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Abstract

Can an arbitrary graph be embedded in Euclidean space so
that the isometry group of its vertex set is precisely its graph
automorphism group? This paper gives an affirmative answer,
explores the number of dimensions necessary, and classifies the
outerplanar graphs that have such an embedding in the plane.

1 Introduction

To prove the existence of a set of points with a specified isometry
group, Albertson and Boutin embed a Cayley color graph in Euclidean
space so that the vertex isometry group is the graph automorphism
group [2]. Such an embedding is called an isometric embedding. In
response, Thomassen [11] asked: “Can this be done with an arbitrary
graph?” This paper proves an affirmative answer, makes observations
on the smallest dimension in which this can be done, and classifies the
outerplanar graphs that embed isometrically in the plane.

Embeddings and immersions of graphs are studied for their own
sake as well as for use as tools on other problems. Computer scientists
look for algorithms that draw graphs “nicely.” They want drawings
that maximize the number of graph automorphisms that show up as
Euclidean isometries. Efficient algorithmic results have been found in
the plane for trees [9], outerplanar graphs [10], and planar graphs [7].
Abelson, Hong, and Taylor extended this research to immersions that
maximize symmetry in higher dimensions [1]. De Fraysseix created a
heuristic to find the automorphism group of a graph by looking at the
isometries of a particular embedding [6]. This paper shows that every
graph has an embedding in which the vertex isometry group and the
graph automorphism group are the same.

The proof of the existence of an isometric embedding is contained
in Section 2 along with some basic definitions. It is easy to embed G in
|V | dimensions, but this can be trivially lowered to |V |− 1 dimensions.
An obvious question is “What is the smallest dimension in which a
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given graph can be isometrically embedded?” Section 3 looks at some
initial observations. A graph that can be isometrically embedded in
the plane is a planar graph. However, the planar graphs K4 and K2,3

each require three dimensions for an isometric embedding. Since subdi-
visions of these two graphs distinguish planarity from outerplanarity, it
is natural to ask “Can all outerplanar graphs be isometrically embed-
ded in the plane?” and “Are outerplanar graphs the only ones that can
be isometrically embedded in the plane?” The answers are: “Almost”
and “Not quite.” In Section 4 we classify the outerplanar graphs that
can be isometrically embedded in the plane. Section 5 looks at a few
open questions.

2 An Isometric Embedding

A straight-line drawing of a graph G = (V,E) is an injective function
F : V → Rn. Represent vertex a by the point F (a) and edge {a, b} as
the line segment between F (a) and F (b). All graph drawings in this
paper shall be straight-line drawings. A graph drawing is called an
embedding if no two edges intersect at a point unless that point is a
vertex to which both edges are incident. We work with both abstract
graphs and embedded graphs throughout this paper. When there is
the possibility of confusion between the two, we call the vertices and
edges of the embedded graph Euclidean vertices and Euclidean edges.

An isometry of a set of points S in Rn is a bijection ϕ : S → S
that preserves distance. This bijection extends naturally to a distance
preserving map on the span of S. Thus if S spans an n-dimensional
subspace, we may assume that an isometry of S is an isometry of Rn

that restricts to a bijection on S.

Definition 1. A graph G = (V,E) embedded by F : V → Rn is
said to be isometrically embedded if every isometry of F (V ) induces an
automorphism of G and every automorphism of G induces an isometry
of F (V ).

As an example, consider a planar embedding of K4 with maximum
symmetry as illustrated in Figure 1. Note that the edges comprising
the sides of the equilateral triangle necessarily have length different
from the other edges. But because K4 is edge transitive, all edges in
an isometric embedding must have the same length. Thus no planar
embedding of K4 is isometric. However, an isometric embedding of
K4 can be accomplished in R3 by the vertices and edges of a regular
tetrahedron.

The following is the main result.
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Figure 1: Symmetric, but not isometric, embedding of K4

Theorem 1. Every finite graph can be isometrically embedded in finite
dimensional Euclidean space.

The following lemma will make the proof of the theorem easy.

Lemma 1. Let P be the set of all unordered pairs of integers from the
set {1, · · · , n}. Given a partition of P into blocks, there exist points
X1, · · · , Xn in Rn so that

a) each point is on the unit sphere;
b) the vectors ~X1, · · · , ~Xn are linearly independent;
c) the jth coordinate of Xi is zero if i < j;
d) d(Xi, Xj) = d(Xk, X`) if and only if {i, j} and {k, `} are con-

tained in the same block of the partition.

Both the statement and the proof of this lemma are minor adapta-
tions of Lemma 1 from [2]. Notice that the endpoints of the standard
basis vectors in Rn fulfill conditions a), b) and c). Albertson and Boutin
use the Implicit Function Theorem to show that, given a partition of
2-subsets of an n-set, there is a perturbation of the endpoints of the
standard basis vectors in which pairwise distance is determined by par-
tition block, and conditions a) through c) are maintained. See [2] for
details. Lovász [8] remarks that work of Deza and Laurent [5] can be
used to obtain a similar result.

Proof of Theorem: An edge of a graph is an unordered pairs of distinct
vertices. It is useful here to call an unordered pair of vertices that is
not an edge a non-edge. Since graph automorphisms preserve edges
and non-edges, the term non-edge orbit is both well-defined and useful
in our circumstances.

To begin the proof, let G be a graph with n vertices. Partition the
set of unordered pairs of distinct vertices into Aut(G)-orbits. Each orbit
is either an edge orbit or a non-edge orbit. Using Lemma 1, there exist
n points in Rn, which we label by vertex labels of G, whose pairwise
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distances are distinguished by Aut(G)-orbit. That is, d(x, y) = d(u, v)
if and only if there exists θ ∈ Aut(G) so that {θ(x), θ(y)} = {u, v}.
Consider these points Euclidean vertices and add Euclidean edges as
appropriate to obtain G. This is an embedding since the n vectors
determined by the Euclidean vertices are linearly independent.

Aut(G) acts on the vertices of this embedding by acting on the
associated vertex labels. This action preserves pairwise distance since
it preserves Aut(G)-orbits. Thus each graph automorphism induces an
isometry on the vertices.

Suppose σ is an isometry of the vertices of the embedded graph.
Then for any two Euclidean vertices x and y, d(x, y) = d(σ(x), σ(y)).
Since pairwise distance is distinguished by Aut(G)-orbit, {σ(x), σ(y)}
must be in the same orbit as {x, y}. Thus {x, y} is an edge if and only
if {σ(x), σ(y)} is an edge. Then σ induces a graph automorphism of G.

Thus we have an isometric embedding of G in Rn.

3 Isometric Embedding Dimension

It is natural to ask “What is the smallest dimension in which a given
graph G can be isometrically embedded?” Call this the isometric em-
bedding dimension of the graph and denote it δ̄(G). The proof of The-
orem 1 shows that δ̄(G) ≤ |V | but this can be lowered to dimension
|V | − 1 by considering the span of the Euclidean vertices.

Proposition 1. If Aut(G) produces every possible permutation on a
set of n vertices of G then δ̄(G) ≥ n− 1.

This proof is similar to the one below and is left to the reader.
Proposition 1 verifies that K4 has isometric embedding dimension at

least 3. Since an isometric embedding of K4 is provided by the vertices
and edges of a regular tetrahedron, δ̄(K4) = 3. This proposition also
tells us that since all permutations of the leaves of K1,n occur as graph
automorphisms, its isometric embedding dimension is at least n − 1.
Thus isometry dimension is unbounded, even when the graphs under
consideration are trees.

Proposition 2. If W is a set of points spanning r dimensions and V
is a set of points spanning s dimensions, and if for each v ∈ V there
is a fixed distance d so that each point of W is distance d from v, then
W ∪ V spans at least r + s dimensions.

Proof. Notice that to span s dimensions V must contain at least s + 1
points. Let {v0, · · · , vs} be a set of s+1 points of V so that {~v0−~vi}s

i=1

is a linearly independent set. Since each point of W is at distance d0
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from v0, v0 is the center of a sphere on which all points of W reside.
Then if v0 is inside the span of W , it is the center of an (r − 1)-sphere
which we denote S0. If v1 is also within the span of W then it too is the
center of an (r − 1)-sphere which we denote S1. If two (r − 1)-spheres
are distinct then their intersection is either empty, a single point, or
an (r − 2)-sphere [3]. But S0 ∩ S1 contains W and therefore spans r
dimensions, which is a contradiction. Then at least one of v0 and v1 lies
outside the span of W ; without loss of generality we may assume that
v1 does. In particular this shows that dim(span(W ∪{v0, v1})) ≥ r +1.
Thus we can show that if v0 is inside the span of W none of v1, · · · , vs

is, and therefore dim(span(W ∪ V )) ≥ r + s.

Figure 2: An isometric embedding of K2,3

Proposition 2 verifies that K2,3 requires at least 3 dimensions for
an isometric embedding. Such an embedding is realized by the vertices
and a subset of the edges of a double triangular pyramid, as illustrated
in Figure 2. Thus δ̄(K2,3) = 3.

A related parameter, the isometry dimension of a group Γ, denoted
δ(Γ), is defined to be the smallest integer n for which there exists a
finite set of points in Rn whose isometry group is Γ [2]. Clearly for any
graph G, δ(Aut(G)) ≤ δ̄(G). However, consider the graph consisting of
C4 with opposite pairs of vertices connected by paths of length three, as
illustrated in Figure 3. This is a planar graph with automorphism group
D4. The isometry dimension of D4 is 2 but the isometric embedding
dimension of the graph is 3. Thus δ(Aut(G)) is in general not equal to
δ̄(G).

4 Planar Isometric Embedding

Which graphs can be isometrically embedded in the Euclidean plane?
If a graph is embedded in the plane it must be, by definition, a planar
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Figure 3: Planar, but not isometrically embeddable in the plane

graph. If it is isometrically embedded, its automorphism group acts
by isometries on the Euclidean plane. That means, if non-trivial, the
automorphism group must “act like” a finite cyclic or dihedral group.

Let’s look at an example of what we don’t want. The automorphism
group of K2,3 is Z2 × S3

∼= D6. Under the isometries of D6 a point of
the Euclidean plane has a stabilizer equal to one of: the trivial group, a
subgroup generated by a reflection, or D6 itself. However, under graph
automorphisms the vertices in the smaller vertex color class of K2,3 have
S3 stabilizers. Thus though Aut(G) ∼= D6, it cannot simultaneously act
as isometries of the Euclidean plane and as automorphisms of K2,3.

The following definition captures what it means for an automor-
phism group to “act like” Zn or Dn and rules out the situation de-
scribed above. Note that Z2

∼= D1 (though their actions on the plane
are different). Thus we assume n ≥ 1 for Dn and n ≥ 3 for Zn.

Definition 2. Let G be a graph. For n ≥ 3, we say G has Zn-symmetry
if Aut(G) ∼= Zn, at most one vertex has stabilizer Aut(G), and ev-
ery other vertex has trivial stabilizer. For n ≥ 2, we say G has Dn-
symmetry if Aut(G) ∼= Dn, at most one vertex has stabilizer Aut(G),
and every other vertex either has trivial stabilizer or stabilizer gener-
ated by a reflection. We say G has D1-symmetry if Aut(G) ∼= D1 and
the set of fixed vertices induces a simple path.

Though planarity and trivial, Zn, or Dn-symmetry are necessary
for a graph to be isometrically embedded in the plane, they are not
sufficient. Our previous example shown in Figure 3 is a planar graph
with D4-symmetry that cannot be isometrically embedded in R2.

Since neither K4 nor K2,3 can be isometrically embedded in the
plane and subdivisions of these two graphs distinguish planarity from
outerplanarity, it is natural to ask “Are outerplanar graphs the only
ones that can be isometrically embedded in the plane?” and “Can all
outerplanar graphs with trivial, Zn or Dn-symmetry be isometrically
embedded in the plane?”
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Figure 4: Z3-symmetry and D3-symmetry.

The answer to the first question is negative since the n-wheel is
not outerplanar but it embeds isometrically in the plane as the star
of a regular n-gon. The second question also has a negative answer
as demonstrated by the following example. Let G be a 3-cycle with
three simple paths attached to each vertex: one of length one, one of
length two, and one of length three. Then G is outerplanar and has
D3-symmetry. However, an isometric embedding of G in R2 would
necessarily embed the 3-cycle of G as an equilateral triangle and each
simple path would lie on the perpendicular bisector of the opposite side
of the triangle. It is not possible to embed all three paths on the same
perpendicular bisector. So G is cannot be isometrically embedded in
the plane.

Though outerplanarity is not sufficient for an isometric embedding,
biconnected outerplanarity is.

Theorem 2. Every biconnected outerplanar graph can be isometrically
embedded in R2.

Proof. We may assume that G has three or more vertices.
By [4] every biconnected outerplanar graph on three or more vertices

contains a unique Hamiltonian cycle drawn on its exterior face. Since
the Hamiltonian cycle is unique, every graph automorphism preserves
it. Thus Aut(G) is a subgroup of the automorphisms of C|V |.

Suppose that G has non-trivial symmetry. Since every automor-
phism of a cycle is either a rotation or a reflection with appropriate
vertex stabilizers G has Zn or Dn-symmetry. The vertex orbits in a
cycle with Zn-symmetry have cardinality n; the vertex orbits in a cycle
with Dn-symmetry have cardinality n or 2n. Thus G contains kn ver-
tices for some positive integer k. Choose a direction around the outside
face and label the vertices v1, · · · , vkn in the order encountered.

Place kn Euclidean vertices, with vertex labels from G, in order,
symmetrically around the unit circle. This point set has isometry group
Dkn. Assume that v1 is in a vertex orbit of minimal cardinality in G
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and, for some reasonably small ε, dilate the Euclidean vertices associ-
ated to the orbit of v1 to a distance of 1 + ε from the origin. See the
left-hand graph in Figure 5 for an example of the result. Notice that
the only remaining isometries are the isometries of this orbit. Thus the
point set now has isometry group Dn unless both the minimal orbit and
the graph contain 2n vertices. In this case the point set has isometry
group D2n. Thus we have attained our desired isometry group unless
either 1) G has Zn-symmetry or 2) G has Dn-symmetry and a single
vertex orbit of size 2n.

Figure 5: Euclidean vertices with D5, Z5 isometry group respectively

1) Suppose that G has Zn-symmetry. Note that there is no graph
on n vertices with Zn-symmetry. Then G has kn vertices where k ≥ 2.
Rotate the Euclidean vertex v2, and its graph automorphic images, by
a small angle α. Now there can be no reflection over v1 because the
angle between ~v1 and ~v2 is different from the angle between ~v1 and ~vn.
Also there can be no reflection between v1 and vk+1 (the image of v1

under a rotation through an angle of 2π
n ) because the angle between ~v1

and ~v2 is different from the angle between ~vk and ~vk+1. Thus we have
broken the remaining reflectional symmetry and the modified Euclidean
vertex set has isometry group Zn as desired. See the right-hand graph
in Figure 5 for an example of the result.

2) Suppose G has Dn-symmetry with a single vertex orbit of size 2n.
Choose two distinct angles α1 and α2 so that α1 +α2 = 2π

n . Rotate the
Euclidean vertices so that for all i = 1, · · · , n the angle between ~v2i−1

and ~v2i is α1 and the angle between ~v2i and ~v2i+1(mod 2n) is α2. This
set of Euclidean vertices now has isometry group Dn as required.

Suppose that G has trivial symmetry. As before, start by placing
Euclidean vertices symmetrically around the unit circle. For suitably
small distinct ε1, ε2, pull one vertex out to a distance of 1+ ε1 from the
origin and another vertex out to distance 1 + ε2. With ε1 6= ε2 we have
broken both the rotational and the reflectional symmetries, obtaining
a point set with trivial isometry group.
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Add edges as appropriate to create an outerplanar drawing of G.

Consider the more general case of a connected outerplanar graph.
We know it can be embedded isometrically in Rn only if it has trivial,
Zn or Dn-symmetry, but what other restrictions apply? We look at
two propositions and then state a theorem.

Proposition 3. If G is a connected outerplanar graph with trivial au-
tomorphism group then it can be isometrically embedded in R2.

The proof is the same as that for the biconnected case.

Proposition 4. If G is a connected outerplanar graph with Zn-symmetry
(n ≥ 3) then it can be isometrically embedded in R2.

Proof. The strategy for the proof that follows is to show that having
Zn-symmetry is a strong condition that rules out many of the cases we
would otherwise need to study. First we see that the block-cut-vertex
tree for the graph cannot have a central cut-vertex. Then we see that
the central biconnected block must contain kn vertices for some positive
integer k, and that k 6= 1. This leaves us with the case that the central
biconnected block contains kn vertices where k ≥ 2; this case is easy
to construct using methods from the proof of Theorem 2.

We have already seen this proposition is true when G is biconnected.
If G is connected but not biconnected then it has a non-trivial block-
cut-vertex tree. A simple argument shows that the center of a block-
cut-vertex tree is a single vertex - either a B-vertex representing a
central block in the graph or a C-vertex representing a central cut-
vertex in the graph. The center of a graph is invariant under every
graph automorphism. If the block-cut-vertex tree has a C-vertex at its
center then the central cut-vertex of G is fixed by every automorphism
of G. If the block-cut-vertex tree has a B-vertex as its center then the
central block is invariant under every automorphism of G. That is, each
automorphism of G induces an automorphism of the central block. The
connected components attached to the central cut-vertex or attached
to the center block at its cut-vertices will be called branches. The union
of all branches at a cut-vertex is called the branching structure at that
vertex. Since G has Zn-symmetry, each branch has an orbit of size n.
Suppose G has a central cut-vertex. Since a cut-vertex does nothing
to reduce symmetry, every permutation of the n branches in a branch
orbit occurs as a graph automorphism. Thus Sn ≤ Aut(G). However,
Sn ≤ Zn only for n = 1, 2, so this case does not occur.

Thus G has a central block B. A careful examination shows that the
Zn-symmetry requires that B has kn vertices for some positive integer
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k and that no branching structure has non-trivial symmetry that fixes
the cut-vertex it shares with B.

Suppose that B has n vertices. Then B is vertex transitive and
the branching structures are all isomorphic. We can then define a
graph automorphism of G that is a reflection on the n-cycle of B and
extends to the branching structure in the obvious way. Since n ≥ 3
this reflection is distinct from any of the rotations in Aut(G). Thus
Zn is a proper subgroup of Aut(G) - a contradiction. Thus if Aut(G)
has Zn-symmetry and G has a central biconnected block this block has
more than n vertices.

Then |V (B)| = kn where k ≥ 2. As shown in the proof of Theorem
2, we can place kn vertices in R2 with isometry group Zn and add
Euclidean edges as appropriate to obtain an embedding of B. For each
vertex orbit of B attach a planar drawing of the appropriate branching
structure to an associated Euclidean vertex. Add the orbits of these
branching structures under the isometries of the Euclidean vertices for
B. (Clearly we may scale the branches so that they do not intersect
each other.) Since the isometry group of the point set for B is Aut(G)
and the new Euclidean vertices are added in a way that do not disturb
this symmetry, the isometry group of the completed set of Euclidean
vertices is Aut(G). Thus we have our isometric embedding.

We can perform a careful case-by-case analysis using methods sim-
ilar to those above to determine precisely which connected outerplanar
graphs with Dn-symmetry can be isometrically embedded in the plane.
Putting these results together with the propositions above we get the
following theorem.

Theorem 3. A connected outerplanar graph G can be isometrically
embedded in R2 if and only if

1. G has trivial automorphism group, or

2. G has Zn-symmetry, or

3. G has Dn-symmetry and

(a) G is biconnected, or

(b) G has a central biconnected block B and at any cut-vertex
of B that is fixed by a reflection there is no branch that is
not a simple path and at most two branches that are simple
paths, or

(c) G has a central cut-edge E, n = 1, and if the reflection
fixes E then there is at most one branch at each vertex of E
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that has an edge that is both incident to E and fixed by the
reflection, or

(d) G has a central cut-vertex, n = 3, and the branches consist
of precisely three simple paths of the same length, or

(e) G has a central cut-vertex, n = 1, and the branches consist of
precisely two simple paths of the same length `1 and at most
two other simple paths of lengths `2 and `3, where `1, `2, `3
are distinct.

5 Open Questions

Which planar graphs with trivial, Zn or Dn-symmetry can be isometri-
cally embedded in R2? Any outerplanar graph G that can be embedded
isometrically in R2 can be extended to a planar graph that also has such
an embedding in the following way. Let F be any face of G. Add a
central vertex to F with edges to a subset of the vertices of F that is
invariant under any automorphism of G under which F itself is invari-
ant. Add the orbits of this “star” under the action of Aut(G). The
result is clearly a planar (not outerplanar) graph that embeds in R2

isometrically. Further for some outerplanar graphs that have too much
symmetry to have trivial, or Zn, or Dn-symmetry, we can use the se-
lective addition of stars to break symmetry and obtain a planar graph
with an isometric embedding. This leads to the following questions:

• Is every planar graph that embeds isometrically in R2 a “star
extension” of an outerplanar graph? No. Which ones are?

• Can every graph that has trivial, Zn or Dn-symmetry and is star
extension of an outerplanar graph be isometrically embedded in R2?
No. Which ones can?

Are there bounds on isometric embedding dimension? While there
is no bound for general planar or outerplanar graphs, we’ve proved that
biconnected outerplanar graphs have isometric embedding dimension at
most 2. This leads to the following question(s):

• Is there a bound on the isometric embedding dimension of bicon-
nected planar graphs? Triconnected planar graphs?
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