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Abstract
A graph has thickness t if the edges can be decomposed into t and no fewer planar

layers. We study one aspect of a generalization of Ringel’s famous Earth-Moon prob-
lem: what is the largest chromatic number of any thickness-2 graph? In particular,
given a graph G we consider the r-inflation of G and find bounds on both the thickness
and the chromatic number of the inflated graphs. In some instances the best possible
bounds on both the chromatic number and thickness are achieved. We end with several
open problems.

1 Introduction

The Four Color Problem [Ore67], now Theorem [AH77, AHK77, AH76b, AH76a, RSST96],
has inspired a rich body of literature from which many open questions remain. We study a
generalization of a problem posed by Gerhard Ringel in 1959 [Rin59] (see also [Hut93]) that
itself is a natural generalization of the Four Color Theorem: what is the largest chromatic
number of any thickness-2 graph? More generally,

What is the largest chromatic number of any thickness-t graph?

The thickness of a graph is one possible measurement of “closeness to planarity” [HR03].
In particular, a graph G is said to have thickness t, written Θ(G) = t, if the edges of G can
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be partitioned into t sets each of which induces a planar graph, and t is smallest possible.
The general question has been answered definitively only in the case when t = 1, which is,
of course, due to the The Four Color Theorem. Let ft be the largest chromatic number of
any thickness-t graph. The most general statement that can be made is [JT95]:

ft ∈


{4} if t = 1
{9, 10, 11, 12} if t = 2
{6t− 2, 6t− 1, 6t} if t > 2

. (1)

The Sulanke graph (due to Thom Sulanke, reported in [Gar80]) was the only 9-critical
thickness-two graph that was known from 1973 through 2007. In 2008, the Sulanke graph
was used to construct an infinite family of 9-critical thickness-two graphs and hence for
t = 2 any improvement in (1) will be asymptotic [BGS08]. The same technique can be
easily adapted to show that if one k-critical thickness-t graph exists, then there are infinitely
many such graphs. Thus any improvement to (1) for any value of t will be asymptotic as
well.

In [BGS08], the second and third authors of this paper studied a particular family of
Catlin’s graphs. The historical motivation for these graphs was to disprove a conjecture of
Hajós that an s-chromatic graph necessarily contains a subdivision of Ks. Catlin’s graphs
can be described in a variety of ways, one of which is as the lexicographic product of cycle
Cn with the complete graph Kr. Another is the r-uniform replication of Cn [Tho05], and
the final one (which we use) is the r-inflation of Cn [PST03].

In this article we expand on the idea of Catlin’s graphs by considering the 2-inflation
and then the r-inflations of a variety of graphs; we write G[Kr] or G[r] to indicate the r-
inflation of graph G. We begin investigations of both the thickness and chromatic numbers
of graphs inflated in this way. In this first article, the major emphasis is on the thickness
with some naturally following results on chromatic number. In a subsequent article, the
emphasis will be on the chromatic number of r-inflated graphs.

2 Terminology and Observations

Definition 1. Let G be a graph and define the r-inflation of G to be the lexicographic
product G[Kr], denoted by G[r]. In the special case that r = 2, we call G[2] the clone of G.

Recall that the lexicographic product G[H] replaces every vertex of G with a copy of
H and places edges between all pairs of vertices in copies of H that are associated with
adjacent pairs of vertices of G. That is, the vertex set of G[H] is V (G)× V (H) and there
is an edge between (g1, h1) and (g2, h2) if and only if g1 = g2 and h1 is adjacent to h2 in
H (the vertices are in the same copy of H) or g1 is adjacent to g2 in G (the vertices are in
copies of H associated with adjacent vertices in G). See, for example, [Wes01].
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Figure 1: Two plane drawings of the clone of P3.

From another point of view, we obtain G[r] by replacing each vertex of G by Kr and
replacing each edge of G by Kr,r (the join of the neighboring Krs). See, for example,
[PST03]. An r-inflation of G has the following properties, all of which are straightforward
to verify.

Observations:

1. If the number of vertices and edges of G are V and E, then the number of vertices
and edges of G[r] are rV and

(
r
2

)
V + r2E respectively.

2. Any edge of G (along with its incident vertices) induces a K2r in G[r].

3. If r = st then G[r] = G[st] = G[s][t]. Thus, for example, K1[st] = K1[s][t] = Ks[t] =
Kst. In particular, for any complete graph Ks and any positive integer t, we have
Ks[t] = Kst.

4. Independence is invariant under inflation. That is, if the independence number of G
is α then the independence number of G[r] is α as well.

5. If the clique number of G is ω, then the clique number of G[r] is rω.

3 The Thickness of Cloned Graphs

In this section we will begin the study of cloned graphs. In the next section we will
generalize to r-inflated graphs.

Example 1. Let P3 be the path of length two with vertices labeled u, v, w in linear order.
Denote the vertices of the clone of P3 by u1, u2, v1, v2, w1, w2. Two plane drawings of the
clone of P3 are given in Figure 1.

The righthand drawing in Figure 1, a straightline drawing given by nesting non-convex
K4s, helps to illustrate the inductive argument that we will use next.
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Proposition 1. If T is a tree, then its clone is planar.

Proof. If T is a single edge, then its clone is K4, which is planar. Let T be a tree with
at least two vertices and assume that all trees on fewer vertices than T are planar when
cloned. Let w be a leaf of T with neighbor v. Let w1, w2 and v1, v2 be the vertices of T [2]
associated with vertices w and v. Prune w from T , yielding tree T ′. Since T ′ has fewer
vertices than T , its clone is planar by the inductive hypothesis. The distinction between
T ′[2] and T [2] is that T ′[2] is missing vertices w1, w2, the edge between them, and the edges
between them and v1, v2. We wish to add these vertices and edges to T ′[2] without adding
any crossings. Take a straightline plane drawing of T ′[2] and note that the (straightline)
edge between v1 and v2 bounds two faces of T ′2. Add vertices w1, w2 to one of these faces
so that they create a non-convex set with v1, v2. Now include the remaining edges among
v1, v2, w1, w2, which may be accomplished without introducing crossings, thus providing a
plane drawing of T [2].

The planarity of the clone of a tree is a useful tool for bounding the thickness of a
cloned graph by using the arboricity of the original graph.

Proposition 2. If G has arboricity k, then G[2] has thickness at most k.

Proof. Assume that G has arboricity k. Then every edge in G belongs to exactly one of k
forests; denote these by F1, . . . , Fk. The forests provide a partition of the edges in G. For
i = 1, . . . , k let Hi be the clone of the forest Fi. By (an obvious extension of) Proposition 1,
each of the Hi is planar. Since every edge of G lives in precisely one forest, every edge of
G[2] connecting vertex-associated K2s lives in precisely one of the forest clones. However,
each edge of G[2] that is a vertex-associated K2 may exist in more than one Hi. Delete
such extra edges from H2, . . . ,Hk yielding H ′2, . . . ,H

′
k, all of which remain planar. Thus

the graphs H1, H
′
2, . . . ,H

′
k provide a planar edge partition for G[2] and therefore k bounds

the thickness of G[2].

We compute the arboricity of the graphs in the upcoming examples and corollaries
using the Nash-Williams formula [NW64], where the arboricity of a graph G is given by
maxH⊆G

⌈
|E(H)|
|V (H)|−1

⌉
. That is, the arboricity of G is obtained by finding the maximum

arboricity of the over all subgraphs of G. For instance, any planar graph G has arboricity
at most three since

⌈
|E(H)|
|V (H)|−1

⌉
≤
⌈

3|V (H)|−6
|V (H)|−1

⌉
=
⌈
3− 3

|V (H)|−1

⌉
≤ 3 for all subgraphs

H ⊂ G.

Example 2. The icosahedral graph I is planar and thus its arboricity is at most three.
Using Nash-Williams, since d |E(I)|

|V (I)|−1e = 3 the arboricity is at least three. Hence I has
arboricity exactly three. However, the clone of I has thickness two [GS09] and thus the
bound in Proposition 2 is not always best possible.
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Example 3. The Petersen graph P is non-planar, and hence its clone has thickness at
least two. Further, since P has arboricity two and its clone is not planar, the clone of P
has thickness two as well.

Example 4. The complete bipartite graphs K3,3,K3,4,K3,5 and K3,6 all have arboricity
two. Since none of these graphs are planar, their clones are not planar and therefore their
clones all have thickness precisely two.

Corollary 1. The clone of any outerplanar graph has thickness at most two. The clone
of an outerplanar graph has thickness exactly two if and only if it is a not tree.

Proof. First we show that the arboricity of an outerplanar graph is at most two. Since
|E(G)|
|V (G)|−1 is a ratio of edges to vertices, its maximum occurs when G is maximal outerplanar.

Thus if G has n vertices we have
⌈
|E(G)|
|V (G)|−1

⌉
≤
⌈

2n−3
n−1

⌉
=
⌈
2− 1

n−1

⌉
= 2. Since any

subgraph of an outerplanar graph is outerplanar, the bound on the ratio remains the same
over all subgraphs H of G. Thus the arboricity of G is at most two and G[2] has thickness
at most two by Proposition 2.

Finally, it is easy to check that the clone of any cycle contains a K5 subdivision and
thus has thickness two. In that case, if an outerplanar graph contains a cycle, its clone
must have thickness two. Moreover, since the clone of a tree is planar (Proposition 1), we
have shown that the clone of an outerplanar graph has thickness two if and only if is not
a tree.

Corollary 2. The clone of a planar graph has thickness at most three.

Proof. Since planar graphs have arboricity at most three, applying Proposition 2 yields
the result.

Corollary 3. If a graph G has thickness t, then its clone has thickness at most 3t.

Proof. Each planar layer has arboricity at most three, so if G has thickness t, it has
arboricity at most 3t. Then by Proposition 2 the thickness of G[2] is also at most 3t.

4 The Thickness of r-inflated Graphs

We wish to study the thickness of r-inflated graphs. We start with the class of planar
graphs.

Proposition 3. The r-inflation of an edge maximal planar graph on n ≥ 12 vertices has
thickness at least r. If the graph has more than 12 vertices, then the thickness is strictly
greater than r.
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Proof. Since G is edge maximal on n vertices, it has 3n− 6 edges. By Observation 1, G[r]
has rn vertices and

(
r
2

)
n+r2(3n−6) edges. Dividing the number of edges by the maximum

number of edges in each planar layer yields a lower bound on the thickness of G[r]. This
lower bound is:

7r2n− 12r2 − rn
2(3rn− 6)

= r +
r2n− 12r2 − rn− 12r

6rn− 12
= r +

(n− 12)(r2 − r)
6rn− 12

.

The second term is positive precisely when n > 12. Thus if n > 12 the thickness of G[r]
must be strictly greater than r.

In Section 4.2 we will see that there is an edge maximal planar graph on 12 vertices
(the icosahedral graph) whose r-inflation has thickness exactly r.

4.1 K2r is the Disjoint Union of r Hamiltonian Paths

It is well known that for any integer r ≥ 1, K2r+1 can be partitioned into r Hamiltonian
cycles. See, for example, [Luc94, Als08]. In fact such a decomposition is a special case of
the Oberwolfach Problem, which is described, for instance, in [HKR75]. A decomposition of
K2r+1 into r Hamiltonian cycles leads easily to a decomposition of K2r into r Hamiltonian
paths. The latter is of use in decomposing certain classes of r-inflated graphs, which in
turn gives a bound on their thickness. For this work, we require more than the existence of
a Hamiltonian path decomposition for K2r. We also need a certain measure of control over
the endpoints of the Hamiltonian paths, as well as control over the pairs of vertices that
are incident to the center-most edges of the paths. The purpose of the following lemma
and corollary is to provide us with this control. The technique used in the proof has been
used to generate a 2r × 2r latin square, for example, in [Wil49], and is also similar to
the methods used in [Til80] in a Hamiltonian path decomposition of a directed K2r. For
completeness, we give a detailed proof of the lemma.

Lemma 1. Let K2r be a complete graph on 2r vertices with vertices labeled v1,. . . , v2r.
The edges of K2r can be partitioned into r Hamiltonian paths, P1, P2, . . . , Pr, each with
one endpoint in {v1, v2, . . . , vr} and the other in {vr+1, vr+2, . . . , v2r}.

Note that throughout the upcoming proof, and indeed this paper, we will use {1, 2, . . . , 2r}
as a system of distinct representatives for arithmetic modulo 2r.

Proof. Let P1 be the Hamiltonian path of K2r obtained by alternating vertices of the two
sequences v1, v2, . . . , vr and v2r, v2r−1, . . . , vr+1, beginning with vertex v1. That is,

P1 = v1, v2r, v2, v2r−1, . . . , vi, v2r−(i−1), vi+1, . . . , vr, vr+1.

Notice that the sequence of differences mod 2r between the indices of consecutive ver-
tices from left to right in P1 is given by {2i− 1, 2r− 2i : i = 1, . . . , r}, which as a set is the
same as {1, 2, . . . , 2r − 1, 2r}.
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We generate a second path, P2, by increasing the index of each vertex in P1 by
1 (mod 2r). That is,

P2 = v2, v1, v3, v2r, . . . , vi+1, v2r−i+1, vi+2, . . . , vr+1, vr+2.

And in general, path Pi is obtained by increasing the index of each vertex in P1 by
i − 1 (mod 2r) for i = 2, . . . , r.

We wish to show that these paths are edge disjoint. Note that Pi and Pj share an edge
if and only if P1 and Pj−i+1 share an edge. By construction, the sequence of consecutive
differences of vertex indices is invariant (mod 2r). Thus the edges from vertex vi to its
righthand neighbors in the paths P1, . . . , Pr are distinct. Similarly for its lefthand neigh-
bors. The following will show that a righthand neighbor of vi in P1 cannot be a lefthand
neighbor in some Pk.

There are two types of edges in P1. One has the form viv2r−i+1 and the other has the
form vjv2r−j+2. We examine edges of the form viv2r−i+1; a similar computation works for
the other form. Suppose that v2r−i+1 is a righthand neighbor of vi in P1 and a lefthand
neighbor of vi in Pk. Since the edge v2r−i+1vi in Pk is obtained by adding k − 1 to the
indices of an edge in P1, it must have the form v2r−j+k+1vj+k−1 or vj+k−1v2r−j+k in Pk. In
the first case, this implies that 2r− i+ 1 = 2r− j+k+ 1 and i = j+k− 1. These combine
to tell us that 2k = 1, which is impossible since k is an integer. In the second case, we
have 2r− i+ 1 = j + k− 1 and i = 2r− j + k, which combine to tell us that k = 1. Again,
this is impossible because we are assuming Pk 6= P1. Thus v2r−i+1vi is not an edge of any
Pk for k ∈ {2, . . . , r}. A similar argument shows that v2r−i+2vi is not an edge of any Pk,
and thus paths Pi and Pj are edge-disjoint whenever i 6= j.

Finally, by design, the Hamiltonian paths P1, P2, . . . , Pr, each have one endpoint in
{v1, v2, . . . , vr} and the other in {vr+1, vr+2, . . . , v2r} and every vertex of the K2r is an
endpoint of a unique Pi.

Notice that in the proof of Lemma 1, if we were to replace a vertex vi by its index i
then such an enumeration of vertices would provide a graceful labeling of P1 modulo 2r.
See [Wes01] for the definition of graceful labeling.

As mentioned in the introduction to this section, we want our Hamiltonian path de-
composition of K2r to fulfill specific requirements for the endpoints and for center-most
edges of the paths. To clarify the nature of these requirements, we illustrate P1, P2, and
P3 for K6 (r = 3).

P1 = v1 v6 v2 v5 v3 v4

P2 = v2 v1 v3 v6 v4 v5

P3 = v3 v2 v4 v1 v5 v6

And for r = 4 we show the edge decomposition of K8 into paths P1, P2, P3, and P4.

P1 = v1 v8 v2 v7 v3 v6 v4 v5
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P2 = v2 v1 v3 v8 v4 v7 v5 v6

P3 = v3 v2 v4 v1 v5 v8 v6 v7

P4 = v4 v3 v5 v2 v6 v1 v7 v8

In Section 4.2 it will be important to know that the collection of edges at the center of
each of the paths (endpoints shown underlined above) generated in Lemma 1 gives a perfect
matching of K2r for any r ≥ 2.

Corollary 4. Let paths P1, P2, . . . , Pr be the path decomposition of K2r as constructed
in Lemma 1. A perfect matching for K2r is given by the collection of center edges of the
paths.

Proof. Since 2r is even, any path of length 2r − 1 has an edge at its center. In P1, if r
is odd, then the indices of the endpoints of the center edge are r

2 + 1
2 and 3r

2 + 1
2 . If r

is even, then the indices of the endpoints of the center edge are 3r
2 + 1 and r

2 + 1. Thus
when r is odd the set of indices of the endpoints of the center edges is given by { r

2 + 1
2 + j,

3r
2 + 1

2 + j : j = 0, . . . , r − 1} and when r is even, the set of indices of the endpoints of the
center edges is given by {3r

2 + 1 + j, r
2 + 1 + j : j = 0, . . . , r − 1}. It is straightforward to

check that each set contains 2r distinct vertices. Thus the center edges of the Pis form a
perfect matching for K2r.

4.2 The r-Inflation of the Icosahedral graph has thickness r

Recall from Proposition 3 that if G is any edge maximal planar graph on 13 or more
vertices, the r-inflation of G has thickness at least r + 1. Next we will show that the
r-inflation of the icosahedral graph has thickness exactly r for any integer r ≥ 1. This
shows that the lower bound of r in Proposition 3 is best possible.

Theorem 5. The r-inflation of the icosahedral graph has thickness exactly r.

Proof. Let I be the icosahedral graph with vertex labeling and perfect matching as shown
on the left in Figure 2.

Note that every edge in the perfect matching is the diagonal of a unique quadrilateral
in I. Moreover, if we define a 5-wheel to be the join of a single vertex with a 5-cycle, then
every vertex in I together with its five neighbors induces a 5-wheel. In fact, the subgraph
induced by any vertex of I together with its five neighbors contains one matching edge on
a spoke and one matching edge on its 5-cycle exactly as shown in Figure 2. This property
is dependent on the particular perfect matching chosen. Thus for our edge decomposition
that will lead to a thickness-r representation of I[r], we describe a general construction for
the r-inflation of a 5-wheel in which one edge of the perfect matching is on the 5-cycle and
the other is one of the spokes. This construction will then be applied to the r-inflation of
the entire icosahedral graph.
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Figure 2: Chosen perfect matching for the icosahedral graph I (left), and subgraph in I
induced by one vertex and its five neighbors (right)

Consider the two edges xa and cd of the given matching in Figure 2. By Observation 2,
any edge in a graph G induces a K2r in G[r]. In particular, each of xa and cd induce a K2r

in I[r]. We begin our construction by subdividing each of xa and cd with 2r − 2 vertices,
which transforms each such edge into a path with 2r vertices. Let Pxa and Pcd be the
paths resulting from the subdivisions of xa and cd respectively. In preparation for the use
of Lemma 1, label the vertices of Pxa in linear order so that

Pxa = x1, x2r, x2, x2r−1, . . . , xi, x2r−(i−1), xi+1, . . . , xr, xr+1,

where x = x1 and xr+1 = a. Similarly, label the vertices in path Pcd in linear order so that

Pcd = c1, c2r, c2, c2r−1, . . . , ci, c2r−(i−1), ci+1, . . . , cr, cr+1,

where c = c1 and cr+1 = d.
Next add edges {xib, : i = 2, . . . , r}, {xib, : i = r + 2, . . . , 2r}, {xie, : i = 2, . . . , r},

{xie, : i = r + 2, . . . , 2r}, {x1ci : i = 2, . . . , r}, and {x1ci : i = r + 2, . . . , 2r}. As previously
mentioned, each edge of the given perfect matching uniquely determines a quadrilateral
and therefore there is no ambiguity about which vertices of the 5-star are made adjacent
to the vertices of the newly subdivided edges. Here xa determines bxea and so b and e
are made adjacent to all new vertices of Pxa. Further, the quadrilateral determined by cd
includes vertex x, and so x is made adjacent to all new vertices of Pcd. By design, the
transformed 5-wheel remains planar; see Figure 3. The construction, when applied to all
of the edges of the given perfect matching of I, yields an edge maximal planar graph on
12r vertices, which we will denote by L1; see Figure 4. This “initial” planar graph together
with the help of Lemma 1 will produce r − 1 other graphs, each of which is isomorphic to
L1 and whose union with L1 is contained in I[r].
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To this end, recall that in the proof of Lemma 1, a linearly ordered set of vertices
v1, v2r, . . . , vr, vr+1 represents a path of length 2r− 1 called P1. We produced a set of r− 1
more paths of length 2r − 1, called Pi, i = 2, . . . , r, by effecting a permutation on the
indices of the vertices in P1. We showed that, by construction, the paths are pairwise edge
disjoint. In particular, path Pi is obtained from P1 by adding i − 1 to the index of each
vertex in P1 and reducing the results modulo 2r. For the problem at hand, we similarly
obtain planar layer Li from L1. That is, after each edge of the given matching of I has
been subdivided, new edges added, and vertices suitably labeled to yield L1, we define Li

to be the graph obtained by adding i− 1 (mod 2r) to the index of each vertex of L1. We
do this for i = 2, . . . , r. Since Li is isomorphic to L1, each Li is planar for i = 1, . . . , r. Let
I = L1 ∪ L2 ∪ · · · ∪ Lr. It follows from Lemma 1 that E(Li) ∩E(Lj) = ∅ whenever i 6= j.

For convenience, given any vertex x in I we let x[r] denote the Kr in I[r] associated
with x. We will also need to keep track of which vertices of Li are in the positions of the
original vertices in I. Thus a vertex of Li will be said to be in position y if it occupies the
position y occupies in I. By Lemma 1, given a vertex x in I, for each vertex v ∈ V (x[r]),
the label v will occupy position x in exactly one of the graphs Li for i = 1, . . . , r.

We claim that I = I[r]. To prove the claim, we first take x to be an arbitrary vertex
in I and consider the edges that must be incident with x[r]. See Figure 3 for a reminder
of how x relates to its neighbors after subdividing edges of the given matching. Since the
choice of x is arbitrary, it suffices to show that all of the edges in the join of x[r] with a[r],
b[r], c[r], d[r], and e[r] are contained in I.

The join of x[r] with a[r] induces a K2r by definition. By our construction and Lemma 1,
since xa is an edge of the chosen perfect matching, the join of x[r] with a[r] is contained
in I. Further, the join of x[r] with b[r] is contained in I because each vertex in b[r] appears
in position b in exactly one Li by Lemma 1, and the vertex in position b is adjacent to
all vertices in x[r]. The same argument applies to the join of x[r] with e[r]. Finally, the

x

c d

eb

a

Figure 3: Subdivision of matching edges xa and cd by 2r−2 vertices apiece, which induces
two paths of length 2r − 1 in I[r] with new edges added

same argument applies again to the position x: each vertex in x[r] appears exactly once in
position x, and a vertex in position x is adjacent to all elements of c[r]∪ d[r]. Thus far we
have shown that E(I[r]) ⊂ E(I). Since Θ(I) ≤ r, we have Θ(I[r]) ≤ r.

Finally, since I is edge maximal on 12 vertices, Proposition 3 yields that Θ(I[r]) ≥ r.
Altogether we have shown Θ(I[r]) = r and this completes the proof.
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Figure 4: Subdivisions of matching edges and new edges carried through to all of the
icosahedral graph I for r = 3.

In [BGS08] a full permuted layer graph is defined to be a thickness-two graph G for
which there exist two isomorphic edge-disjoint planar subgraphs of G whose union is G.
These particularly elegant graphs are built by using a base planar layer and then effecting a
permutation of the vertices to achieve the second planar layer. The notion of full permuted
layer graph adapts easily to the class of thickness-r graphs. Specifically, if H has thickness r
and there exists a decomposition of H into r isomorphic planar graphs, then H is can be
conceived of as a full permuted layer graph as well; these graphs are useful for constructing
graphs of known thickness whose chromatic numbers can then be investigated. For example,
by the proof of Theorem 5 we see that I[r] is a full permuted layer graph. Moreover, In
Section 5 we will show that the chromatic number of I[r] can be precisely determined.

4.3 Example: A Thickness-4 Decomposition of I[4]

Using the vertex labels of the icosahedral graph I from Section 4.2, we inflate vertex i to
a K4 with vertices numbered by {i + 12j : j = 0, 1, 2, 3} for i = 1, . . . , 12. Under that
vertex labeling scheme and with the techniques given in Theorem 5 we effect a thickness-4
decomposition of I[4], which is shown in Figure 5.

Many of the ideas that were used in showing that the r-inflated icosahedral graph has
thickness exactly r can be used to show that the thickness of the r-inflation of any tree is
at most d r

2e. This will be accomplished in the next subsection.

4.4 The r-Inflation of a Tree has Thickness at Most
⌈

r
2

⌉
Theorem 6. If T is a tree, then the thickness of T [r] is at most d r

2e. Equivalently, both
T [2r] and T [2r − 1] have thickness at most r. Furthermore, for each fixed value of r, for
all but finitely many trees, T [2r] has thickness exactly r.

Proof. For the first claim, since T [2r − 1] is a subgraph of T [2r], it suffices to show that
Θ(T [2r]) ≤ r. The proof is by construction; that is for any tree T we produce an edge
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Figure 5: The four planar layers of a thickness-4 decomposition of I[4].

partition of T [2r] that induces r planar graphs. The construction is accomplished first
on an n-star, K1,n. From this, one can easily piece together the r planar layers of an
appropriate set of stars to build the r-inflation of any tree.

First we recall that K1,n[2][r] = K1,n[2r] by Observation 3. We begin the construction
with the clone of K1,n, which, by Proposition 1, is planar. Since each vertex of K1,n is
transformed into an edge (a K2), the set of 2-inflated vertices is a perfect matching in
K1,n[2]. The cardinality of the perfect matching is n + 1, where one edge is associated
with the vertex of degree n in K1,n and the other n edges are associated with the leaves.
Denote the edges of the matching that are associated with the leaves by `1, `2, . . . , `n, and
denote the edge of the matching associated with the vertex of degree n by CenterEdge.
Figure 6 (b) shows a straightline embedding of K1,n[2] for n = 4. This method works for
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any n ≥ 1.

HaL n-star HbL cloned n-star HcL subdivided cloned n-star

Figure 6: Evolution of the 2r-inflation of a star

The vertex of degree n is an endpoint of every edge of K1,n. Thus CenterEdge is a
common edge in the K4s resulting from inflating the edges of K1,n.

The next step is similar to the construction given in the proof of Theorem 5. In
particular, we will construct K1,n[2r] from K1,n[2] by subdividing the edges of the given
perfect matching of K1,n[2] with 2r − 2 vertices each and then adding some new edges,
thereby producing an initial planar layer. A suitable set of r−1 permutations of the index
labels of the subdivision vertices will yield r−1 more planar layers of an edge decomposition
for K1,n[2r].

Consider any edge `i of the given matching of K1,n[2]. Subdivide `i with 2r−2 vertices,
which together with the endpoints of `i, induces a path of length 2r − 1. In preparation
for the use Lemma 1 we label these 2r vertices by

v1, v2r, v2, v2r−1, . . . , vi, v2r−(i−1), vi+1, . . . , vr, vr+1.

Similarly, take the edge CenterEdge and subdivide it with 2r−2 vertices. Label the vertices
of the resulting path of length 2r − 1 in linear order by

c1, c2r, c2, c2r−1, . . . , ci, c2r−(i−1), ci+1, . . . , cr, cr+1.

Suppose the endpoints of the center-most edge of subdivided CenterEdge are x and y.
(The vertices x and y are of the form ci and cj , the indices are known, differ depending
on whether r is odd or even, and are unimportant for now.) Transform K1,n[2] further
by adding edges {xvj : j = 2, . . . , r}∪ {xvj : j = r + 1, . . . , 2r}∪ {yvj : j = 2, . . . , r}∪
{yvj : j = r + 1, . . . , 2r}. The resulting graph, denoted by T1, is planar; see Figure 6 (c).

To achieve r−1 additional planar layers, we permute the vertex labels of T1. Specifically,
for i = 2, . . . , r, define Ti to be the graph obtained by adding i− 1 (mod 2r) to the index
of each vertex in T1. Observe that by design Ti is isomorphic to T1 for i = 1, . . . , r, which
means that each Ti is planar.

Penultimately, to see why Θ(K1,n[2r]) ≤ r, it suffices to show that K1,n[2r] ⊂
⋃r

i=1 Ti.
By Lemma 1 we know that the construction accounts for all the edges of the K2r induced
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by each leaf vertex in K1,n. Moreover, by Corollary 4 the endpoints of the center-most
edge of the subdivision of CenterEdge together with all of the corresponding endpoints in
the vertex-permuted graphs Ti for i = 1, . . . , r − 1 induce a perfect matching of the K2r

induced by the vertex of degree n in K1,n. Hence, every vertex in this K2r is adjacent to
all of the inflations of leaf vertices in K1,n[2r]. Thus K1,n[2r] ⊂

⋃r
i=1 Ti, which is what we

needed to show.
Finally, since any tree T is an edge disjoint union of stars, we may construct an edge

decomposition of T [2r] into r planar graphs as follows. Let Star1 ∪ · · · ∪ Star q be a star
decomposition of T . Note that since T is a tree, two distinct stars Star i and Star j intersect
in at most one vertex. Moreover, this decomposition can be arranged so that if Star i and
Star j do share a vertex `, then ` is the center vertex of Star i and a leaf vertex of Star j .
Suppose that Star j [2r] has been decomposed into r planar graphs as described in the first
part of this proof. In Star j [2r], leaf vertex ` is transformed into a path, say `′, with 2r
vertices. Let x and y be the endpoints of the centermost edge of `′. See Figure 7. Consider
the triangular region contained in the 3-cycle induced by x, y, and one endpoint z of
CenterEdge in Star j [2r]. One planar layer of the construction of Star i[2r] can then take
place in this triangular region (shaded in Figure 7) using vertices x and y (but not z). The
remaining r− 1 layers of Star j [2r] are attained by the standard set of permutations of the
vertex labels of the first planar layer. Continue this process until all of T [2r] has been
constructed. Hence, Θ(T [2r]) ≤ r.

Finally, let r ∈ Z+ be fixed and suppose |V (T )| = n (and hence |E(T )| = n − 1). By
Observation 1, T [2r] has 2rn vertices and n2r(2r−1)

2 + 4r2(n − 1) = 6r2 − 4r2 − rn edges.
A planar graph on 2rn vertices has at most 6rn − 6 edges in which case the thickness of
T [2r] is at least

⌈
6r2−4r2−rn

6rn−6

⌉
, which tends to

⌈
r − 1

6

⌉
= r as n tends to ∞. Thus for each

fixed value of r, we have Θ(T [2r]) ≥ r for all but finitely many trees. This completes the
proof.

x
y

z x y

z

Figure 7: One planar layer of a new 2r-inflated star can be constructed entirely inside the
shaded region including edge xy.

Proposition 2 in Section 3 gives a bound on the thickness of a cloned graph G[2] by
way of the arboricity of G. We close this section by stating an analogous proposition that
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bounds the thickness of any r-inflated graph, the proof of which is nearly identical to that
of the proof of Proposition 2.

Proposition 4. If G has arboricity k, then G[r] has thickness at most k
⌈

r
2

⌉
.

We end this section with a natural generalization of Corollary 3.

Proposition 5. If G has thickness t, then G[2r] has thickness at most 3tr.

Proof. The edges of any graph with thickness t can be partitioned into t planar graphs,
each of which has arboricity at most three. The 2r-inflation of each of the (at most) three
forests has thickness at most r (Corollary 3), from which the result follows.

Let us do a brief analysis on the bound given by Proposition 5. Recall that if n 6= 9, 10
the thickness of Kn is exactly bn+7

6 c [AG76]. Let G = Kn and for the sake of asymptotics
suppose n ≥ 12 and 6|n. By Observation 3, G[r] = Knr. Then Proposition 5 bounds the
thickness of Knr by 3(n

6 + 1) r
2 = rn

4 + 3r
2 . On the other hand, Knr has thickness exactly

rn
6 + 1. Since limr→∞

rn
4 + 3r

2 − ( rn
6 + 1) =∞, the bound in Proposition 5 is not especially

good.

5 Chromatic Numbers of r-inflated Graphs

It is straightforward to give an upper bound for the chromatic number of G[r] by way of
the chromatic number of G. This result is given in the next proposition. Further, we will
see that the upper bound can be achieved for every r ∈ Z+ by the graph I[r].

Proposition 6. If χ(G) = k, then χ(G[r]) ≤ rk.

Proof. Suppose that χ(G) = k. Consider the set of rk colors {11, . . . , 1r, 21, . . ., 2r, . . ., k1,
. . ., kr}. If vertex v in G is colored s in a proper k-coloring of G then color the associated
vertices of G[r] with s1, . . . , sr. There are two types of adjacent vertices in G[r], those of
the form vi, vj where both are associated with the vertex v in G but i 6= j, and those of
the form vi, uj where the associated vertices v and u are adjacent in G. If the color of v in
G is s then colors of vi and vj in G[r] are si and sj . Since i 6= j, these are different colors.
If u and v are adjacent in G and are colored s and t, then s 6= t which implies that si 6= tj .
Thus we have described a proper rk-coloring of G[r]. We conclude that if χ(G) = k, then
χ(G[r]) ≤ rk.

Example 5. The icosahedral graph I is 4-chromatic and has independence number three.
By Observation 4, I[r] also has independence number three and thus its independence ratio
is 3

12r = 1
4r . Since the chromatic number is at least the inverse of independence ratio, the

chromatic number of the r-inflation is at least 4r. By Proposition 6 it is also at most 4r.
Thus χ(I[r]) = 4r. Recall that by Theorem 5 we also know that the thickness of G[r]
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is precisely r. Thus {I[r]}∞r=1 provides a rare substantive family of graphs for which we
can determine the precise thickness and the precise chromatic number. (See [BGS08] for
another such example.) Even more, the example shows that the largest possible chromatic
number for an r-inflated planar graph is achieved for every positive integer r.

Proposition 7. If the clique number ω(G) equals the chromatic number χ(G), then
χ(G[r]) = rχ(G).

Proof. Suppose that χ(G) = ω(G). By Observation 5, ω(G[r]) = rω(G). But ω(G[r]) ≤
χ(G[r]), so rω(G) = ω(G[r]) ≤ χ(G[r]). By our assumption we can replace ω(G) with χ(G)
so rχ(G) ≤ χ(G[r]). However, by Proposition 6 we know that χ(G[r]) ≤ rχ(G). Thus we
have equality.

The following general result of Gao and Zhu [GZ96] allows us to easily compute the
chromatic number of the inflation of an odd cycle (see also [Cat79]).

Theorem 7. [GZ96] If χ(H) = r, then χ(C2k+1[H]) = 2r + d r
ke.

Thus χ(C2k+1[r]) = 2r+ d r
ke. In particular the clone of any odd cycle of length greater

than three has chromatic number precisely five, while the 3-inflation of any odd cycle
greater than five has chromatic number precisely seven. In [BGS08] we also saw that
C2k+1[3] has thickness two for all k ≥ 2.

In this article we have delved into the thickness of r-inflated graphs and have given a
first look at the chromatic number of r-inflated graphs, as well. Further results on both
the thickness and chromatic number of cloned and r-inflated graphs will follow in a sequel.

6 Open Problems

The results in this paper suggest the following open problems.

1. Given a planar graph G, we have seen that the thickness of G[2] is one of 1, 2, or 3.
Further, Θ(G[2]) = 1 if and only if G is a tree (because the clone of a cycle contains
a subdivision of K5). Characterize the planar graphs G for which Θ(G[2]) = 2. For
which Θ(G[2]) = 3.

2. A natural generalization of r-inflation would be to allow the flexibility to replace a
vertex with a complete graph of any size, whereupon the independence number is still
preserved. Suppose G is a planar graph on n vertices labeled 1, . . . , n in some order;
then let G[s1, s2, . . . , sn] denote the graph G in which vertex i has been inflated to
a Ksi (with edges achieved by taking the join of neighboring complete graphs, as
usual). If there is at least one pair (i, j) for which si 6= sj , can the best upper bound
for the chromatic number be achieved as it was for G[r]? What can be said more
generally about the thickness and chromatic number of G[s1, s2, . . . , sn]?
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3. What is the thickness of C2k+1[r] for any k ≥ 4 and any r ≥ 4? Note that K9 = C3[3]
has thickness three [Tut63] and is an exceptional case in the formula for the thickness
of the complete graph [AG76].
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