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Abstract 

This paper uses U.S. county-level data to examine the extent of geographical variability in the 

process liking emissions of carbon dioxide to measures of population, affluence, and technology. 

Results from geographically-weighted regression models show that there is strong evidence of 

geographical heterogeneity and that the magnitude, and in some cases, the direction, of the 

effects vary within and across the 48 contiguous states in the U.S. These results suggest that one 

ought to be cautious of policy recommendations based on global models that ignore or account 

imperfectly for spatial dependence.  

 

  



1. Introduction 

Since the late 1960s, researchers and policymakers have debated how economic and 

population growth influence environmental quality and the stock of natural resources, and 

whether technological process may be a mechanism to reduce the ecological impacts of growth. 

Much of this debate has focused on the IPAT identity (and its stochastic formulation, the 

STIRPAT model) and the environmental Kuznets curve (EKC) hypothesis as approaches that 

allow for the identification of the determinants of environmental quality.
1
  

The IPAT identity describes environmental impacts (I) as the outcome of three variables: 

population (P), affluence (A), and technological factors (T). The stochastic formulation of the 

identity – the Stochastic Impacts by Regression on Population, Affluence, and Technology 

(STIRPAT) model – provides a testable parsimonious model to estimate the contribution of each 

factor on impacts (Dietz and Rosa, 1997). The environmental Kuznets curve (EKC) hypothesis 

was first examined by Grossman and Krueger (1991) who proposed a non-linear relationship 

between affluence and environmental pollution. In recent practice, these two conceptual models 

have converged as researchers working within the framework of the IPAT identity typically 

include a quadratic term for affluence to test the EKC hypothesis.  

As Maddison (2006) points out, the continuing interest on the EKC hypothesis is 

understandable since decision-makers need to evaluate policies that may cause a trade-off 

between economic growth and environmental quality, and must consider the extent to which 

rising levels of affluence, institutional responses, and technological progress may curve or even 

reverse the impact of economic growth on the natural environment.  

                                                 
1
 Carson (2010) discusses the IPAT identity in the context of the controversy generated by Ehrlich’s The Population 

Bomb, of 1968, and the Club of Rome’s Limits to Growth of 1972.  Brander (2007) argues that these issues can be 

traced back to Malthus and the “Malthusian trap” hypothesis.  



However, the results in the literature vary according to the measure of environmental 

impact (such as air and water pollutants, biodiversity risk, ecological footprint, and others), the 

sample used for the estimation, and the choice of econometric specification. While researchers 

have examined how several econometric issues might drive this lack of robust results, less, but 

growing, attention has been paid to the statistical issues due to the spatial nature of the data used 

to estimate EKC and STIRPAT models.
2
 

In empirical applications of the EKC and STIRPAT models, many researchers have 

estimated linear regression models and made the assumption that observations are spatially 

independent, that is, it is assumed that environmental outcomes in one region are independent of 

impacts in other regions. This assumption may not hold if there are unobserved contextual 

effects that make impacts in nearby locations to be similar: geographical, historical, 

administrative, and cultural factors that adjacent areas share due to technological diffusion, 

similar paths of industrialization and de-industrialization, cultural factors that influence lifestyles 

and consumption patterns, and the implementation of policies that react to decisions by 

neighboring political units.  

There are several approaches to modeling spatial dependence (Maddison, 2006). Suppose 

we want to estimate emissions of an air pollutant at the state level in the U.S. In a spatial lag 

model, researchers would model state i’s emissions as a function of the state’s characteristics and 

its neighbors’ average emissions, where the neighbors’ emissions are weighted by a matrix of 

spatial weights. Alternatively, a spatial regression approach would model state i’s emissions as a 

function of state-level characteristics, such as affluence and technological factors, and a 
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 Rupasingha et al. (2004) and Maddison (2006) are two seminal papers examining spatial issues in the EKC 

literature. 



spatially-weighted average of its neighbors’ affluence and technology. These two approaches 

address the issue of whether spatial dependence may bias estimates and, in both cases, 

researchers test the hypothesis of whether the characteristics of neighboring observations 

influence, on average, own outcomes. It is also possible to model spatial dependence in the error 

term by defining the error as a weighted average of neighboring errors plus a random element. In 

this case, researchers aim to account for the spatial autocorrelation of observations. 

While these models provide insights about the influence of spatial dependence on 

environmental impacts on average, these approaches still assume that the relationship between 

emissions and its determinants is constant (stationary) over space. There are reasons to examine 

this assumption. A puzzling result in the literature is that global results do not necessarily hold 

for specific countries (List and Gallet, 1999; Stern and Common, 2001). If the process linking 

environmental performance to affluence, population, and technology is not constant over space 

and thus depends on where the data are taken from, global models might not be useful policy 

tools. Policies that ignore spatial heterogeneity are likely to have unexpected consequences as 

factors that have a large impact in a given region may not have a meaningful effect, or even have 

an opposite effect, in another area; in that case, accounting for local differences, if politically 

feasible, might result in larger aggregate welfare. Ignoring the local context may also have 

normative implications. For example, structural and natural factors might increase the level of 

greenhouse gas emissions in some locations so that policies requiring uniform abatement across 

space would generate unfair outcomes (Neumayer, 2002).  

This paper addresses the issue of spatial dependence as well as the issue of parameter 

heterogeneity. This paper uses U.S. county-level data to examine the extent of geographical 

variability in the process liking carbon emissions to measures of population, affluence, and 



technology. I apply geographically-weighted regression (GWR) models to data on carbon 

emissions. GWR allows the relationship between dependent and independent variables to vary 

across space by estimating a spatially weighted model at every location in the area of study so 

that, for each location, nearby observations are weighted more heavily than distant observations. 

Thus, in addition to addressing the issue of spatial dependence, GWR models generate local 

estimates, that is, the distributions of coefficient estimates over the study area.  These coefficient 

estimates, as well as diagnostic statistics, can be displayed to understand better the nature of 

spatial heterogeneity. The analysis shows that linear regression residuals are spatially correlated 

while GWR modeling solves this problem; in addition, there is strong evidence of geographical 

heterogeneity and patterns across counties. The results suggest that while the processes for 

carbon emissions are similar across adjoining counties, the magnitude, and in some cases, the 

direction, of the effects can vary within and across the 48 contiguous states in the U.S. While this 

research cannot reveal why these spatial patterns exist, it provides a starting point for a more 

detailed investigation. These results show that one ought to be cautious of policy 

recommendations based on global models that ignore or account imperfectly for spatial 

dependence.  

This paper examines emissions of carbon dioxide in the context of a STIRPAT model 

that includes a quadratic term for affluence in order to test the EKC hypothesis. Thus, the next 

section discusses research on the STIRPAT model and on spatial econometric approaches to the 

EKC hypothesis. Section 3 presents the empirical models and data while Section 4 outlines 

GWR methods. Section 5 discusses the results and Section 6 concludes.  

2. Literature Review 



The literature on the IPAT identity and the STIRPAT model is extensive. Researchers have used 

the IPAT identity as an accounting equation to formalize the dependencies between 

environmental impacts, population, affluence, and technological factors. As York, Rosa, and 

Dietz (2003) point out, the IPAT identity has several strengths: it is based on ecological 

principles, it is parsimonious, and it highlights the multiplicative contribution of each factor. 

However, the identity assumes proportional effects (unitary elasticities) for population, 

affluence, and technology. Dietz and Rosa (1997) have proposed an alternative specification that 

allows for non-unitary elasticities and hypothesis testing. The Stochastic Impacts by Regression 

on Population, Affluence, and Technology (STIRPAT) model follows the basic multiplicative 

formulation of the IPAT identity but assumes the effects of each factor on impacts may not be 

proportional and that there is a random component : 

vTAcPI 321  . 

After taking logarithms, the model can be expressed as:  

  TAPI loglogloglog 3210  

where the beta coefficients represent the elasticity of emissions with respect to population, 

affluence, and technology; and epsilon is the error term. Researchers have used this framework 

to test the influence of different measures of the basic determinants. For example, York, Rosa, 

and Dietz (2003) apply this model to a cross-section of countries to estimate carbon emissions 

and energy footprint including a non-linear term for GDP, percent of urban population, and a 

control for latitude.  



Shi (2003) uses the STIRPAT model to estimate the elasticity of carbon emissions with 

respect to population, GDP per capita, and measures of industrial composition. Shi hypothesizes 

that population changes in low-income countries are likely to have a more detrimental effect on 

environmental quality than population changes in high-income countries. Shi finds evidence for 

this hypothesis using a panel of 93 countries and estimating models with country and time fixed 

effects that include three interaction terms for population and income category (high, medium, 

and low income countries). While Shi’s work highlights the need to account for heterogeneity in 

the elasticity of emissions with respect to population, this paper extends the analysis to allow for 

spatial heterogeneity in the elasticity of emissions with respect to each determinant.  

Neumayer (2002) also uses the STIRPAT framework but focuses on the influence of 

natural factors on emissions, after controlling for affluence, in a sample of countries. In 

particular, Neumayer controls for maximum and minimum temperatures, stock of renewable 

resources, stock of oil and gas reserves, and land area impacted by human activities. Neumayer 

estimates linear regression models with a time trend and finds that natural factors do matter, 

although affluence has the largest effect on emissions. Following Neumayer’s argument that 

natural factors matter, I estimate models that account for cooling and heating requirements due to 

climate.  

In these papers and related literature, efforts to account for the effects of geographical 

context typically take the form of country fixed-effects with panel data (Shi, 2003) or some 

indicator of geography such as a control for latitude (York, Rosa, and Dietz, 2003) or controls 

for natural factors (Neumayer, 2002) . These approaches might be sufficient to address the issue 

of spatially correlated residuals and spatial nonstationarity when examining a sample of 

countries. A more direct and sophisticated approach to spatial heterogeneity is likely needed 



when examining variability within a country since adjacent political units within a country likely 

share unobservable contextual factors that may generate spatially correlated observations and 

non-stationary relationships. Roberts (2011) estimates the STIRPAT model using carbon dioxide 

emissions at the county level as the dependent variable for 755 counties in nine southeastern 

states. Roberts estimates spatial lag regression models and finds that affluence is either 

negatively correlated with emissions or statistically insignificant. Although the negative sign on 

affluence might be the result of misspecification, it is also possible that the relationship between 

impacts and affluence for these nine states differs from the relationship for a larger sample of 

states and the relationship researchers have found for cross-sections or panels of counties. I 

extend Roberts’s research by accounting for spatially heterogeneity in a larger sample (all 

counties in contiguous 48 states and Washington, D.C.) and estimating the spatial distributions of 

coefficient estimates.  

Researchers have also examined spatial econometric issues in the EKC literature. 

Maddison (2006) examines the EKC hypothesis in a sample of 135 countries and estimates 

spatial lag and spatial regression models, as well as models with spatial errors, for different 

measures of air pollution. Maddison finds that neighbors’ per capita emissions of sulfur dioxide 

and nitogren oxides explain countries’ own emissions of these pollutants. Tevie, Grimsrud, and 

Berrens (2011) also estimate spatial lag and spatial error models to text the environmental 

Kuznets curve hypothesis for biodiversity risk at the state level in the U.S. The authors do not 

find evidence that the EKC hypothesis holds for biodiversity but do find that a state’s 

biodiversity risk depends on the biodiversity risk of adjacent states. The authors argue that this is 

expected as biodiversity risk depends on geographical and natural factors that are not contained 

within predetermined political units. These spatial lag and spatial regression models estimate a 



global relationship between environmental impacts and its determinants, augmenting the model 

with spatially-related variables that capture the influence of nearby observations. The findings 

from these models are insightful and, as Maddison (2006) points out, may help explain why EKC 

models that do not account for spatial data exhibit little stability. What these approaches do not 

test is whether the parameters of the model are heterogeneous across space. Estimating GWR 

models addresses the issue of spatial dependence and allows for the examination of the 

distribution of coefficients over space. 

Finally, the work by Pizer, Sanchirico, and Batz (2010) is similar to this paper in terms of 

methods and policy implications. Pizer, Sanchirico, and Batz use non-publicly available 

household data from the U.S. Consumer Expenditure Survey to estimate energy use. Because 

sampled households are not located in all counties (and urban areas are over-sampled) the 

authors use non-parametric kernel regression models to estimate county-level energy use as an 

average of energy use in nearby sampled counties, an approach that is similar to a geographically 

weighted regression. Pizer, Sanchirico, and Batz (2010) find substantial spatial variability in fuel 

oil, electricity, and natural gas usage, and argue that it is important to account for spatial 

variability when designing fair energy policy. In addition, the authors point out that “states are 

not necessarily the most interesting geographic unit” because of variation within states and the 

fact that some large urban areas cross state lines. The findings in this paper are consistent with 

the results and implications in Pizer, Sanchirico, and Batz (2010).  

3. Empirical Models and Data 

The IPAT identity defines environmental impacts (I) as the multiplicative outcome of population 

(P), wealth or affluence (A), and technological factors (T) as follows: I=PAT. The Stochastic 



Impacts by Regression on Population, Affluence, and Technology model (STIRPAT) preserves 

the multiplicative nature of the identity but allows for empirical testing. Letting i design the unit 

of observation, the STIRPAT follows the form:  

iiiii vTAcPI 321  . 

After taking logarithms:  

iiiii TAPI   loglogloglog 3210  

where the beta coefficients represent the elasticity of emissions with respect to population, 

affluence, and technology; and epsilon is the error term that we can interpret as unobserved 

technological factors that influence environmental impacts.  

 I use Vulcan Project data to measure impacts as county-level total emissions of carbon 

dioxide in 2002 (Gurney et al, 2009). Population comes from the 2000 Census.
3
 To measure 

affluence, I use 2000 Census data on median household income. I also estimate models that 

include a quadratic term for affluence following the insights from the Environmental Kuznets 

Curve literature.  

In terms of technology measures, researchers typically use proxies of industrial 

composition and, in particular, variables for manufacturing intensity. I use the proportion of 

workers in the manufacturing sector as a technology variable. In addition, I estimate models that 

include the proportion of workers in the transportation, warehousing, and utilities sectors to 

control for on-the-road emissions and emissions from electric production; and the proportion of 
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population. The coefficients of other variables barely change, the insights regarding spatial heterogeneity are the 

same, and the models with these alternative measures tend to fit the data worse than the model with population.  



workers in extraction (mining, oil and gas production) industries as a control for economic 

activity contributing to fossil fuel emissions.  

Climate is a factor that might generate spatial correlation if it is omitted from the models. 

As Neumayer (2002) argues, heating and cooling requirements influence the demand for energy 

and, consequently, emissions of carbon dioxide. To account for the effects of climate on 

emissions via energy consumption, I estimate models that include county average temperatures, 

in particular, average temperature of three coldest months of 2002 year and average temperature 

of three warmest months of 2002.
4
 Table 1 presents summary statistics for the variables and their 

logarithmic transformation. 

 I estimate OLS models and GWR models for each specification. The OLS models include 

state dummy variables to control for state-specific effects. GWR models do not include state 

dummies since the approach itself accounts for spatially-specific factors.  

4. Methods: Geographically weighted regression 

The standard approach to estimating the STIRPAT model is to fit the regression model: 

iiiii TAPI   loglogloglog 3210 . 
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 To calculate these variables I use weather station data and geoprocessing tools to calculate average temperatures in 

counties with multiple weather stations and to assign the temperature of the weather station closest to those counties 

without weather stations.  To convert these variables to logs, temperatures below zero are set to zero. 



Geographically weighted regression extends the typical specification to allow the 

parameters to vary across locations. Let (ui, vi) denote the longitude and latitude coordinates of 

location i.
5
 The standard model can be generalized to: 

iiiiiiiiiiiii TvuAvuPvuvuI   log),(log),(log),(),(log 3210 . 

GWR assumes that observations near to location i have a larger influence in the 

estimation of the parameters in location i than observations farther from i have. In this way, each 

observation is weighted according to its proximity to each area i.  

 Let X denote the matrix of independent variables. The coefficient estimates of the 

population parameters are estimated as: 

yWXXWXb ),(')),('(),( 1

iiiiii vuvuvu 
, 

where W(ui, vi) is a matrix with off-diagonal elements equal to zero and diagonal elements equal 

to the weight of each observation for location i, wij.  

To calculate spatial weights, a standard approach is to weight observations based on 

distance from each location j to each location i (dij) according to a Gausssian function with lower 

weight as the distance increases up to b, where b is the bandwidth or distance beyond which the 

weight is zero. The bandwidth can be constant across the entire area of analysis or it can vary. In 

this application, because the density of counties varies across the area of study, it is better to 

assume the bandwidth changes over space. In particular, the weighting function for adaptive 

bandwidth is: 

                                                 
5
 For the following discussion of GWR models I follow closely Fotheringham, Brunsdon, and Charlton (2002). In 

the case of polygon data, such as counties or census tracts, the coordinates correspond to the geometric center, or 

centroid, of the polygon. 
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where dij is the distance between locations i and j, bi is the Nth nearest neighbor distance from i, 

and the weight is zero if j is not one of the Nth nearest neighbors to i. Under this formulation, a 

location that is surrounded by many small-area neighbors will have a smaller bandwidth than a 

location surrounded by few large-area neighbors. The value of neighbors (or data points) N that 

is used to estimate each local model is that that minimizes the Akaike Information Criterion 

(AIC).
6
 In this application, the AIC is minimized when the models are estimated with 300 

neighbors, approximately ten percent of the data. I also discuss results when N is set to 150 and 

450 neighbors. 

As with linear regression models, GWR estimation is sensitive to collinearity problems 

and extreme values. O’Sullivan and Unwin (2010) discuss the inference problems these issues 

may cause and suggest the method is best used as an exploratory technique. These issues 

recommend estimating a parsimonious model. In addition, the variables are transformed into 

logarithms so that the problem of extreme values is less likely to influence the results. Another 

challenge with spatial data is the modifiable areal unit problem (MAUP). The issue is that the 

unit of analysis may be arbitrary (administrative units) and a different level of aggregation may 

generate different results. In this application, data availability determines the area of analysis, 

counties. Nonetheless, as Fotheringham, Brunsdon, and Charlton (2002) point out, when using 

GWR models, the data points included in the estimation of each local model are determined 
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endogenously through the process that selects the number of neighbors, and consequently the 

bandwidth, that minimizes the AIC.  

5. Results 

I first estimate linear regression models with state dummy variables. The results are consistent 

with the predictions and the findings of the STIRPAT model and EKC literature.  However, there 

is strong statistical evidence that the residuals of the linear models are not randomly distributed 

across space. I then estimate GWR models and show that this approach resolves the issue of 

spatially correlated residuals. There is also strong statistical evidence to reject the null hypothesis 

that the parameters of the model are stationary across counties. 

 Linear Regression Models 

Table 2 presents the estimated elasticity of emissions with respect to population, median 

household income, and measures of technology, as well as goodness-of-fit statistics (R-squared 

and AIC values). The table also presents values of the Moran’s I statistic. This statistic measures 

spatial autocorrelation such that a value of zero implies a random distribution. The associated z-

score indicates whether to reject the null hypothesis that the residuals are uncorrelated versus the 

hypothesis that the residuals exhibit spatial correlation. 

   Regarding the coefficient estimates, the elasticity of emissions with respect to 

population is, as expected, positive. The hypothesis that the elasticity equals one can be rejected. 

This result implies that, on average, emissions change less than proportionally with changes in 

population. The elasticity of emissions with respect to median household income is also positive 

and strongly significant. The models than include a second-order effect for income indicate that, 

on average, there is evidence of an inverted-U relationship between emissions and median 



household income. The measures of technology have all a positive and statistically significant 

impact on emissions. Everything else equal, warmer temperatures during the summer months 

(increasing on average cooling requirements) correlate with more emissions while warmer 

temperatures during the winter months (reducing on average heating requirements) decrease 

emissions. 

Goodness-of-fit statistics show that the model that includes proportion of workers in the 

manufacturing, transportation, warehousing, utilities, mining and oil and gas extraction sectors 

fits the data best. Adding controls for cooling and heating requirements does not change the fit 

much, although the coefficient estimates are statistically significant at the 10 percent level.  

The results from the linear regression models represent the estimated average or global 

relationship between carbon emissions and population, affluence, and technology for counties in 

the U.S. However, the values of the Moran’s I statistic and its associated z-score show that, in all 

models, the null hypothesis that the residuals are not spatially correlated can be rejected at the 

one percent level in favor of the hypothesis that the residuals exhibit spatial correlation. It is 

important to note that the models include state dummy variables that account for state-specific 

factors that might influence emissions in the same way across all counties in a given state.  

Geographically Weighted Regression Models 

 Table 3 presents the results from GWR models for the model specification that includes a 

quadratic term for median household income, three measures of technology, and climate 

variables. Since GWR estimation generates a distribution of local coefficients, the table presents 

the estimated median elasticity as well as the 25
th

- and 75
th

-percentiles. The table also displays 

R-squared and AIC values, Moran’s I statistic and its associated z-score. To compare these 



results to the estimates from linear regression models, the first column in Table 3 shows linear 

regression estimates and goodness-of-fit statistics from Table 2 (note that while the linear 

regression models include state dummy variables, as explained above the GWR models do not). 

The model’s AIC is minimized when the number of nearest neighbors that are used to estimate 

the local models is set to 300 (approximately ten percent of the data points).   

 First, comparing AIC values across linear and GWR models, GWR models have lower 

values indicating a better fit (after accounting for the number of parameters estimated). In 

addition, the values of the Moran’s I statistic indicate that the null hypothesis that the residuals 

are not spatially correlated cannot be rejected at any of the conventional significance levels.  

The medians of the estimated elasticity of emissions with respect to population, income, 

and technology have the same sign than the linear regression estimates and are similar in 

magnitude. However, there is substantial variability in the distributions of local coefficients of 

affluence and technology measures, and the null hypothesis that each parameter is stationary can 

be rejected at the one percent significance level for all independent variables.
7
 These results then 

present strong evidence that the global estimates are not a valid representation of the relationship 

between emissions and its determinants at all locations.  

It might be useful to display the spatial pattern of coefficient estimates and of t-statistics 

as a first step to understand the nature of regional differences. Figures 1, 2, 5, 7, 9, 11, and 13 

present the spatial distribution of the elasticity of emissions with respect to population, affluence, 

and technology and climate measures. In each map, the classes correspond to the quartiles of the 

distribution of coefficient estimates (darkest grey corresponds to the upper quartile and the 
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deviation of each coefficient estimate is compared to the distribution obtained from randomly shuffling the data in 

space and estimating GWR models on the rearranged data (Fotheringham, Brunsdon, and Charlton, 2002). 



lightest gray corresponds to the bottom quartile). Because the estimates might not be statistically 

significant in all local models, it is also important to display associated t-statistics. Figures 3, 4, 

6, 8, 10, 12, and 14 display the significance levels of local estimates for income, income squared, 

and measures of technology and temperature (the coefficients on population are statistically 

significant in all local models).  

Figure 1 presents the spatial distribution of the estimated elasticity of total carbon 

emissions with respect to population. The local coefficient estimates are positive and statistically 

significant across all counties. The range of estimates goes from .674 to 1.369. The lowest 

estimates are for counties in Texas, Montana, North Dakota, California, and New York. On the 

other hand, all counties in Missouri, Iowa, and Arkansas exhibit estimates above one.  

While the linear regression model and median estimates of the GWR model show an 

inverted-U relationship between income and emissions, the local estimates suggest that the 

impact of affluence on emissions varies substantially across the area of study. Figure 2 displays 

the estimates of income elasticity based on the coefficients on income and income squared, 

Figure 3 shows the distribution of t-statistics for the coefficient on income, and Figure 4 displays 

the t-statistics for the coefficient on income squared. Counties where income elasticity is 

negative and statistically significant are located in Alabama, Florida, Georgia, Louisiana, and 

Mississippi (but not all local models in these states show statistically significant coefficients on 

income). In these cases, the coefficient estimates on income are negative and the coefficient 

estimates on income squared are positive. These results are consistent with Roberts (2011) who, 

using a different methodology in a study of nine southern states, finds that the coefficient 

estimates are either statistically insignificant or negative. Roberts points out that these states have 

received an influx of industry and employment as manufacturing and skilled blue-collar jobs 



have shifted from the urban Northeast to the South. Large positive and statistically significant 

estimates of income elasticity are distributed across counties in Texas, Colorado, and Wyoming, 

and from Kansas to Pennsylvania and South Carolina. In sum, there is substantial spatial 

variability in the distribution of the estimated income elasticity with high and low values of the 

income elasticity across counties in several adjacent states.  

The next set of maps display the estimates of elasticity of emissions with respect to the 

different measures of technology. Higher manufacturing employment is correlated with higher 

emissions of carbon dioxide across counties in the Midwest and South (Figures 5 and 6). In the 

case of employment in the transportation sector, the estimates are statistically significant and 

positive across most counties (Figures 7 and 8). Employment in the extraction sector is also 

positively correlated with emissions across the West and Midwest, Florida, Georgia, Virginia, 

New York, and Pennsylvania (figures 9 and 10). Higher temperatures during the winter months 

are negatively correlated with emissions in most counties in the West and positively correlated 

with emissions across counties in the South (Figures 11 and 12). Regarding summer 

temperatures, Figures 13 and 14 show areas with positive and negative statistically significant 

coefficients across the U.S. without a clear pattern. 

Finally, Figure 15 maps the distribution of local R-squared statistics that range from 48.5 

percent to almost 90 percent of variability explained by the model. The model predicts more than 

80 percent of the variability in emissions in the Pacific region, New England, West North Central 

region, and Florida. The model predicts 65 percent or less of the variability in counties in South 

East Central and West Central regions. 



Model results depend on the model’s bandwidth. Although there is no theoretical reason 

to fix the number of neighbors to a specific value, I also estimate the GWR models with 150 and 

450 neighbors to explore how the results change with the bandwidth. As expected, the fewer the 

number of neighbors the greater the variability in estimates. The distribution of coefficient 

estimates on population is remarkably stable. For the other estimates, median estimates barely 

change expect for the coefficient on COOL (the medians for the models with 150, 300, and 450 

neighbors are, respectively, -.02, -.08, and -.11). Qualitatively, upper and lower quartiles are 

consistent across models with different number of neighbors. In terms of magnitude, upper and 

lower quartiles are generally of similar magnitude with two main exceptions: the coefficient on 

MHI is .4 in the model with 150 neighbors but 5.3 and 6.8 in the models with 300 and 450 

neighbors, respectively; while the coefficient on MANUF is .008 in the model with 150 

neighbors but .17 and .22 in the models with 300 and 450 neighbors, respectively. Importantly, 

even with 450 neighbors the null hypothesis that the parameters are stationary can be rejected at 

the one percent level (at the four percent level for the control for transportation and utilities).   

6. Conclusions 

This paper uses U.S. county-level data to account for spatial correlation and geographical 

variability in the process liking carbon emissions to measures of population, affluence, and 

technology. The results show that linear regression models may result in flawed statistical 

inference as there is evidence that the residuals of linear models are spatially correlated across 

the U.S., even after including state dummy variables. GWR models solve the problem of 

correlated residuals and also provide evidence that the parameters of the STIRPAT model are not 

stationary across space. Displaying the local coefficient estimates and their t-statistics shows that 

there are spatial patterns of relationships between emissions and its determinants. This research 



cannot explain what causes these patterns over space but it may provide a useful starting point to 

aim for a more accurate specification or to examine in detail the nature of variation within and 

across counties.  

It is possible that these models are misspecified and that spatial heterogeneity would be 

resolved within the framework of a global linear regression model if all factors that determine 

the spatial distribution of emissions were included. In practice, there are likely to be 

unobservable local geographical, historical, and cultural factors that may influence 

environmental impacts.
8
 One important insight from this research is that compared to standard 

regression models, parsimonious GWR models account for spatial heterogeneity and generate 

output that allows mapping and examining the spatial distribution of coefficients; this could help 

deciding which omitted variables should be included and also address the question of how to 

design and implement policy across political units. 

These results suggest that policymakers should account for regional differences that are 

not necessarily contained within predefined political units. Clearly, federal policy that does not 

account for the local context may result in less than optimal outcomes both in terms of overall 

impact and in terms of a fair distribution of costs. Local estimates are more stable within states 

but there is still evidence that the magnitude of the impacts vary within states and that there are 

patterns that cross state lines.  

In general, if researchers and policy-makers are interested exclusively on average 

relationships, then a global model that accounts for spatial autocorrelation might be sufficient. If 

local variability matters for efficiency and fairness, then models that generate the spatial 
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 In addition, the models in this paper explain a large proportion of the variability in the dependent variable. 



distribution of coefficient estimates are a useful exploratory tool to test the extent of spatial 

heterogeneity and to identify spatial patterns.  
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Table 1: Summary Statistics: mean and standard deviation in parenthesis 

 Log(1+variable) Original values 

Emissions 11.85 

(1.53) 

511,542.6      

(1,205,261) 

Population 10.23 

(1.23) 

89,954.68       

(293,558) 

Median Household Income 10.44 

(.23) 

$35,266.95 

($8,836.6)       

Proportion workers in 

Manufacturing 

.145 

(.077) 

.159 

 (.091)           

Proportion workers in 

Transportation, Utilities 

.053 

(.017) 

.055 

(.018)    

Proportion workers in 

Extraction 

.011 

(.025) 

.012 

(.027)           

Temperature Summer 

months* 

6.75 

(.060) 

267.69 

(89.37) 

Temperature Winter months* 5.52 

(.47) 

858.42 

(50.73) 

*Temperatures are recorded such that average of 858.42 means 85.8 Fahrenheit  



  

Table 2: Linear Regression Model Results (variables defined as log of 1 plus raw value) 

 (1) (2) (3) (4) (5) 

VARIABLES      

      

Population 0.886*** 0.891*** 0.909*** 0.918*** 0.923*** 

 (0.015) (0.014) (0.014) (0.014) (0.014) 

Median 

Household 

Income 

0.508*** 25.008*** 21.864*** 22.271*** 21.861*** 

 (0.096) (4.148) (4.105) (4.169) (4.167) 

Median 

Household 

Income, squared 

 -1.168*** -1.021*** -1.039*** -1.020*** 

  (0.196) (0.194) (0.197) (0.197) 

Proportion 

workers in 

Manufacturing 

0.440* 0.156 0.651** 0.973*** 1.014*** 

 (0.259) (0.257) (0.254) (0.257) (0.258) 

Proportion 

workers in 

Transportation, 

Utilities 

  11.422*** 11.062*** 11.043*** 

   (1.435) (1.393) (1.396) 

Proportion 

workers in 

Extraction 

   4.359*** 4.352*** 

    (1.049) (1.042) 

Temperature 

Summer months 

    0.632* 

     (0.372) 

Temperature 

Winter months 

    -0.106** 

     (0.051) 

Constant -2.313** -130.737*** -114.804*** -117.350*** -118.919*** 

 (0.917) (21.895) (21.662) (22.014) (22.119) 

      

Observations 3108 3108 3108 3108 3108 

AIC 7653.251 7611.194 7458.264 7416.586 7418.022 

R-squared .714 .718 .732 .736 .736 

Moran’s I 

(z-score) 
0.033*** 

(6.573) 

.024*** 

(4.866) 

.016*** 

(3.282) 

.015*** 

(2.929) 

.014*** 

(2.831) 

 

Models include state dummy variables 



Table 3: OLS and GWR results (variables defined as log of 1 plus raw value) 

 OLS GWR GWR GWR 

  Median Lower quartile Upper quartile 

     

Population 0.923*** 1.006 0.911 1.064 

 (0.014)    

Median Household 

Income 

21.861*** 18.148 5.346 31.482 

 (4.167)    

Median Household 

Income, squared 

-1.020*** -0.854 -1.481 -0.251 

 (0.197)    

Proportion workers 

in Manufacturing 

1.014*** 1.087 0.165 2.601 

 (0.258)    

Proportion workers 

in Transportation, 

Utilities 

11.043*** 6.119 10.338 15.482 

 (1.396)    

Proportion workers 

in Extraction 

4.352*** 7.859 2.806 14.120 

 (1.042)    

Temperature 

Summer months 

0.632* 0.3259 -1.611 1.879 

 (0.372)    

Temperature Winter 

months 

-0.106** -0.083 -0.373 0.527 

 (0.051)    

Constant -118.919*** -97.157 -174.076 -23.275 

 (22.119)    

 STATE 

Dummies 

   

Observations 3108 3108   

AIC 7418.022 7232.639   

R-squared .736 0.777   

Moran’s I 

(z-score) 

.014*** 

(2.831) 

 

-0.00466 

(-0.853) 

  

 

 

 

 

 



 

 

 

 

 

 



 

 

 

 



 

 

 



 

 

 



 

 

 

 

 



 

 

 



 

 

 

 



 

 

 

 



 

 


