependence of instability on memory, the rate of learning, and the
degree of forecast rule overparameterization shown there.
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