
1 Introduction and Results

Consider a collection of random variables {Yi,j,k : (i, j, k) ∈ (Z+)2 × N, i 6= j} on an
underlying probability space (Ω,F ,P) such that supi,j,k,ω |Yi,j,k(ω)| ≤ C < ∞, EYi,j,k = 0,

and Yi,j,0 = 0 for all (i, j) ∈ (Z+)2, i 6= j. For all (i, j, k), (i, j, k) ∈ {(i, j, k) ∈ (Z+)3, i 6=
j, k ≥ 1}, assume that

Cov(Yi,j,k, Yi,j,k) =



















































σ2 : i = i, j = j, k = k

γ : i = i, j = j, k 6= k

ρ : i = i, j 6= j,
τ : i 6= i, j = j

ν : i = j, j 6= i
η : j = i, i 6= j,

ξ1 : i = j, j = i, k = k

ξ2 : j = i, i = j, k 6= k,

else Yi,j,k, Yi,j,k are independent. Note that ν = η, and, for example, E(Y1,2k, Y1,3,k) = ρ.
Let {Mi : i ∈ Z

+} either be a collection of i.i.d. N-valued random variables or an ergodic
collection of random variables on (Ω,F ,P} with 0 < E(M1) = α < ∞, E((M1)

2) = β < ∞,
E((M1)

j) < ∞, 1 ≤ j ≤ 4. For i, j ∈ Z
+, define Mi,j = MiMj. Assume that {Mi : i ∈ Z

+}
is independent of {Yi,j,k : (i, j, k) ∈ (Z+)2 × N, i 6= j}. Take note that Mi,j may be equal
to zero. With this in mind, we will now make a convention regarding notation for sums and
products.
Convention: Let a < b, a, b ∈ Z, and {oi}i∈Z be an collection of real numbers. Then,

a
∑

i=b

oi = 0,
a

∏

i=b

oi = 1.

We are interested in proving a central limit theorem for {Yi,j,k : (i, j, k) ∈ (Z+)2 ×N, i 6=
j, 0 ≤ k ≤ Mi,j}. To be explicit, in this case we prove the following result.

Theorem 1.1

1

n3/2

n
∑

i,j=1
i6=j

Mi,j
∑

k=1

Yi,j,k
d→ N(0, α2β(ρ + τ + ν + η)).

Note that the normalizing constants {n3/2}n≥1 are different than what is to be expected
from a standard central limit theorem, which in this case would be {n}n≥1. We now prove
a lemma to help us estimate the parameters of interest.
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Let g0, g1 : N
2 → N such that for (x, y) ∈ N

2, g0(x, y) = x, g1(x, y) = y. Let h0, h1 :
N

2 → N
2 such that for (x, y) ∈ N

2, h0(x, y) = (x, y), h1(x, y) = (y, x). Also, let T = {t1 =
ρ, t2 = τ, t3 = ν, t4 = η}, and

〈a(t1), b(t1)〉 = 〈0, 0〉,
〈a(t2), b(t2)〉 = 〈1, 1〉,
〈a(t3), b(t3)〉 = 〈0, 1〉,
〈a(t4), b(t4)〉 = 〈1, 0〉 .

It now may be observed that for 1 ≤ l ≤ 4, i, j, k, s1, s2 ∈ Z
+

E(Yi,j,s1Yhb(tl)
(ga(tl)

(i,j),k),s2) = tl .

With this in mind, for 1 ≤ l ≤ 4, define

V̂l,n =
1

n3

n
∑

i,j=1
i6=j

Mi,j
∑

s1=1

Yi,j,s2

n
∑

k=1
k 6∈{i,j}

Mhb(tl)
(ga(tl)

(i,j),k)
∑

s2=1

Yhb(tl)
(ga(tl)

(i,j),k),s2 .

For example, we have that

V̂1,n =
1

n3

n
∑

i,j=1
i6=j

Mi,j
∑

s1=1

Yi,j,s2

n
∑

k=1
k 6∈{i,j}

Mi,k
∑

s2=1

Yi,k,s2 .

We are now in position to state our second theorem.

Theorem 1.2

1
√

∑4
i=1 V̂i,n

1

n3/2

n
∑

i,j=1
i6=j

Mi,j
∑

k=1

Yi,j,k
d→ N(0, 1).

2 Proof of Theorem 1.1

Let t ∈ R. We will show that

E exp {it 1

n3/2

n
∑

i,j=1
i6=j

Mi,j
∑

k=1

Yi,j,k} → e−α2β(ρ+τ+ν+η) t2

2 .

We break the proof of this up into steps defined by propositions some of whose proofs, due
to length, are found in Section 4.
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2.1 Step 1:

Let

Ω1 = {ω ∈ Ω : lim
n

1

n

n
∑

i=1

Mi(ω) = α, lim
n

1

n

n
∑

i=1

(Mi(ω))2 = β,

lim
n

1

n

n
∑

i=1

(Mi(ω))j = E((M1)
j) < ∞, 1 ≤ j ≤ 4}.

Proposition 2.1 Let t ∈ R. If

E exp {t 1

n3/2

n
∑

i,j=1
i6=j

mi,j
∑

k=1

Yi,j,k} → eα2β(ρ+τ+ν+η) t2

2

for all {mi}∞i=1 ∈ {Mi(Ω1)}∞i=1, then

E exp {it 1

n3/2

n
∑

i,j=1
i6=j

Mi,j
∑

k=1

Yi,j,k} → e−α2β(ρ+τ+ν+η) t2

2 .

Proof. See Section 4. Q.E.D.

Assumption: Henceforth, it will be assumed that {mi}n
i=1 ∈ {Mi(Ω1)}n

i=1. We also assume
from here forth that n is so large that mi, mj > 0 for some 1 ≤ i 6= j ≤ n, which can be
done, as α > 0, so the distribution of the Mi cannot be degenerate at zero.

Proposition 2.2

E{
n

∏

i,j=1
i6=j

mi,j
∏

k=1

(1 +
1

n3/2
tYi,j,k)} ≤ E exp {t 1

n3/2

n
∑

i,j=1
i6=j

mi,j
∑

k=1

Yi,j,k}

≤ (1 + on(1))E{
n

∏

i,j=1
i6=j

mi,j
∏

k=1

(1 +
1

n3/2
tYi,j,k)}.

Proof. See Section 4. Q.E.D.

Remark 2.1 We now show that

E{
n

∏

i,j=1
i6=j

mi,j
∏

k=1

(1 +
1

n3/2
tYi,j,k)} → eα2β(ρ+τ+ν+η) t2

2 .

By Proposition 2.2, this will suffice to prove Theorem 1.1.
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2.2 Step 2:

We first establish some notation and results from graph theory.

2.2.1 Graph Theory Excursion I

Let n ∈ Z
+. Define

Z
3
e,+ = {〈i, j, k〉 ∈ (Z+)3 : i 6= j, 1 ≤ mi,j, 1 ≤ k ≤ mi,j},

Z
3
1,+ = {〈i, j, k〉 ∈ Z

3
e,+ : k = 1},

[n]3e = {〈i, j, k〉 ∈ Z
3
e,+ : i, j ≤ n},

[n]31 = {〈i, j, k〉 ∈ [n]3e : k = 1}.

If G ⊂ Z
3
e,+, we refer to G as a graph, and any (i, j, k) ∈ Z

3
e,+ as a point or individual. For

n ∈ Z
+, if G ⊂ [n]3e, we say G lives on [n]3e, or is on [n]3e. If G is such that |G| = θ ∈ Z

3
e,+,

we will call G a θ-graph.
The empty set, the graph that contains no points, will be called the empty graph, and

will be denoted as ∅. We call G a hyper-row, and in particular for i′ ∈ Z
+, the i′th hyper-row

iff

G = {(i, j, k) ∈ Z
3
e,+ : i = i′}.

Similarly, call G a hyper-column, and in particular for j′ ∈ Z
+, the jth hyper-column iff

G = {(i, j, k) ∈ Z
3
e,+ : j = j′}.

If G1 is a hyper-row, and G2 is a hyper-column, we call the graph H a cylinder iff H ⊂ G1∩G2.
Therefore, a non-empty cylinder x takes the form x = {(i, j, k) ∈ Z

3
e,+ : i = i′, j = j′, k ∈ G}

for some (i′, j′, 1) ∈ Z3
1,+, G ⊂ {1, . . . ,mi′,j′}. A graph G ∈ Z

3
e,+ that is a cylinder will be

called cylindrical, and a graph G ∈ Z
3
e,+ that is not a cylinder will be called non-cylindrical.

We call a graph G ∈ Z
3
e,+ balanced if for each point (i, j, k) ∈ G, we have mj,i > 0 , and

(j, i, l) ∈ G for some 1 ≤ l ≤ mj,i. We call a graph G ∈ Z
3
e,+ unbalanced if for some point

(i, j, k) ∈ G, we have mj,i = 0 , or (j, i, l) 6∈ G for all 1 ≤ l ≤ mj,i.
For a graph G ∈ Z

3
e,+, we define the projection of G as Proj(G) where

Proj(G) = {(i, j, 1) ∈ Z
3
1,+ : (i, j, k) ∈ G for some 1 ≤ k ≤ mi,j}

In addition, for any G ∈ Z
3
1,+, H ∈ Z

3
e,+, we define the inverse projection of G onto H as

Proj−1
G (H) where

Proj−1
G (H) = {(i, j, k) ∈ H : (i, j, 1) ∈ G}.
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If A, B are finite subsets of Z
+, then we call A×B ×Z

+ ∩Z
3
e,+ an array, and to be specific,

an (|A| × |B|)-array. We call an (|A| × |B|)-array complete or a complete (|A| × |B|)-array
iff mi,j > 0 for i ∈ A, j ∈ B, i 6= j. Note that an array is the intersection of a union of
hyper-rows and a union of hyper-columns.

If κ ∈ Z
+, σ a permutation of {1, . . . , κ}, and G1, . . . , Gκ are κ distinct graphs, then

we will let 〈Gσ(1), . . . , Gσ(κ)〉 be the ordered collection of G1, . . . , Gκ corresponding to σ,
and {Gσ(1), . . . , Gσ(κ)} the unordered collection of G1, . . . , Gκ. Thus, for distinct σ1, σ2

permutations of {1, . . . , κ}, we have that

〈Gσ1(1), . . . , Gσ1(κ)〉 6= 〈Gσ2(1), . . . , Gσ2(κ)〉,
{Gσ1(1), . . . , Gσ1(κ)} = {Gσ2(1), . . . , Gσ2(κ)}.

For any 1 ≤ ∑n
i,j=1
i6=j

mi,j = |[n]3e|, we denote An
κ as the set of all κ-graphs that live on [n]3e,

that is

An
κ =

{

G ⊂ [n]3e : |G| = κ
}

.

2.2.2 Step 2 Proposition

Proposition 2.3

E{
n

∏

i,j=1
i6=j

mi,j
∏

k=1

(1 +
1

n3/2
tYi,j,k)} = 1 +

|[n]3e|
∑

κ=1

∑

{(is,js,ks)}κ
s=1∈An

κ

E(Yi1,j1,k1 · · ·Yiκ,jκ,kκ)
tκ

n(3κ)/2
.

Proof. This is obvious. Q.E.D.

2.3 Step 3:

We continue our excursion into graph theory.

2.3.1 Graph Theory Excursion II

For (q, r, s), (u, v, w) ∈ [n]3e, we write (q, r, s) ↔ (u, v, w) iff i = j for some i ∈ {q, r} and
some j ∈ {u, v}, and say that (q, r, s) and (u, v, w) touch. If (q, r, s) and (u, v, w) do not
touch, we write (q, r, s) 6↔ (u, v, w). From the dependence structure of our array of random
variables, this means that (q, r, s) 6↔ (u, v, w) iff Y(q,r,s) and Y(u,v,w) are independent. We will
say that two distinct graphs G1 and G2 touch if there exists an x ∈ G1 and a y ∈ G2 such
that x ↔ y. We make the convention that the empty graph touches all graphs. Finally, for
any finite graph G ∈ [n]3e, we will define

Vt(G) = {(i, j, k) ∈ [n]3e : (i, j, k) ↔ (q, r, s) for some (q, r, s) ∈ G}.
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If 1 ≤ l ≤ |[n]3e|, and G1, . . . , Gl ⊂ [n]3e, we call G1, . . . , Gl mutually separated iff there
does not exist distinct i, j ∈ {1, . . . , l} such that Gi and Gj touch. Thus, if two graphs
are not mutually separated, they touch. Note that two graphs that are mutually separated
are mutually disjoint; however, the converse is not true. Also, note that again by the de-
pendence structure of our array of random variables, if G1, . . . , Gl are mutually separated,
then {Y(i,j,k)}(i,j,k)∈G1 , . . . , {Y(i,j,k)}(i,j,k)∈Gl

are mutually independent collections of random
variables, although the marginal random variables of any one collection need not be inde-
pendent.

If x, y ∈ G, we say that x and y communicate in G, written x
G⇔ y, iff x and y touch or

there is a sequence of distinct points z1, . . . , zl ∈ G, 1 ≤ l ≤ |G| − 2, such that

x ↔ z1 · · · ↔ zl ↔ y.

For a graph G on the [n]3e, we will call G a connected graph iff all points of G communicate
in G. Thus, a connected graph cannot be partitioned into a collection of mutually separated
subgraphs. More to the point, if G is a connected graph, {Yi,j,k}(i,j,k)∈G cannot be partitioned
into any mutually independent sub-collections of random variables.

For θ ∈ Z
+, we say that G is a θ-connected graph iff G is connected and |G| = θ. Note

that if G1 and G2 are two connected graphs that touch, then G1 ∪G2 is a θ-connected graph
where θ ≤ |G1| + |G2|, equality only when G1 and G2 are mutually disjoint.

Finally, a certain description of 2-connected graphs will be used at a crucial enough mo-
ment in our work to merit being named. Let G be a 2-connected graph, G = {(q, r, s), (u, v, w)},
(q, r, s), (u, v, w) ∈ [n]3e. Let t ∈ {σ2, γ, ρ, τ, ν, η, ξ1, ξ2}. Then, we will refer to G as of type t
or a type t 2-connected graph iff Cov(Yq,r,s, Yu,v,w) = E(Yq,r,sYu,v,w) = t.

We will omit specifying that a graph lives on [n]3e, when it is obvious by context, and for
our work, all graphs are on [n]3e for n an arbitrarily large member of Z

+. Of course, note that
if a graph lives on [n]3e, it lives on [n + 1]3e. If it is obvious that we are restricting to points
of a connected graph G when talking about communication, we will omit the dependence of
the communication upon G.

Example The following is a picture of two mutually separated connected graphs G1 =
{(1, 2), (5, 1)} and G2 = {(2, 3), (3, 4), (4, 5)}. G1 is a 2-connected graph, while G2 is a
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3-connected graph.
• • • •

• • • •

• • • •

• • • •

• • • •

To proceed, we require some notation and results from the theory of unordered partitions.

2.3.2 Unordered Partitions of a Positive Integer k

Let κ ∈ Z
+. Define P[κ] as the collection of all unordered partitions of {1, . . . , κ}, which

may be thought of as all partitions of κ indistinguishable balls. Denote the magnitude of
P[κ] as p(κ), i.e. |P[κ]| = p(κ). Stanley documents many useful results regarding unordered
partitions in [2], and it is well known that p(κ) ≤ 2κ, see for example Andrews, Chapter 5
[1]. We consider a partition σ ∈ P[κ], to be a collection of positive integers that sum to κ.
Each element of σ is called a part, and we will let the total number of parts of σ be denoted
as Cσ. Then, we enumerate the parts of σ as rσ

1 , . . . , rσ
Cσ

, giving σ = {rσ
s }Cσ

s=1.

Example Let κ = 4: σ1 = 4, σ2 = 3 + 1, σ3 = 2 + 2, σ4 = 2 + 1 + 1, σ5 = 1 + 1 + 1 + 1. So,
p(4) = 5.

Using the dependence structure of {Yi,j,k : (i, j, k) ∈ [n]3e}, we may partition An
κ by

associating each element An
κ to exactly one element of P[κ]. For any 1 ≤ r ≤ |[n]3e|, let

gn(r) =
{

G ⊂ An
r : |G| = r, G connected

}

be the set of all r-connected graphs on [n]3e. For σ ∈ P[κ] with parts {rσ
s }Cσ

s=1, let

gκ
n(σ) =

{

G ∈ An
κ : G =

Cσ
⋃

s=1

Gs, Gs ∈ gn(rσ
s ), s = 1, . . . , Cσ; G1, . . . , GCσ mutually separated

}

.

We observe that any κ-graph can be uniquely partitioned into a union of mutually separated,
connected subgraphs. This fact is likely to be intuitively obvious; however, we prove it in
Lemma 4.2 in Section 4 for completeness. Furthermore, on this basis of this fact, we have
the following proposition.
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2.3.3 Step 3 Proposition

Proposition 2.4

1 +

|[n]3e|
∑

κ=1

∑

{(is,js,ks)}κ
s=1∈An

κ

E(Yi1,j1,k1 · · ·Yiκ,jκ,kκ)
tκ

n(3κ)/2

= 1 +

|[n]3e|
∑

κ=1

∑

σ∈P[κ]

∑

{(is,js,ks)}κ
s=1∈gκ

n(σ)

E(Yi1,j1,k1 · · ·Yiκ,jκ,kκ)
tκ

n(3κ)/2
.

Proof. See Section 4. Q.E.D.

Note that it is quite possible that gκ
n(σ) may be 0 for some n, κ ∈ Z

+. For example,
mi = 1 for all i ∈ Z

+, then when n < κ ≤ n2

2
, there is no way to pick κ mutually separated

2-connected graphs. Thus, g2κ
n (σ) is zero for that σ comprising κ 2’s.

2.4 Step 4:

Proposition 2.5 Let n, κ ∈ Z
+, 6 ≤ κ ≤ |[n]3e|. There exists a function f : Z

+ → R
+ such

that

∑

σ∈P[κ]

∑

{(is,js,ks)}κ
s=1∈gκ

n(σ)

|E(Yi1,j1,k1 · · ·Yiκ,jκ,kκ)|
|t|κ

n(3κ)/2
≤ f(κ),

and

∞
∑

κ=6

f(κ) < ∞.

Proof. See Section 4. Q.E.D.

Thus, by dominated convergence, we have established that

lim
n

|[n]3e|
∑

κ=1

∑

σ∈P[κ]

∑

{(is,js,ks)}κ
s=1∈gκ

n(σ)

E(Yi1,j1,k1 · · ·Yiκ,jκ,kκ)
tκ

n(3κ)/2

= lim
n

5
∑

κ=1

∑

σ∈P[κ]

∑

{(is,js,ks)}κ
s=1∈gκ

n(σ)

E(Yi1,j1,k1 · · ·Yiκ,jκ,kκ)
tκ

n(3κ)/2

+ lim
n

|[n]3e|
∑

κ=6

∑

σ∈P[κ]

∑

{(is,js,ks)}κ
s=1∈gκ

n(σ)

E(Yi1,j1,k1 · · ·Yiκ,jκ,kκ)
tκ

n(3κ)/2
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=
5

∑

κ=1

lim
n

∑

σ∈P[κ]

∑

{(is,js,ks)}κ
s=1∈gκ

n(σ)

E(Yi1,j1,k1 · · ·Yiκ,jκ,kκ)
tκ

n(3κ)/2

+
∞

∑

κ=6

lim
n

∑

σ∈P[κ]

∑

{(is,js,ks)}κ
s=1∈gκ

n(σ)

E(Yi1,j1,k1 · · ·Yiκ,jκ,kκ)
tκ

n(3κ)/2

=
∞

∑

κ=1

lim
n

∑

σ∈P[κ]

∑

{(is,js,ks)}κ
s=1∈gκ

n(σ)

E(Yi1,j1,k1 · · ·Yiκ,jκ,kκ)
tκ

n(3κ)/2
,

dominated convergence being used in the second equality. Note that we must use dominated
convergence as

|[n]3e| =
n

∑

i,j=1
i6=j

mi,j =
n

∑

i,j=1

mimj −
n

∑

i=1

m2
i = n2(α2(1 + on(1))),

implying that |[n]3e| → ∞ as n → ∞.

2.5 Step 5:

We now find the limit of each of these summands. However, before doing such, we make the
following convention:
Convention: Suppose that for a k ∈ Z

+, we have a collection of constants {cn}n≥k. We
use the notation cn = on(g(n)) to mean that as n ranges in Z

+\[k], cn

g(n)
→ 0. This is the

familiar ”little o of g(n)” notation, and we are simply addressing the fact that cn is not
defined for k > n.

Proposition 2.6 Let n, κ ∈ Z
+, κ ≤ |[n]3e|.

∑

σ∈P[κ]

∑

{(is,js,ks)}κ
s=1∈gκ

n(σ)

E(Yi1,j1,k1 · · ·Yiκ,jκ,kκ)
tκ

n(3κ)/2

=

{

1
(κ/2)!

(α2β(ρ+τ+ν+η)
2

)κ/2tκ(1 + on(1)) : κ even

tκon(1) : κ odd.

Proof. See Section 4. Q.E.D.

2.6 Step 6:

We now complete the proof using Propositions 2.5 and 2.6.
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Using the dominated convergence, whose validity is established in Proposition 2.5, and
the limiting value of summands established in Proposition 2.6,

lim
n

1 +

|[n]3e|
∑

κ=1

∑

σ∈P[κ]

∑

{(is,js,ks)}κ
s=1∈gκ

n(σ)

E(Yi1,j1,k1 · · ·Yiκ,jκ,kκ)
tκ

n(3κ)/2

= 1 +
∞

∑

κ=1

lim
n

∑

σ∈P[κ]

∑

{(is,js,ks)}κ
s=1∈gκ

n(σ)

E(Yi1,j1,k1 · · ·Yiκ,jκ,kκ)
tκ

n(3κ)/2

= 1 +
∞

∑

κ=1

lim
n

( 1

(2κ/2)!
(
α2β(ρ + τ + ν + η)

2
)2κ/2t2κ(1 + on(1)) + t2κ−1on(1)

)

= 1 +
∞

∑

κ=1

lim
n

( 1

κ!
(
α2β(ρ + τ + ν + η)

2
)κ(t2)κ(1 + on(1)) + on(1)

)

=
∞

∑

κ=0

(α2β(ρ + τ + ν + η) t2

2
)κ

κ!
= eα2β(ρ+τ+ν+η) t2

2 .

In light of Remark 2.1, the proof has been completed. Q.E.D.

3 Proof of Theorem 1.2

We now prove a lemma to help us estimate the parameters of interest. Recall that

Ω1 = {ω ∈ Ω : lim
n

1

n

n
∑

i=1

Mi(ω) = α, lim
n

1

n

n
∑

i=1

(Mi(ω))2 = β,

lim
n

1

n

n
∑

i=1

(Mi(ω))j = E((M1)
j) < ∞, 1 ≤ j ≤ 4}

L = {Mi(Ω1)}∞i=1,

Let T = {t1 = ρ, t2 = τ, t3 = ν, t4 = η}, and

〈a(t1), b(t1)〉 = 〈0, 0〉,
〈a(t2), b(t2)〉 = 〈1, 1〉,
〈a(t3), b(t3)〉 = 〈0, 1〉,
〈a(t4), b(t4)〉 = 〈1, 0〉 .

10



Lemma 3.1 Let {mi}∞i=1 ∈ L. Then, for 1 ≤ l ≤ 4,

1

n3

n
∑

s1,s2=1
s1 6=s2

ms1,s2
∑

k1=1

n
∑

s3=1
s3 6∈{s1,s2}

mhb(tl)
(ga(tl)

(s1,s2),s3)
∑

k2=1

Ys1,s2,k1Yhb(tl)
(ga(tl)

(s1,s2),s3),k2

P→ α2βtl .

Proof. See Section 5. Q.E.D.

Then, as it may be recalled P(Ω1) = 1, it follows that for 1 ≤ l ≤ 4, and ǫ > 0, that

P(|V̂l,n − α2βtl| > ǫ)

= E(I|V̂l,n−α2βtl|>ǫ(ω))

= E(1Ω1(ω)I|V̂l,n−α2βtl|>ǫ(ω))

= E(1{ω:{Mi(ω)}∞i=1∈L}(ω)I|V̂l,n−α2βtl|>ǫ(ω))

= E(1{ω:{Mi(ω)}∞i=1∈L}(ω)E(I|V̂l,n−α2βtl|>ǫ|{Mi}∞i=1)(ω))

= E(1{ω:{Mi(ω)}∞i=1∈L}(ω)P(|V̂l,n − α2βtl| > ǫ|{Mi}∞i=1)(ω))

= E(1{ω:{Mi(ω)}∞i=1∈L}

P(| 1

n3

n
∑

i,j=1
i6=j

Mi,j
∑

s1=1

Yi,j,s2

n
∑

k=1
k 6∈{i,j}

Mhb(tl)
(ga(tl)

(i,j),k)
∑

s2=1

Yhb(tl)
(ga(tl)

(i,j),k),s2 − α2βtl| > ǫ|{Mi}∞i=1)(ω))

= E{Mi}
∞
i=1(1L({mi}∞i=1)

P(| 1

n3

n
∑

i,j=1
i6=j

mi,j
∑

s1=1

Yi,j,s2

n
∑

k=1
k 6∈{i,j}

mhb(tl)
(ga(tl)

(i,j),k)
∑

s2=1

Yhb(tl)
(ga(tl)

(i,j),k),s2 − α2βtl| > ǫ|{Mi}∞i=1 = {mi}∞i=1))

= E{Mi}
∞
i=1(1L({mi}∞i=1)

P(| 1

n3

n
∑

i,j=1
i6=j

mi,j
∑

s1=1

Yi,j,s2

n
∑

k=1
k 6∈{i,j}

mhb(tl)
(ga(tl)

(i,j),k)
∑

s2=1

Yhb(tl)
(ga(tl)

(i,j),k),s2 − α2βtl| > ǫ)).

As Lemma 3.1 implies that for all {mi}∞i=1 ∈ L,

P(| 1

n3

n
∑

i,j=1
i6=j

mi,j
∑

s1=1

Yi,j,s2

n
∑

k=1
k 6∈{i,j}

mhb(tl)
(ga(tl)

(i,j),k)
∑

s2=1

Yhb(tl)
(ga(tl)

(i,j),k),s2 − α2βtl| > ǫ) = on(1),

then it follows by dominate convergence that

P(|V̂l,n − α2βtl| > ǫ) = on(1),

11



or equivalently that V̂l,n
P→ α2βtl. It then follows by Slutsky’s Theorem that

∑4
i=1 Vi,n

P→
α2β(ρ + τ + ν + η). Further, we also now that since f(x) = x−1/2 is continuous at α2β(ρ +

τ + ν + η) > 0, implying (
∑4

i=1 Vi,n)−1/2 P→ (α2β(ρ + τ + ν + η))−1/2. Then, given Theorem
1.1, a simple application of Slutsky’s theorem gives

1
√

∑4
i=1 V̂i,n

1

n3/2

n
∑

i,j=1
i6=j

Mi,j
∑

k=0

Yi,j,k
d→ N(0, 1) .

Q.E.D.

4 Proof of Propositions for Theorem 1.1

4.1 Proof of Proposition 2.1

Proposition 2.1 Let t ∈ R. If

E exp {t 1

n3/2

n
∑

i,j=1
i6=j

mi,j
∑

k=1

Yi,j,k} → eα2β(ρ+τ+ν+η) t2

2

for all {mi}∞i=1 ∈ {Mi(Ω1)}∞i=1, then

E exp {it 1

n3/2

n
∑

i,j=1
i6=j

Mi,j
∑

k=1

Yi,j,k} → e−α2β(ρ+τ+ν+η) t2

2 .

Proof. Recall that

Ω1 = {ω ∈ Ω : lim
n

1

n

n
∑

i=1

Mi = α, lim
n

1

n

n
∑

i=1

(Mi)
2 = β,

lim
n

1

n

n
∑

i=1

(Mi)
j = E((M1)

j) < ∞, 1 ≤ j ≤ 4}.

Then, if we define

L = {{mi}∞i=1 ∈ (N)Z
+

: lim
n

1

n

n
∑

i=1

mi = α, lim
n

n
∑

i=1

(mi)
2 = β,

lim
n

1

n

n
∑

i=1

(mi)
j = E((M1)

j) < ∞, 1 ≤ j ≤ 4},

12



it follows that,

Ω1 = {ω ∈ Ω : {Mi(ω)}∞i=1 ∈ L}.

Thus, Ω1 ∈ σ({Mi(ω)}∞i=1). In addition, by the ergodic the Ergodic Theorem (Law of Large
Numbers), we have that

P(ω ∈ Ω : {Mi(ω)}∞i=1 ∈ L) = P(Ω1) = 1.

Now, letting i =
√
−1, it follows that

E exp {it 1

n3/2

n
∑

i,j=1
i6=j

Mi,j
∑

k=1

Yi,j,k} = E
(

1Ω1(ω) exp {it 1

n3/2

n
∑

i,j=1
i6=j

Mi,j(ω)
∑

k=1

Yi,j,k(ω)}
)

= E
(

E(1Ω1(ω) exp {it 1

n3/2

n
∑

i,j=1
i6=j

Mi,j
∑

k=1

Yi,j,k}|{Mi}∞i=1)(ω)
)

= E
(

1Ω1(ω)E(exp {it 1

n3/2

n
∑

i,j=1
i6=j

Mi,j
∑

k=1

Yi,j,k}|{Mi}∞i=1)(ω)
)

= E{Mi}
∞
i=1

(

1L({mi}∞i=1)E(exp {it 1

n3/2

n
∑

i,j=1
i6=j

mi,j
∑

k=1

Yi,j,k}|{Mi}∞i=1 = {mi}∞i=1)
)

= E{Mi}
∞
i=1

(

1L({mi}∞i=1)E(exp {it 1

n3/2

n
∑

i,j=1
i6=j

mi,j
∑

k=1

Yi,j,k})
)

Now, because

E exp {t 1

n3/2

n
∑

i,j=1
i6=j

mi,j
∑

k=1

Yi,j,k} → eα2β(ρ+τ+ν+η) t2

2

if and only if

E exp {it 1

n3/2

n
∑

i,j=1
i6=j

mi,j
∑

k=1

Yi,j,k} → e−α2β(ρ+τ+ν+η) t2

2 ,

it follows by our assumption and the bounded convergence theorem that

lim
n

E{Mi}
∞
i=1

(

1L({mi}∞i=1)E(exp {it 1

n3/2

n
∑

i,j=1
i6=j

mi,j
∑

k=1

Yi,j,k})
)

13



→ E{Mi}
∞
i=1(1L({mi}∞i=1)e

−α2β(ρ+τ+ν+η) t2

2 )

= e−α2β(ρ+τ+ν+η) t2

2 .

Thus, it follows that

E exp {it 1

n3/2

n
∑

i,j=1
i6=j

Mi,j
∑

k=1

Yi,j,k} → e−α2β(ρ+τ+ν+η) t2

2 .

Q.E.D.

Recall that

Ω1 = {ω ∈ Ω : lim
n

1

n

n
∑

i=1

Mi(ω) = α, lim
n

1

n

n
∑

i=1

(Mi(ω))2 = β,

lim
n

1

n

n
∑

i=1

(Mi(ω))j = E((M1)
j) < ∞, 1 ≤ j ≤ 4}.

Because it is assumed that {mi}∞i=1 ∈ {Mi(Ω1)}∞i=1, if follows that

lim
n

1

n

n
∑

i=1

mi = α, lim
n

n
∑

i=1

(mi)
2 = β,

lim
n

n
∑

i=1

(mi)
j = E((M1)

j) < ∞, 1 ≤ j ≤ 4. (1)

Here, we introduce another preliminary lemma to be used later that describes some salient
behaviour of the {mi}∞i=1 ∈ {Mi(Ω1)}∞i=1. Let g0, g1 : N

2 → N such that for (x, y) ∈ N
2,

g0(x, y) = x, g1(x, y) = y. Let h0, h1 : N
2 → N

2 such that for (x, y) ∈ N
2, h0(x, y) = (x, y),

h1(x, y) = (y, x).

Lemma 4.1 For 〈a1, b1〉, 〈a2, b2〉, 〈a3, b3〉 ∈ {0, 1}2, let

λ1
n =

1

n2

n
∑

s1,s2=1

ms1,s2

λ2
n(a1, b1) =

1

n3

n
∑

s1,s2=1

ms1,s2

n
∑

s3=1

mhb1
(ga1 (s1,s2),s3)

λ3
n(a1, b2; a2, b2) =

1

n4

n
∑

s1,s2=1

ms1,s2

n
∑

s3=1

mhb1
(ga1 (s1,s2),s3)

n
∑

s4=1

mhb2
(ga2 (hb1

(ga1 (s1,s2),s3)),s4)

14



λ4
n(a1, b2; a2, b2; a3, b3) =

1

n5

n
∑

s1,s2=1

ms1,s2

n
∑

s3=1

mhb1
(ga1 (s1,s2),s3)

n
∑

s4=1

mhb2
(ga2 (hb1

(ga1 (s1,s2),s3)),s4) ×

n
∑

s5=1

mhb3
(ga3 (hb2

(ga2 (hb1
(ga1 (s1,s2),s3)),s4)),s5) .

Then, there exists a constant θ such that for all 〈a1, b1〉, . . . , 〈a3, b3〉 ∈ {0, 1}2 and all 2 ≤
i ≤ 4,

lim
n

λ1
n ≤ θ

lim
n

λi
n(a1, b1; · · · ; ai−1, bi−1) ≤ θ .

Proof.
It suffices to show that limn λ1

n and limn λi
n(a1, b1; · · · ; ai−1, bi−1) exists for 2 ≤ i ≤ 4. We

now proceed to this task.
As λ1

n = 1
n2

∑n
s1,s2=1 ms1,s2 = ( 1

n

∑n
i=1 mi)

2, we have by assumption that limn λ1
n =

{(EX1)
2}.

For any 〈a1, b1〉, . . . , 〈ai−1, bi−1〉 ∈ {0, 1}2, and 1 ≤ s1, . . . , s5 ≤ n, because mi,j = mimj

for i, j ∈ Z
+, we have that

mhb1
(ga1 (s1,s2),s3) = mga1 (s1,s2),s3

mhb2
(ga2 (hb1

(ga1 (s1,s2),s3)),s4) = mga2 (hb1
(ga1 (s1,s2),s3)),s4

mhb3
(ga3 (hb2

(ga2 (hb1
(ga1 (s1,s2),s3)),s4)),s5) = mga3 (hb2

(ga2 (hb1
(ga1 (s1,s2),s3)),s4)),s5 ,

and

ga1(s1, s2) ∈ {1, 2},
ga2(hb1(ga1(s1, s2), s3)) ∈ {1, . . . , 3},

ga3(hb2(ga2(hb1(ga1(s1, s2), s3)), s4)) ∈ {1, . . . , 4} .

Thus,

lim
n

1

n3

n
∑

s1,s2=1

ms1,s2

n
∑

s3=1

mhb1
(ga1 (s1,s2),s3) = lim

n

1

n3

n
∑

s1=1

m1+i1
s1

∑

s2=1

m1+i2
s2

n
∑

s3=1

ms3

= EX1+i1
1 EX1+i2

1 EX1

for some i1, i2 ∈ {0, 1}, i1 + i2 = 1. Similarly,

lim
n

1

n4

n
∑

s1,s2=1

ms1,s2

n
∑

s3=1

mhb1
(ga1 (s1,s2),s3)

n
∑

s4=1

mhb2
(ga2 (hb1

(ga1 (s1,s2),s3)),s4)
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= lim
n

1

n4

n
∑

s1=1

m1+i1+j1
s1

∑

s2=1

m1+i2+j2
s2

n
∑

s3=1

m1+j3
s3

n
∑

s4=1

ms4

= EX1+i1+j1
1 EX1+i2+j2

1 EX1+j3
1 EX1

for some i1, i2, j1, . . . , j3 ∈ {0, 1}, i1 + i2 = j1 + · · · + j3 = 1, and

lim
n

1

n5

n
∑

s1,s2=1

ms1,s2

n
∑

s3=1

mhb1
(ga1 (s1,s2),s3)

n
∑

s4=1

mhb2
(ga2 (hb1

(ga1 (s1,s2),s3)),s4) ×

n
∑

s5=1

mhb3
(ga3 (hb2

(ga2 (hb1
(ga1 (s1,s2),s3)),s4)),s5)

= lim
n

1

n5

n
∑

s1=1

m1+i1+j1+k1
s1

∑

s2=1

m1+i2+j2+k2
s2

n
∑

s3=1

m1+j3+k3
s3

n
∑

s4=1

m1+k4
s4

n
∑

s5=1

ms5

= EX1+i1+j1+k1

1 EX1+i2+j2+k2

1 EX1+j3+k3

1 EX1+k4
1 EX1

for some i1, i2, j1, . . . , j3, k1, . . . , k4 ∈ {0, 1}, i1 + i2 = j1 + · · · + j3 = k1 + · · · + k4 = 1.
Q.E.D.

4.2 Proof of Proposition 2.2

Proposition 2.2

E{
n

∏

i,j=1
i6=j

mi,j
∏

k=1

(1 +
1

n3/2
tYi,j,k)} ≤ E exp {t 1

n3/2

n
∑

i,j=1
i6=j

mi,j
∑

k=1

Yi,j,k}

≤ (1 + on(1))E{
n

∏

i,j=1
i6=j

mi,j
∏

k=1

(1 +
1

n3/2
tYi,j,k)}.

Proof. Let 1 ≤ i, j ≤ n, 1 ≤ k ≤ mi,j. From Taylor’s Theorem,

1 + t
1

n3/2
Yi,j,k ≤ 1 + t

1

n3/2
Yi,j,k +

C(Yi,j,k, t)

2
t2

1

n3
Y 2

i,j,k = exp {t 1

n3/2
Yi,j,k},

where C(Yi,j,k, t) is a random variable such that 0 < C(Yi,j,k, t) < en−3/2t|Yi,j,k| < etC for all
i, j. Then, for n large enough such that 0 < 1 − Ct

n3/2 , and tC
n3/2 < 1,

E{
n

∏

i,j=1
i6=j

mi,j
∏

k=1

(1 + t
1

n3/2
Yi,j,k)}
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≤ E exp {t 1

n3/2

n
∑

i,j=1
i6=j

mi,j
∑

k=1

Yi,j,k}

= E{
n

∏

i,j=1
i6=j

mi,j
∏

k=1

(1 + t
1

n3/2
Yi,j,k +

C(Yi,j,k, t)

2
t2

1

n3
Y 2

i,j,k)}

= E{
n

∏

i,j=1
i6=j

mi,j
∏

k=1

(1 + t
1

n3/2
Yi,j,k)

(1 + t 1
n3/2 Yi,j,k +

C(Yi,j,k,t)

2
t2 1

n3 Y
2
i,j,k)

(1 + t 1
n3/2 Yi,j,k)

}

≤ E{
n

∏

i,j=1
i6=j

mi,j
∏

k=1

(1 + t
1

n3/2
Yi,j,k)(1 +

etC(tC)2

2n3

1 − Ct
n3/2

)}

=
n

∏

i,j=1
i6=j

mi,j
∏

k=1

(1 +
etC(tC)2

2n3

1 − Ct
n3/2

)E{
n

∏

i,j=1
i6=j

mi,j
∏

k=1

(1 + t
1

n3/2
Yi,j,k)}

= (1 +
etC(tC)2

2n3

1 − Ct
n3/2

)

∑n
i,j=1
i6=j

∑mi,j
k=1

E{
n

∏

i,j=1
i6=j

mi,j
∏

k=1

(1 + t
1

n3/2
Yi,j,k)}

= (1 +
etC(tC)2

2n3

1 − Ct
n3/2

)
n2( 1

n

2 ∑n
i,j=1
i6=j

mi,j)

E{
n

∏

i,j=1
i6=j

mi,j
∏

k=1

(1 + t
1

n3/2
Yi,j,k)}

= (1 +
etC(tC)2

2n3

1 − Ct
n3/2

)n2(( 1
n

∑n
i=1 mi)

2− 1
n

2 ∑n
i=1(mi)

2)E{
n

∏

i,j=1
i6=j

mi,j
∏

k=1

(1 + t
1

n3/2
Yi,j,k)}

The second inequality follows because 1 + t 1
n3/2 Yi,j,k > 0, as we have assumed tC

n3/2 < 1.
By equation (1), it follows that

(
1

n

n
∑

i=1

mi)
2 − 1

n

2 n
∑

i=1

(mi)
2 = α2(1 + on(1)).

Thus,

(1 +
etC(tC)2

2n3

1 − Ct
n3/2

)n2(( 1
n

∑n
i=1 mi)

2− 1
n

2 ∑n
i=1(mi)

2)E{
n

∏

i,j=1
i6=j

mi,j
∏

k=1

(1 + t
1

n3/2
Yi,j,k)} (2)

= (1 +
etC(tC)2

2n3

1 − Ct
n3/2

)n2α2(1+on(1))E{
n

∏

i,j=1
i6=j

mi,j
∏

k=1

(1 + t
1

n3/2
Yi,j,k)}
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Clearly,

(

1 +
1

n2

(

etC(tC)2

2n

1 − Ct
n3/2

))n2α2(1+on(1))

= 1 + on(1),

which completes the proof. Q.E.D.

4.3 Proof of Proposition 2.4

We need 3 preliminary lemmas before proving Proposition 2.4.

4.3.1 Preliminary Lemmas

Lemma 4.2 For any κ-graph G on [n]3e, there exists an N(G) ∈ [κ] and graphs {B(G)s}N(G)
s=1

such that the B(G)s are mutually separated graphs on [n]3e, each is a connected graph, and
⋃N(G)

s=1 B(G)s = G.

Proof. This follows just by recognizing the two following facts. If y ∈ G and G(y) is the
graph comprising those points x ∈ G ⊂ [n]3e such that x and y communicate in G, then G(y)
is a connected graph. Furthermore, G(y) and G\G(y) are mutually separated graphs. Thus,
we choose a point x1 ∈ G, and let B(G)1 to be the collection of all points that communicate
with x1 in G. We then continue this process with G\B(G)1, and the process ends with the
given partition of G. Q.E.D.

Lemma 4.3 Let κ ∈ Z
+, and G = {(is, js, ks)}κ

s=1 be a κ-graph on [n]3e. Then,

E(Yi1,j1,k1 · · ·Yiκ,jκ,kκ) =

N(G)
∏

v=1

E
(

∏

(w,y,z)∈B(G)v

Yw,y,z

)

Proof. This follows by definition, since all the B(G)1, . . . , B(G)N(G) are mutually sepa-
rated, and thus, as alluded to earlier, {Y(i,j,k)}(i,j,k)∈B(G)1 , . . . , {Y(i,j,k)}(i,j,k)∈B(G)N(G)

are mu-
tually independent collections of random variables. Q.E.D.

Recall the following notation. For any 1 ≤ r ≤ |[n]3e|, let gn(r) be the set of all r-connected
graphs on [n]3e. For σ ∈ P[κ] with parts {rσ

s }Cσ
s=1, let

gκ
n(σ) =

{

G ∈ An
κ : G =

Cσ
⋃

s=1

Gs, Gs ∈ gn(rσ
s ), s = 1, . . . , Cσ; G1, . . . , GCσ mutually separated

}

.
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Lemma 4.4 Let κ ∈ Z
+. If σ1, σ2 ∈ P[κ], σ1 6= σ2, then gκ

n(σ1)
⋂

gκ
n(σ2) = ∅, and

An
κ =

⋃

σ∈P[κ]

gκ
n(σ). (3)

Proof. Now, if G is a κ-graph on [n]3e, then in reference to Lemma 4.2,
∑N(G)

s=1 |B(G)s| = κ,

and so G ∈ gκ
n({|B(G)s|}N(G)

s=1 ), which implies equation (3). Similarly, if G ∈ gκ
n(σ1) and

G ∈ gk
n(σ2), then σ1 = {|B(G)s|}N(G)

s=1 = σ2, which is a contradiction. Q.E.D.

4.3.2 Proof of Proposition

Proposition 2.4

1 +

|[n]3e|
∑

κ=1

∑

{(is,js,ks)}κ
s=1∈An

κ

E(Yi1,j1,k1 · · ·Yiκ,jκ,kκ)
tκ

n(3κ)/2

= 1 +

|[n]3e|
∑

κ=1

∑

σ∈P[κ]

∑

{(is,js,ks)}κ
s=1∈gκ

n(σ)

E(Yi1,j1,k1 · · ·Yiκ,jκ,kκ)
tκ

n(3κ)/2
.

Proof. Lemma 4.4 completes the proof of the proposition. Q.E.D.

4.4 Proof of Propositions 2.5

We need 6 preliminary lemmas and three corollaries before proving Proposition 2.5, and
these lemmas require the introduction of some new notation.

For distinct points (q, r, 1), (u, v, 1) ∈ G ⊂ [n]31, we say that (q, r, 1) and (u, v, 1) are
horizontal G-relations if

1. u = q and (q, l, 1) /∈ G, min{r, v} < l < max{r, v}.

For distinct points (q, r, 1), (u, v, 1) ∈ G ⊂ [n]31, we say that (q, r, 1) and (u, v, 1) are vertical
G-relations if

2. v = r and (l, r, 1) /∈ G, min{q, u} < l < max{q, u}.

We will say that y is a horizontal, respectively vertical, G-relation of x if x and y are
horizontal, respectively vertical, G-relations. We will say that y is a G-relation of x if x and
y are either vertical G-relations or horizontal G-relations.

For distinct points x = (i, j, 1), y = (q, r, 1) ∈ G ⊂ [n]31, we say that y ∈ G is an h/v
G-neighbor of x if one of the 3 following relationships hold:
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1. (r, q) = (i, j).
2. y is a horizontal G-relation of x.
3. y is a vertical G-relation of (j, i, 1).

Similarly, for distinct points x = (i, j, 1), y = (q, r, 1) ∈ G ⊂ [n]31, we say that y ∈ G is a
v/h G-neighbor of x if one of the 3 following relationships hold:

1. (r, q) = (i, j).
2. y is a vertical G-relation of x.
3. y is a horizontal G-relation of (j, i, 1).

We define the G-neighbors of x as the collection of all points that are either a v/h G-neighbor
of x or a h/v G-neighbor of x.

4.4.1 Preliminary Lemmas

Recall that

[n]31 = {(i, j, k) ∈ [n]3e : k = 1}.

Recall that for a graph G ∈ Z
3
e,+, we define the projection of G as Proj(G) where

Proj(G) = {(i, j, 1) ∈ Z
3
e,+ : (i, j, k) ∈ G for some 1 ≤ k ≤ mi,j}.

In addition, for any G ∈ Z
3
1,+, H ∈ Z

3
e,+, we define the inverse projection of G onto H as

Proj−1
G (H) where

Proj−1
G (H) = {(i, j, k) ∈ H : (i, j, 1) ∈ G}.

Lemma 4.5 For any G ∈ [n]3e, Proj(G) ∈ [n]31, and G ∈ [n]3e is connected iff Proj(G) is
connected. Furthermore, if E ⊂ Proj(G) and E is connected, then Proj−1

E (G) is connected.

Proof. That Proj(G) ∈ [n]31 for any G ∈ [n]3e, and that G ∈ [n]3e is connected iff
Proj(G) is connected are statements that follow directly from the definition of a connected
graph. Finally, if E ⊂ Proj(G) and E is connected, then Proj−1

E (G) is connected also by
construction. Q.E.D.

Lemma 4.6 Let G be a connected graph on [n]31, |G| > 1, and let x be in G. Then,
G\{x} = G(x) ∪ G(x) where G(x) and G(x) are connected subgraphs of G that are ei-
ther mutually separated or they touch. Further, we may take G(x) to be all individuals of G
that communicate in G\{x} with the h/v G-neighbors of x, and G(x) to be all individuals of
G that communicate in G\{x} with the v/h G-neighbors of x.
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Note, when G(x) and G(x) touch, G\{x} is a connected set. Also, it may happen that either
G(x) = ∅ or G(x) = ∅, but they cannot both be empty. Since if either one of them is empty,
we have by convention that they are connected, it follows that both must be non-empty if
they are mutually separated.

Proof. Let G(x) be all individuals of G that communicate in G\{x} with the h/v G-
neighbors of x. Let G(x) be all individuals of G that communicate in G\{x} with the v/h
G-neighbors of x. If y ∈ G, then since G is connected, there is a sequence of distinct points
z1, . . . , zl ∈ G, 1 ≤ l ≤ n − 2, such that

y ↔ z1 · · · ↔ zl ↔ x.

But then by construction, zl is a G-neighbor and y communicates in G\{x} with zl. Thus,
each y ∈ G communicates in G\{x} with either the h/v G-neighbors of x or with the v/h
G-neighbors of x.

We now conclude that G\{x} = G(x) ∪ G(x). Since all h/v G-neighbors touch, and all
v/h G-neighbors touch, by construction, both G(x) and G(x) are connected subgraphs of G.
They are either mutually separated or not, which proves the lemma. Q.E.D.

Corollary 4.1 Let G be a connected graph on [n]3e, |G| > 1, and let x be the cylinder
defined as x = {(i, j, k) ∈ G : i = i′, j = j′, 1 ≤ k ≤ mi′,j′} for some (i′, j′, k′) ∈ G. Then,
G\{x} = G(x) ∪ G(x) where G(x) and G(x) are connected subgraphs of G that are either
mutually separated or they touch.

Proof. From Lemma 4.5, Proj(G) is connected. Proj(x) is a point of Proj(G). Thus,
by Lemma 4.6, we have that

Proj(G)\{Proj(x)} = H1 ∪ H2,

where H1 and H2 are disjoint, connected subgraphs of Proj(G) on [n]31. By Lemma 4.5, it
follows that Proj−1

H1
(G) and Proj−1

H2
(G) are disjoint, connected subgraphs of G on [n]3e such

that

Proj−1
H1

(G) ∪ Proj−1
H2

(G) ∪ x = G.

The proof is completed by noting that either Proj−1
H1

(G) and Proj−1
H2

(G) touch or they don’t.
Q.E.D.

Lemma 4.7 Let G be an κ-connected graph on [n]3e, 2 ≤ κ ≤ |[n]3e|. Then, there exist an
κ − 1-connected graph, H(G), and 1-connected graph, H(G)1, i.e. a singleton, such that
H(G) ∪ H(G)1 = G.
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Note, we will use H(G)1 to refer to both the set and the singleton.
Proof. The proof is broken into two parts. We prove it first for G ∈ [n]31, and then more

generally for G ∈ [n]3e.

Case G ∈ [n]31: The proof is by induction. It is clearly true for all 2-connected graphs.
Suppose it is true for all i-connected graphs, 1 ≤ i ≤ κ − 1.

Choose any point x ∈ G. By Lemma 4.6, G\{x} the union of at most 2 mutually
separated, connected subgraphs of G, call them G1 and G2. Assume that G1 is non-empty,
acknowledging that G2 may be empty, so that G1 may equal G\{x}. By a repeated use of
the induction assumption, there exists a sequence of points {x1, . . . , x|G1|, x|G1|+1} such that
x|G1|+1 = x, for all 2 ≤ l ≤ |G1| + 1, {xs}l−1

s=1 is a connected graph, {xs}l−1
s=1 and {xl} touch,

and G1 = {xs}|G1|
s=1 . If

x1 ↔ · · · ↔ x|G1|+1,

then {xs}|G1|
s=2 ∪{x}∪G2 = G\{x1} is a connected graph. Clearly, we can let H(G) = G\{x1}

and H(G)1 = x1. Otherwise, let

υ = max{s : 1 ≤ s ≤ |G1| such that xs 6↔ xs+1}.

Then, since {xυ+1} touches {xs}υ
s=1, but xυ 6↔ xυ+1, it follows that {xs}υ+1

s=1
s 6=υ

is a connected

graph. But, because

xυ+1 ↔ · · · ↔ x|G1|+1 = x,

it follows that {xs}|G1|
s=1
s 6=υ

∪ {x} ∪ G2 = G\{xυ} is a connected graph. Thus, we can let

H(G) = G\{xυ} and H(G)1 = xυ.

Case G ∈ [n]3e: From Lemma 4.5, we have that G ∈ [n]3e is connected iff Proj(G) is con-
nected. By, what we have proved, we can partition Proj(G) into Proj(G) = H(Proj(G))∪
H(Proj(G))1, where H(Proj(G)) is a connected graph of magnitude less than or equal
to κ − 1, H(Proj(G))1 is a 1-connected graph. Now, by Lemma 4.5, it follows that both
Proj−1

H(Proj(G))(G) are connected and Proj−1
H(Proj(G))1

(G) are connected. However, by con-

struction, Proj−1
H(Proj(G))1

(G) ⊂ {(i, j, k)}mi,j

k=1 for some 1 ≤ i 6= j ≤ n, 1 ≤ mi,j. If for

1 ≤ m̃i,j ≤ mi,j, we enumerate Proj−1
H(G)1

(G) as {(i, j, ks)}m̃i,j

s=1 , then our proof follows by

letting H(G) = Proj−1
H(Proj(G))(G)∪{(i, j, ks)}m̃i,j−1

s=1 and H(G)1 = (i, j, km̃i,j
). Just note that

some member of (q, r, s) in Proj−1
H(Proj(G))(G) is such that a = b for some a ∈ {q, r} and

b ∈ {i, j} by construction of H(Proj(G)) ∪ H(Proj(G))1. Q.E.D.

Lemma 4.8 Let G be a 2κ-connected graph, 2 ≤ 2κ ≤ |[n]3e|. Then, there exists κ mutually
disjoint, 2-connected graphs, H2

i (G), i = 1, . . . , κ, such that ∪κ
i=1H

2
i (G) = G.
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Note that even though the κ 2-connected graphs are mutually disjoint, they are not mutually
separated.

Proof. The proof is broken into two parts. We prove it first for G ∈ [n]31, and then more
generally for G ∈ [n]3e.

Case G ∈ [n]31: This is an induction argument. The result clearly holds for the case κ = 1.
Assume that the result holds for all 2l-connected graphs, 2 ≤ l < κ.

Choose x ∈ G. By Lemma 4.6, G\{x} = G(x) ∪ G(x), where G(x) is the collection of
all individuals of G that communicate in G\{x} with the h/v G-neighbors of x, and G(x) is
the collection of all individuals of G that communicate in G\{x} with the v/h G-neighbors
of x. We then have that either G(x) and G(x) are mutually separated, or they are not. We
now address each of the possible cases.

G(x) and G(x) are mutually separated: Assume G(x) and G(x) are mutually separated.
By construction, they both are non-empty. If both |G(x)| and |G(x)| are odd, then it follows
that |x|+ |G(x)|+ |G(x)| is odd, which is a contradiction. Without loss of generality, assume
that |G(x)| is even. Then, x ∪ G(x) and G(x) are both connected graphs. Further, they
are mutually disjoint, and their magnitudes are even and strictly less than 2κ. Thus, by
applying our induction assumption independently for x ∪ G(x) and G(x) gives the result.

G(x) and G(x) are not mutually separated: Assume that G(x) and G(x) are not mu-
tually separated, which implies that they touch. If G(x) 6= ∅, let y be an h/v G-neighbor
of x. Otherwise, let y be a v/h G-neighbor of x. Then, G(x) ∪ G(x) \ {y} is either 1 or 2
mutually separated, connected subgraphs being formed. If G(x) ∪ G(x) \ {y} is connected,
then because its magnitude is even and strictly less than 2κ, the induction hypothesis applied
to G(x) ∪ G(x) \ {y} and {x, y} completes the proof.

If G(x)∪G(x)\{y} is not a connected set, then by Lemma 4.6, it follows that G(x)∪G(x)\
{y} = H ∪ H, where H and H are non-empty, mutually separated, connected subgraphs of
G, whose magnitudes are both either even or odd. H is all individuals of G(x) ∪ G(x) that
communicate in G(x)∪G(x) \ {y} with h/v G(x)∪G(x)-neighbors of y. H is all individuals
of G(x) ∪ G(x) that communicate in G(x) ∪ G(x) \ {y} with v/h G(x) ∪ G(x)-neighbors of
y. Further, |H|, |H| < 2κ . If |H| and |H| are both even, then the induction hypothesis
applied to H, H, and {x, y} completes the proof.

If they are both odd, more work needs to be done. Let x = (x0, x1, 1), y1 = (y0, y1, 1).
Then, by construction, it follows that xi∗ = yj∗ for some i∗ ∈ {0, 1} and some j∗ ∈ {0, 1}.
Then, by construction, since H is non-empty it contains some h/v G(x) ∪ G(x)-neighbors
of y. Thus, there exists a point w = (w0, w1, 1) ∈ H such that either w0 = y0 or w1 = y0.
Similarly, by construction, since H is non-empty it contains some v/h G(x)∪G(x)-neighbors
of y. Thus, there exists a point z = (z0, z1, 1) ∈ H such that either z0 = y1 or z1 = y1. Thus,
since xi∗ = yj∗ , it follows that either xi∗ = w0, xi∗ = w1, xi∗ = z0, or xi∗ = z1. This implies
that either H ∪ {x} and H ∪ {y} are both connected subgraphs disjoint from one another,
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or H ∪ {y} and H ∪ {x} are both connected subgraphs disjoint from one another. Thus,
the induction hypothesis applied to either H ∪ {x} and H ∪ {y} or H ∪ {y} and H ∪ {x}
completes the proof.

Case G ∈ [n]3e: This proof is by induction. The result clearly holds for the case κ = 1.
Assume the result holds for all 2l-connected graphs, 2 ≤ l < κ.

If mi,j ≥ 3 for some (i, j, k) ∈ G, then we can simply remove 2-connected graphs from
{(i, j, s)}∞s=1 ∩ G until there are either 1 or 2 points in {(i, j, s)}∞s=1 ∩ G. By this means,
we can assume that mi,j ∈ {1, 2} for all (i, j, k) ∈ G. If mi,j = 1 for all (i, j, k) ∈ G, the
result holds from the above work for graphs in [n]31. Therefore, assume that mi,j = 2 for
some (i, j, k) ∈ G. Indeed, assume that x = {(i, j, k1), (i, j, k2)} ∈ G. Then, by Corollary
4.1, G\{x} = G(x) ∪ G(x), where G(x) and G(x) are connected subgraphs. If they touch,
G(x) ∪ G(x) is a connected graph whose magnitude is 2(κ − 1), and we may apply our
induction assumption to complete the proof, noting that x is a 2-connected graph.

Suppose they are mutually separated. Then, their magnitudes are both even or odd. If
they are both even, they have magnitudes strictly less than 2κ, and the proof is complete by
using the induction on each of these sets. If they are both odd, then G(x) ∪ {(i, j, k1)} and
G(x)∪ {(i, j, k2)} both are connected and have even magnitudes strictly less that 2κ. Thus,
we use our induction hypothesis to complete the proof. Q.E.D.

Corollary 4.2 Let G be a 2k + 1-connected graph, 3 < 2k + 1 ≤ |[n]3e|. Then, there exists
k− 1 disjoint, 2-connected graphs, enumerated as H2

s (G), s = 1, . . . , k− 1 and a 3-connected
graph W 3(G), disjoint from H2

s (G), s = 1, . . . , k − 1, such that W 3(G) ∪k−1
s=1 H2

s (G) = G .

Proof. Referring to Lemma 4.7, let x ∈ G such that x and H(G)1 touch. Then, H(G) has
magnitude 2k, and so by the above lemma there exists k mutually disjoint, 2-connected sets
W1, . . . ,Wk such that ∪k

i=1Wi = H(G). Assume that x ∈ Wk. Then, the collection of sets
W1, · · · ,Wk−1,Wk ∪ H(G)1 fulfills the requirements of the corollary by letting H2

s (G) = Ws

for s = 1, . . . , k − 1, and W 3(G) = Wk ∪ H(G)1. Q.E.D.

Corollary 4.3 Let G be a 2k-connected graph, 2 < k ≤ 1
2
|[n]3e|. Then, there exists k − 2

disjoint, 2-connected graphs, enumerated as H2
s (G), s = 1, . . . , k−2 and a 4-connected graph

W 4(G), disjoint from H2
s (G), s = 1, . . . , k − 2, such that W 4(G) ∪k−2

s=1 H2
s (G) = G

Proof. By Lemma 4.8, there exists k mutually disjoint, 2-connected graphs, H2
i (G),

i = 1, . . . , k, such that ∪k
i=1H

2
i (G) = G. Two of them must touch, as the graph is connected.

Q.E.D.

Corollary 4.4 Let n be so large that 4 < |[n]3e|. Let G be a k-connected graph, 1 ≤ k ≤ 4.
Then, G = {x1, . . . , xk} such that

x1 ↔ x2 ↔ · · · ↔ xk .
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Proof. This is obvious for k = 1, 2, 3. When k = 4, we know by Lemma 4.8 that
G = {x1, x2} ∪ {y1, y2} where x1 ↔ x2 and y1 ↔ y2. Since G is connected, {x1, x2} and
{y1, y2} touch, say x2 ↔ y1 without loss of generality. Then,

x1 ↔ x2 ↔ y1 ↔ y2 .

Q.E.D.

Before we proceed, note that gκ
n({κ}) = gn(κ) is just the set of all κ-connected graphs on

[n]3e. Also, let

g2
n({2}; b − c) =

{

G ∈ An
2 : |G| = 2, G is connected and either balanced or cylindrical}.

Also, recall from Lemma 4.13, for 〈a1, b1〉, 〈a2, b2〉, 〈a3, b3〉 ∈ {0, 1}2,

λ1
n =

1

n2

n
∑

s1,s2=1

ms1,s2

λ2
n(a1, b1) =

1

n3

n
∑

s1,s2=1

ms1,s2

n
∑

s3=1

mhb1
(ga1 (s1,s2),s3)

λ3
n(a1, b2; a2, b2) =

1

n4

n
∑

s1,s2=1

ms1,s2

n
∑

s3=1

mhb1
(ga1 (s1,s2),s3)

n
∑

s4=1

mhb2
(ga2 (hb1

(ga1 (s1,s2),s3)),s4)

λ4
n(a1, b2; a2, b2; a3, b3) =

1

n5

n
∑

s1,s2=1

ms1,s2

n
∑

s3=1

mhb1
(ga1 (s1,s2),s3)

n
∑

s4=1

mhb2
(ga2 (hb1

(ga1 (s1,s2),s3)),s4) ×

n
∑

s5=1

mhb3
(ga3 (hb2

(ga2 (hb1
(ga1 (s1,s2),s3)),s4)),s5) .

Lemma 4.9 There exists an N and a constant λ depending on N such that for all n ≥ N ,

|g2
n({2}; b − c)| ≤ λn2 (4)

|g2
n({2})| ≤ λn3 (5)

|g3
n({3})| ≤ λn4 (6)

|g4
n({4})| ≤ λn5 (7)

Proof.
Equation (4): By Corollary 4.4, any 2-connected graph may be constructed by choosing
a point in [n]3e, and then choosing a point connected to it. There are

∑n
i,j=1
i6=j

∑mi,j

k=1 possible

ways to choose the first point. If the first point chosen is (i, j, k) ∈ [n]3e, to have the second
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point be connected to it and the graph be balanced, the second point can be chosen in
exactly mj,i ways. To have the second point be connected to it and the graph be cylindrical,
the second point can be chosen in exactly mi,j − 1 ways. In either case, as mi,j = mj,i,

|g2
n({2}; b − c)| ≤ 2

n
∑

i,j=1
i6=j

m2
i,j ≤ 2(

n
∑

i=1

m2
i )

2 = n22β2(1 + o0
n(1)).

Let N0 be so large that for all n ≥ N0, |(1 + o0
n(1))| ≤ 2. Let λ0 = 2β2.

Equation (5): That

|g2
n({2})| =

1

2

n
∑

i,j=1
i6=j

mi,j
∑

k=1

((mi,j − 1) +
n

∑

s=1
s 6=i,j

mi,s +
n

∑

s=1
s 6=i,j

ms,j +
n

∑

s=1
s 6=i

ms,i +
n

∑

s=1
s 6=i,j

mj,s)

follows from simple counting. By Corollary 4.4, any 2-connected graph may be constructed
by choosing a point in [n]3e, and then choosing a point connected to it. There are

∑n
i,j=1
i6=j

∑mi,j

k=1

possible ways to choose the first point. If the first point chosen is (i, j, k) ∈ [n]3e, to have the
second point be connected to it, the second point can be chosen in exactly

(mi,j − 1) +
n

∑

s=1
s 6=i,j

mi,s +
n

∑

s=1
s 6=i,j

ms,j +
n

∑

s=1
s 6=i

ms,i +
n

∑

s=1
s 6=i,j

mj,s

ways. We divide by two, so as to discount for the ordering in this process.
Now, by Lemma 4.13, for some θ ∈ R, we have that

1

2

n
∑

i,j=1
i6=j

mi,j
∑

k=1

((mi,j − 1) +
n

∑

s=1
s 6=i,j

mi,s +
n

∑

s=1
s 6=i,j

ms,j +
n

∑

s=1
s 6=i

ms,i +
n

∑

s=1
s 6=i,j

mj,s)

≤ 1

2

n
∑

i,j=1

mi,j(
n

∑

s=1

mi,s +
n

∑

s=1

ms,j +
n

∑

s=1

ms,i +
n

∑

s=1

mj,s)

=
∑

〈a1,b1〉∈{0,1}2

n3λ2(a1, b1)

≤ n34θ(1 + o1
n(1))

Let N1 be so large that for all n ≥ N1, |(1 + o1
n(1))| ≤ 2. Let λ1 = 4θ.

Equation (6): As demonstrated above, for any point (i, j, k) ∈ [n]3e, a second point can be
connected to it in exactly

mi,j − 1 + (
n

∑

s=1
s 6=j

mi,s +
n

∑

s=1
s 6=i

ms,j +
n

∑

s=1
s 6=j

ms,i +
n

∑

s=1
s 6=i

mj,s)
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≤
n

∑

s=1

mi,s +
n

∑

s=1

ms,j +
n

∑

s=1

ms,i +
n

∑

s=1

mj,s

From Corollary 4.4 it then follows, using the same reasoning as above, that all members
of g3

n({3}) can be gotten by choosing points x1 first, x2 second, and x3 third such that

x1
t↔ x2

t↔ x3 Therefore, using the same reasoning above, over counting by being able to
choose some points more than once, and that noting that the above method will over count
by at least 3, as it will produce the same graph when x2 is first, x3 is second, and x1 is third
or x3 is first, x1 is second, and x2 is third, we have

|g3
n({3})| ≤ 1

3

n
∑

i,j=1
i6=j

mi,j
∑

k=1

(
n

∑

s=1
s 6=j

mi,s
∑

u=1

(mi,s +
n

∑

v=1
v 6=s

mi,v +
n

∑

v=1
v 6=i

mv,s +
n

∑

v=1
v 6=s

mv,i +
n

∑

v=1
v 6=i

ms,v)) +

1

3

n
∑

i,j=1
i6=j

mi,j
∑

k=1

(
n

∑

s=1
s 6=j

ms,j
∑

u=1

(ms,j +
n

∑

v=1
v 6=s

mj,v +
n

∑

v=1
v 6=j

mv,s +
n

∑

v=1
v 6=s

mv,j +
n

∑

v=1
v 6=j

ms,v)) +

1

3

n
∑

i,j=1
i6=j

mi,j
∑

k=1

(
n

∑

s=1
s 6=j

ms,i
∑

u=1

(ms,i +
n

∑

v=1
v 6=s

mi,v +
n

∑

v=1
v 6=i

mv,s +
n

∑

v=1
v 6=s

mv,i +
n

∑

v=1
v 6=i

ms,v)) +

1

3

n
∑

i,j=1
i6=j

mi,j
∑

k=1

(
n

∑

s=1
s 6=j

mj,s
∑

u=1

(mj,s +
n

∑

v=1
v 6=s

mj,v +
n

∑

v=1
v 6=j

mv,s +
n

∑

v=1
v 6=s

mv,j +
n

∑

v=1
v 6=j

ms,v))

≤
n

∑

i,j=1

mi,j
∑

k=1

(
n

∑

s=1

mi,s
∑

u=1

(
n

∑

v=1

mi,v +
n

∑

v=1

mv,s +
n

∑

v=1

mv,i +
n

∑

v=1

ms,v)) +

n
∑

i,j=1

mi,j
∑

k=1

(
n

∑

s=1

ms,j
∑

u=1

(
n

∑

v=1

mj,v +
n

∑

v=1

mv,s +
n

∑

v=1

mv,j +
n

∑

v=1

ms,v)) +

n
∑

i,j=1

mi,j
∑

k=1

(
n

∑

s=1

ms,i
∑

u=1

(
n

∑

v=1

mi,v +
n

∑

v=1

mv,s +
n

∑

v=1

mv,i +
n

∑

v=1

ms,v)) +

n
∑

i,j=1

mi,j
∑

k=1

(
n

∑

s=1

mj,s
∑

u=1

(
n

∑

v=1

mj,v +
n

∑

v=1

mv,s +
n

∑

v=1

mv,j +
n

∑

v=1

ms,v))

=
n

∑

i,j=1

mi,j(
n

∑

s=1

mi,s(
n

∑

v=1

mi,v +
n

∑

v=1

mv,s +
n

∑

v=1

mv,i +
n

∑

v=1

ms,v)) +

n
∑

i,j=1

mi,j(
n

∑

s=1

ms,j(
n

∑

v=1

mj,v +
n

∑

v=1

mv,s +
n

∑

v=1

mv,j +
n

∑

v=1

ms,v)) +
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n
∑

i,j=1

mi,j(
n

∑

s=1

ms,i(
n

∑

v=1

mi,v +
n

∑

v=1

mv,s +
n

∑

v=1

mv,i +
n

∑

v=1

ms,v)) +

n
∑

i,j=1

mi,j(
n

∑

s=1

mj,s(
n

∑

v=1

mj,v +
n

∑

v=1

mv,s +
n

∑

v=1

mv,j +
n

∑

v=1

ms,v))

= n4
∑

〈a1,b1〉,〈a2,b2〉∈{0,1}2

λ3(a1, b1; a2, b2)

≤ n416θ(1 + o2
n(1))

again by Lemma 4.13.
For example, we can choose point 1 and 2, connected by being in the same row, and then

choosing point 3 connected to point 2, which can happen in

n
∑

i,j=1
i6=j

mi,j
∑

k=1

(
n

∑

s=1
s 6=j

mi,s
∑

u=1

(
n

∑

v=1
v 6=s

mi,v +
n

∑

v=1
v 6=i

mv,s +
n

∑

v=1
v 6=s

mv,i +
n

∑

v=1
v 6=i

ms,v))

ways.
Let N2 be so large that for all n ≥ N2, |(1 + o2

n(1))| ≤ 2. Let λ2 = 16θ.

Equation (7): From Corollary 4.4 it then follows, using the fact that from Lemma 4.8 that
a 4-connected graph may be decomposed into 2 2-connected graphs, and the same reasoning
as above, that all members of g4

n({4}) can be gotten by choosing points x1 first, x2 second,

x3 third and x4 fourth such that x1
t↔ x2

t↔ x3
t↔ x4. Therefore, using the same reasoning

above, over counting by being able to choose some points more than once, and noting that
the above method will over count by at least 4, Lemma 4.13 gives

|g4
n({4})| ≤

∑

〈a1,b1〉,...,〈a3,b3〉∈{0,1}2

n5λ4
n(a1, b1; a2, b2; a3, b3)

≤ n564θ(1 + o3
n(1))

Let N3 be so large that for all n ≥ N3, |(1 + o3
n(1))| ≤ 2, and let λ3 = 64θ.

Then, setting N = max{N0, N1, N2, N3} and λ = max{λ0, λ1, λ2, λ3} completing the
proof.

Q.E.D.

For κ ∈ Z
+, define

P∗
[κ] = {σ ∈ P[κ] : rσ

s ≥ 2, s = 1, . . . , Cσ}.
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Lemma 4.10 Let n, κ ∈ Z
+, κ ≤ |[n]3e|. For σ ∈ P[κ]\P∗

[κ],

∑

{(is,js,ks)}κ
s=1∈gκ

n(σ)

|E(Yi1,j1,k1 · · ·Yiκ,jκ,kκ)| = 0. (8)

Also, for σ ∈ P∗
[κ], and n, κ ∈ Z

+, 6 ≤ κ ≤ |[n]3e|, n ≥ N ,

|gκ
n(σ)| ≤ λκ

⌊κ/6⌋!n
(3κ)/2, (9)

where N and λ are defined in Lemma 4.9.

Proof.

Equation (8)

If σ ∈ P[κ]\P∗
[κ], then rσ

t = 1 for some 1 ≤ t ≤ Cσ. By Lemma 4.3, for all G =

{(is, js, ks)}κ
s=1 ∈ gκ

n(σ), N(G) = Cσ, and

E(Yi1,j1,k1 · · ·Yiκ,jκ,kκ) =
Cσ
∏

v=1

E(
∏

(q,r,s)∈B(G)v

Yq,r,s)

Then, by definition, for some 1 ≤ u ≤ Cσ, |B(G)u| = rσ
t = 1, implying that B(G)u =

{(i, j, k)} for some (i, j, k). Thus,

E(
∏

(q,r,s)∈B(G)u

Yq,r,s) = E(Yi,j,k) = 0,

which implies equation (8).

Equation (9)

Let n, κ ∈ Z
+, 6 ≤ κ ≤ |[n]3e|, and σ ∈ P ∗

[κ]. To simplify, let Cσ = l, and rσ
s = rs for

s = 1, . . . , l. For s = 1, . . . , l, let m be the number of rs that are odd. Note that κ− 3m has
to be even, and 3m ≤ κ, which follows as such: the claim is obvious when m = 0. If m ≥ 1
and {rsi

}m
i=1 is the collection of odd rs, then rsi

− 3 is even for all 1 ≤ i ≤ m. But then,
∑m

i=1(rsi
− 3) is even, and so,

l
∑

s=1
s 6∈{si}

l
i=1

ri +
m

∑

i=1

(rsi
− 3) = κ − 3m

is even.
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Now, consider the following simple algorithm, hereafter referred to algorithm R. In this
algorithm, if m = 0, it is understood that steps 3 and 4 are not performed, and if 3m = κ,
that steps 1 and 2 are not performed:

1. Step 1: Choose a 2-connected graph.

Let 2 ≤ i ≤ κ−3m
2

.

2. Step i: Assuming the 2-connected graphs G2
1, . . . , G

2
i−1 have been chosen mutually

disjoint, choose a 2-connected graph from [n]3e\ ∪i−1
j=1 G2

j .

3. Step κ−3m
2

+ 1: Choose a 3-connected graph G3
1 from [n]3e\ ∪

κ−3m
2

j=1 G2
j .

Let κ−3m
2

+ 1 ≤ q ≤ κ−3m
2

+ m.

4. Step q: Let s = q − κ−3m
2

. Assuming the 2-connected graphs G2
1, . . . , G

2
κ−3m

2

, and the

3-connected graphs G3
1, . . . , G

3
s−1 have been chosen mutually disjoint, choose a 3-connected

graph G3
s from [n]3e\ ∪

κ−3m
2

i=1 G2
i ∪

⋃s−1
j=1 G3

j .

5. Step κ−3m
2

+ m + 1: Collect the resulting κ−3m
2

+ m connected graphs.

Note that
∑

κ−3m
2

i=1 |G2
i | +

∑m
j=1 |G3

j | = 2κ−3m
2

+ 3m = κ ≤ |[n]3e|, which implies the algorithm
is possible.

First, assume that 0 < 3m < κ. By Lemma 4.8 and Corollary 4.2, it follows that that any
element of {{B(G)1, . . . , B(G)N(G)}}G∈gκ

n(σ) can be achieved with this algorithm. But how
many unordered different collections of connected graphs will result from the above process?

From simple counting, an upper bound on this number is
( 1

((κ − 3m)/2)!
(λn3)(κ−3m)/2 1

m!
(λn4)m

)

≤ λκ

(κ − 3m)/2)!m!
n(1/2)(3κ−m).

From Lemma 4.9, and as already discussed, there are at most λn3 2-connected graphs. We
are picking (κ − 3m)/2 of them, but the order of choosing is inconsequential, which we
divide by ((κ − 3m)/2)!. From Lemma 4.9, there are at most λn4 3-connected graphs. We
are picking m 3-connected graphs, but, again, the order of choosing is inconsequential, so
we divide by m!.

Since (κ − 3m)/2 + m = (κ − m)/2, either (κ − 3m)/2 or m is greater than or equal to
(κ − m)/4. Thus,

((κ − 3m)/2)!m! ≥ ⌊(κ − m)/4⌋! ≥ ⌊(κ − (1/3)κ)/4⌋! = ⌊κ/6⌋!.
Thus, the result holds for 0 < 3m < κ.

Now assume that m = 0. In this case, an upperbound for the number of different
collections of connected graphs that will result from the above process is bounded above
with the same reasoning as used above, except m = 0. Since 6 ≤ κ, this gives that

|gκ
n(σ)| ≤ (λn3)κ/2

(κ/2)!
≤ λκ

⌊κ/6⌋!n
(3κ)/2.
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Finally, assume that 3m = κ. In this case, l = m, ri = 3 for all i. From Lemma 4.9, and
as seen above, there are at most λn4 ways to pick a 3-connected graph on [n]3e. This gives
that, for all 6 ≤ κ,

|gκ
n(σ)| ≤ λκ/3

(κ/3)!
n(4κ)/3 ≤ λκ

⌊κ/6⌋!n
(3κ)/2.

Q.E.D.

4.4.2 Proof of Proposition

Proposition 2.5 Let n, κ ∈ Z
+, 6 ≤ κ ≤ |[n]3e|. There exists a function f : Z

+ → R
+ such

that
∑

σ∈P[κ]

∑

{(is,js,ks)}κ
s=1∈gκ

n(σ)

|E(Yi1,j1,k1 · · ·Yiκ,jκ,kκ)|
|t|κ

n(3κ)/2
≤ f(κ),

and
∞

∑

κ=6

f(κ) < ∞.

Proof. Let n, k ∈ Z
+, 6 ≤ k ≤ |[n]3e|. From equation (8) of Lemma 4.10, it follows that

∑

σ∈P[κ]

∑

{(is,js,ks)}κ
s=1∈gκ

n(σ)

|E(Yi1,j1,k1 · · ·Yiκ,jκ,kκ)|

=
∑

σ∈P∗
[κ]

∑

{(is,js,ks)}κ
s=1∈gκ

n(σ)

|E(Yi1,j1,k1 · · ·Yiκ,jκ,kκ)|.

From Lemma 4.10, and that |P∗
[κ]| ≤ |P[κ]| = p(κ) ≤ 2κ, it follows that

∑

σ∈P∗
[κ]

∑

{(is,js,ks)}κ
s=1∈gκ

n(σ)

|E(Yi1,j1,k1 · · ·Yiκ,jκ,kκ)|
|t|κ

n(3κ)/2
≤

∑

σ∈P∗
[κ]

∑

{(is,js,ks)}κ
s=1∈gκ

n(σ)

Cκ|t|κ
n(3κ)/2

=
Cκ|t|κ
n(3κ)/2

∑

σ∈P∗
[κ]

∑

{(is,js,ks)}κ
s=1∈gκ

n(σ)

=
Cκ|t|κ
n(3κ)/2

∑

σ∈P∗
[κ]

|gκ
n(σ)|

≤ Cκ|t|κ
n(3κ)/2

2κ λκ

⌊(κ/6)⌋!n
(3κ)/2

≤ (2λ)κ

⌊κ/6⌋!C
κ|t|κ.
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If we let f(κ) = (2λ)κ

⌊κ/6⌋!
Cκ|t|κ for 6 ≤ κ, then it is not hard to show that

∞
∑

κ=6

f(κ) < ∞.

By Stirling’s approximation, let M > 2 be so large such that, for all κ ≥ M ,

⌊(κ/6)⌋! ≥ ⌈(κ/12)⌉!
≥ 1

2
(⌈(κ/12)⌉/e)⌈(κ/12)⌉

√

2π⌈(κ/12)⌉

≥ 1

2
((κ/12)/e)(κ/12).

Then, with β = 2λC|t|,

1

2

∞
∑

κ=M

βκ

⌊(κ/6)⌋! ≤ 1

2
2

∞
∑

κ=M

((12e)1/12β

κ1/12

)κ

≤
∫ ∞

M−1

((12e)1/12β

x1/12

)x

dx < ∞.

Q.E.D.

4.5 Proof of Proposition 2.6

We require 3 preliminary lemmas. We review relevant notation before each lemma.

Recall that for any finite graph G ∈ [n]3e, we defined

Vt(G) = {(i, j, k) ∈ [n]3e : (i, j, k) ↔ (q, r, s) for some (q, r, s) ∈ G}.

Lemma 4.11 Let n ≥ 3. If G is an unbalanced, non-cylindrical, 2-connected graph on [n]3e,
then there exist A ⊂ {1, . . . , n} such that |A| = 3, and Vt(G) = A × Z

+ × Z
+ ∪ Z

+ × A ×
Z

+ ∩Z3
m,+. If G is either a balanced, 2-connected graph on [n]3e or a 2-connected cylinder on

[n]3e, then there exist A ⊂ {1, . . . , n} such that |A| = 2, and Vt(G) = A × Z
+ × Z

+ ∪ Z
+ ×

A × Z
+ ∩ Z3

m,+.

In other words, when G is an unbalanced, non-cylindrical 2-connected set, then Vt(G) are
all points that are either in one of three different hyper-rows or one of three different hyper-
columns.

Solution. This is almost obvious. Let G be an unbalanced, non-cylindrical, 2-connected
graph on [n]3e. Then, we may assume G = {(i, j, k), (q, r, s)} where {i, j, q, r} contains exactly
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3 unique elements, denote them i1, i2, i3. It follows that if A = {i1, i2, i3}, then Vt(G) =
A×Z

+ ×Z
+ ∪Z

+ ×A×Z
+ ∩Z3

m,+. A similar argument holds when G is either a balanced,
2-connected graph on [n]3e or a a 2-connected cylinder on [n]3e. Q.E.D.

Let n ∈ Z
+, n large. Let X = {x(i,j,k),(q,r,s)}i,j,k, q,r,s∈[n]3e

be a finite set of distinct objects,
e.g. x(i,j,k),(q,r,s) may be a 2-graph defined by the indices of a pair of variables Y(i,j,k), Y(q,r,s),
i.e. x(i,j,k),(q,r,s) = {(i, j, k), (q, r, s)}. For i, j ∈ Z

+, i < j, and xj = 〈x1, . . . , xj〉 ∈ (X)j, we
define

xj,i = 〈x1, . . . , xi〉.

Let T = {t1, t2, t3, t4} be a collection of 4 distinct real numbers. Let f : X → T =
{t1, t2, t3, t4} ⊂ R, so the ti represents one of 4 distinct categories that an element of X may
belong to, e.g. colors, or, in our case, possible covariance values a correlated pair {Yi,j,k, Yq,r,s}
may take.

Lemma 4.12 Let m ∈ Z
+, m ≥ 2, and C ⊂ (X)m. For 1 ≤ i ≤ m, let

Ci = {zi ∈ (X)i : xm,i = zi for some xm ∈ C}

For t ∈ T , let

A1(t) = {x ∈ C1 : f(x1) = t},

and for 2 ≤ i ≤ m and zi−1 ∈ Ci−1, let

Ai(zi−1; t) = {xi ∈ Ci : xi,i−1 = zi−1, f(xi) = t}

Assume that there exists a Z
+-valued sequence {ǫn}n≥1 such that ǫn = on(n3), and for all

z1 ∈ C1,

||A1(tj)| − α2β
n3

2
| ≤ ǫn

for 1 ≤ j ≤ 4. Further, assume that for 2 ≤ i ≤ m and any xi ∈ Ci,

||Ai(xi−1; tj)| − α2β
n3

2
| ≤ ǫn

for 1 ≤ j ≤ 4.
Then, for any m ∈ Z

+, we have that

∑

〈z1,...,zm〉∈C

f(z1) · · · f(zm) = (
α2β(t1 + t2 + t3 + t4)

2
)mn3m + on(n3m).
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Solution. Let t̂m = 〈t̂1, . . . , t̂m〉 ∈ Tm, and

Cm(̂tm) = {xm ∈ C : f(xi) = t̂i, i = 1, . . . ,m}

∆(̂tm) = {〈x1
1,x

2
2, . . . ,x

m
m〉 ∈

m
∏

i=1

Ci :

x1
1 ∈ A1(t̂1), x2

2 ∈ A2(x
1
1; t̂2), . . . ,x

m
m ∈ Am(xm−1

m−1; t̂m)}

There is a bijection between Cm(̂tm) and ∆(̂tm). To see such consider, the following map
g : ∆(̂tm) → (X)m such that for 〈x1

1,x
2
2, . . . ,x

m
m〉 ∈ ∆(̂tm)

g(〈x1
1,x

2
2, . . . ,x

m
m〉) = 〈x1

1, x
2
2, . . . , x

m
m〉

By construction, g is into Cm(̂tm), and it must be onto. For xm ∈ Cm(̂tm), it follows that

〈x1,xm,2, . . . ,xm,m〉 ∈ ∆(̂tm), g(〈x1,xm,2, . . . ,xm,m〉) = xm.

It also clearly has to be 1-1. Assume 〈x1
1,x

2
2, . . . ,x

m
m〉 6= 〈x̂1

1, x̂
2
2, . . . , x̂

m
m〉 and they are both

members of ∆(̂tm). If i is the smallest index such that xi
i 6= x̂i

i, then xi
i 6= x̂i

i, and their
images under g must be distinct.

We now may find an upper and lower bound on |Cm(̂tm)|. As Cm(̂tm) and ∆(̂tm) are in
1 − 1 correspondence, it follows that

|Cm(̂tm)| =
∑

x1∈A1(t̂1)

∑

x2
2∈A2(x1;t̂2)

· · ·
∑

x
m−1
m−1∈Am−1(xm−2

m−2:t̂m)

∑

xm
m∈Am(xm−1

m−1:t̂m)

By assumption, since

(α2β
n3

2
− ǫn) ≤

∑

xi∈Ai(xi−1;t̂i)

≤ (α2β
n3

2
+ ǫn).

for all xi−1 ∈ Ci, we have that

(α2β
n3

2
− ǫn)m ≤

∑

x1∈A1(t̂1)

∑

x2∈A2(x1;t̂2)

· · ·
∑

xm∈Am(xm−1:t̂m)

≤ (α2β
n3

2
+ ǫn)m.

As

(α2β
n3

2
± ǫn)m =

m
∑

i=0

(

m

i

)

(α2β
n3

2
)m−k(±ǫn)k = (α2β

n3

2
)m + on(n3m),

it follows that |Cm(̂tm)| = (α2β n3

2
)m + on(n3m).
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From this we may conclude that

∑

zm∈Cm (̂tm)

f(x1) · · · f(xm) = (t̂1 · · · t̂m)(α2β
n3

2
)m + on(n3m).

Finally, we have

∑

〈z1,...,zm〉∈C

f(z1) · · · f(zm) =
∑

t̂m∈T m

∑

〈z1,...,zm〉∈Cm (̂tm)

f(z1) · · · f(zm)

=
∑

t̂m∈T m

{

(t̂1 · · · t̂m)(α2β
n3

2
)m + on(n3m)

}

= (
∑

t̂m∈T m

(t̂1 · · · t̂m))(α2β
n3

2
)m + on(n3m)

= (t1 + t2 + t3 + t4)
m(α2β

n3

2
)m + on(n3m).

Q.E.D.

Lemma 4.13 Let k ∈ Z
+, and {ai}∞i=1 ∈ (Z+)Z

+
such that 1

n

∑n
i=1 ai → a.

maxAn⊂[n],|An|=k

∑

i∈An
ai

n
→ 0 .

Proof. Let in ∈ [n] such that maxn
i=1 ai = ain . If limn in < ∞, then the result is obvious.

Suppose that in → ∞. Then, we have that

a = lim
n

1

in

in
∑

i=1

ai = lim
n

in − 1

in

1

in − 1

in−1
∑

i=1

ai + lim
n

ain

in
= a + lim

n

ain

in
,

which implies that

0 = lim
n

ain

in
≥ lim

n

ain

n
≥ 0 .

Thus,

maxAn⊂[n],|An|=k

∑

i∈An
ai

n
≤ kain

n
→ 0 .

Q.E.D.
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Corollary 4.5 Let k ∈ Z
+, and {ai}∞i=1 ∈ (Z+)Z

+
such that 1

n

∑n
i=1 ai → a.

max
An⊂[n],|An|=k

| 1
n

n
∑

i=1

ai −
1

n

n
∑

i=1
i6∈An

ai| → 0 .

Solution.

max
An⊂[n],|An|=k

| 1
n

n
∑

i=1

ai −
1

n

n
∑

i=1
i6∈An

ai| =
maxAn⊂[n],|An|=k

∑

i∈An
ai

n
→ 0 .

Q.E.D.

Let A, B ⊂ Z
+. Recall that we call an (|A|×|B|)-array complete or a complete (|A|×|B|)-

array iff mi,j > 0 for i ∈ A, j ∈ B.

Lemma 4.14 Let n, κ ∈ Z
+, κ ≤ |[n]3e|. Then, for σ ∈ P ∗

[κ], n sufficiently larger than κ,

∑

{(is,js,ks)}κ
s=1∈gκ

n(σ)

E(Yi1,j1,k1 · · ·Yiκ,jκ,kκ)

=

{

1
(κ/2)!

(α2β(ρ+τ+ν+η)
2

)κ/2n(3κ)/2(1 + on(1)) : rσ
s = 2, s = 1, . . . , Cσ, (∗)

on(n(3κ)/2) : rσ
s 6= 2 for some 1 ≤ s ≤ Cσ. (∗∗)

Proof. Let Cσ = l, and rσ
s = rs for s = 1, . . . , l.

Equation (∗)
Let n ≥ N from Lemma 4.9. Let ri = 2 for all i = 1, . . . , l. Then, κ is even, l = κ/2,

and N(G) = κ
2

for all G ∈ gκ
n(σ). Let ñ = |{mi, 1 ≤ i ≤ n : mi 6= 0}|. Assume that n is so

large that 3κ
2
≤ ñ. This is possible because ñ

n→ ∞, as limn
1
n

∑n
i=1 mi → α > 0. Consider

the following simple algorithm, henceforth referred to as algorithm Q:

1. Step 1: Choose a 2-connected graph G2
1.

Let 2 ≤ k ≤ κ/2.

2. Step k: Assuming the 2-connected graphs G2
1, . . . , G

2
k−1 have been chosen mutually

separated, eliminate Vt(G
2
j), 1 ≤ j ≤ k − 1. Choose a 2-connected graph G2

k from the
remaining points on the [n]3e.

3. Step κ/2 + 1: Form the ordered collection of κ/2 mutually separated, 2-connected
graphs 〈G2

1, . . . , G
2
κ/2〉.

4. Step κ/2 + 2: Form the unordered collection of κ/2 mutually separated, 2-connected

graphs {G2
j}κ/2

j=1.
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Algorithm Q is possible because for 1 ≤ k < κ/2, during the k + 1th step, by Lemma
4.11, at most 3k hyper-rows and 3k hyper-columns are removed, leaving at least a complete
(ñ−3k)×(ñ−3k)-array of points G to be chosen from. However, since ñ−3k ≥ ñ−3(κ/2−
1)) ≥ 3, and clearly a 2-connected graph can be chosen from a complete s × s-array for any
s ≥ 3, a 2-connected graph may be chosen from G.

Let Ξo
Q be the set of all ordered collections of graphs that may be generated by algorithm

Q. Let Ξu
Q be the set of all unordered collections of graphs that may be generated by

algorithm Q. Let So
Q be all elements of Ξo

Q that have either a balanced marginal graph
or a cylindrical marginal graph, and Su

Q be all elements of Ξu
Q that have either a balanced

marginal graph or a cylindrical marginal graph. Specifically,

Ξo
Q = {〈G1, . . . , Gκ/2〉 : 〈G1, . . . , Gκ/2〉 may be generated by algorithm Q},

Ξu
Q = {{G1, . . . , Gκ/2} : {G1, . . . , Gκ/2} may be generated by algorithm Q},

So
Q = {〈G1, . . . , Gκ/2〉 ∈ Ξo

Q : for some 1 ≤ i ≤ κ/2, Gi is either balanced or cylindrical},
Su

Q = {{G1, . . . , Gκ/2} ∈ Ξu
Q : for some 1 ≤ i ≤ κ/2, Gi is either balanced or cylindrical}.

It is useful to remark that |Ξo
Q|/(κ/2)! = |Ξu

Q|, |So
Q|/(κ/2)! = |Su

Q|.
Now, clearly

Ξu
Q ⊂ {{B(G)1, . . . , B(G)N(G)}}G∈gκ

n(σ),

and if {B(G)1, . . . , B(G)κ/2} ∈ {{B(G)1, . . . , B(G)N(G)}}G∈gκ
n(σ), then it follows that

Vt(B(G)i) ∩ Vt(B(G)j) = ∅

for all 1 ≤ i 6= j ≤ κ/2. Thus, any element of {{B(G)1, . . . , B(G)N(G)}}G∈gκ
n(σ) may be

generated by algorithm Q, and so,

Ξu
Q = {{B(G)1, . . . , B(G)N(G)}}G∈gκ

n(σ).

Now, if for any 2-connected set G = {(i, j, k), (q, r, s)} ∈ [n]3e, we will let YG = Yi,j,k · Yq,r,s,
it then follows from our previous discussion that

∑

{(is,js,ks)}κ
s=1∈gκ

n(σ)

E(Yi1,j1,k1 · · ·Yiκ,jκ,kκ) =
∑

{G1,...,Gκ/2}∈{{B(G)1,...,B(G)N(G)}}G∈gκ
n(σ)

E(YG1 · · ·YGκ/2
)

=
∑

{G1,...,Gκ/2}∈Ξu
Q

E(YG1 · · ·YGκ/2
)

We now want to control the sum of the expected values over Ξu
Q, which we accomplish

as follows: recall that we are assuming that n is so large that 3κ ≤ ñ, and consider the
following simple algorithm, which will be referred to as algorithm L:
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1. Step 1: Choose an unbalanced, non-cylindrical, 2-connected graph H2
1 .

Let 2 ≤ k ≤ κ/2.

2. Step k: Assuming the unbalanced, non-cylindrical, 2-connected graphs H2
1 , . . . , H

2
k−1

have been chosen mutually separated, eliminate eliminate Vt(H
2
j ), 1 ≤ j ≤ k− 1. Choose an

unbalanced, non-cylindrical, 2-connected graph H2
i from the remaining points on the [n]3e.

3. Step κ/2 + 1: Form the ordered collection of κ/2 mutually separated, 2-connected
graphs 〈H2

1 , . . . , H
2
κ/2〉.

4. Step κ/2 + 2: Form the unordered collection of κ/2 mutually separated, 2-connected

graphs {H2
j }κ/2

j=1.

Algorithm L for exactly the same reason that algorithm Q is possible.
Let Ξo

L be the set of all ordered collections of sets that may be generated by algorithm
L. Let Ξu

L be the set of all unordered collections of sets that may be generated by algorithm
L. Specifically,

Ξo
L = {〈H1, . . . , Hκ/2〉 : 〈H1, . . . , Hκ/2〉 may be generated by algorithm L},

Ξu
L = {{H1, . . . , Hκ/2} : {H1, . . . , Hκ/2} may be generated by algorithm L}.

It is useful to remark that |Ξo
L|/(κ/2)! = |Ξu

L|.
From construction, we have that

Ξu
L ⊂ Ξu

Q = {{B(G)1, . . . , B(G)N(G)}}G∈gκ
n(σ).

Furthermore, we have that

|Ξu
Q| − |Ξu

L| = |Su
Q| ≤ |So

Q|

However, it follows by choosing first at which step in algorithm Q will either a balanced,
2-connected graph be chosen or a cylindrical, 2-connected graph be chosen, and then using
Lemma 4.9 to count the number of possible 2-connected graphs at each step, that

|So
Q| ≤

κ/2
∑

i=1

(

κ/2

i

)

(λn2)i(λn3)κ/2−i = on(n(3κ)/2).

From this, it immediately follows that

∑

{G1,...,Gκ/2}∈Ξu
Q

E(YG1 · · ·YGκ/2
) =

∑

{G1,...,Gκ/2}∈Ξu
L

E(YG1 · · ·YGκ/2
) + |C|κon(n(3κ)/2)

=
∑

{G1,...,Gκ/2}∈Ξu
L

E(YG1 · · ·YGκ/2
) + on(n(3κ)/2)
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Therefore, it is left to show that

∑

{G1,...,Gκ/2}∈Ξu
L

E(YG1 · · ·YGκ/2
) =

1

(κ/2)!
(
ρ + τ + ν + η

2
)κ/2n(3κ)/2(1 + on(1)).

We start this by noting that every member {G1, . . . , Gκ/2} of Ξu
L corresponds to exactly

(κ/2)! members of Ξo
L, each of which is just an ordered permutation of {G1, . . . , Gκ/2}. Then,

if σ is a permutation of [κ/2], because

E(YG1 · · ·YGκ/2
) = E(YGσ(1)

· · ·YGσ(κ/2)
)

it follows that

∑

{G1,...,Gκ/2}∈Ξu
L

E(YG1 · · ·YGκ/2
) =

1

(κ/2)!

∑

〈G1,...,Gκ/2〉∈Ξo
L

E(YG1 · · ·YGκ/2
)

=
1

(κ/2)!

∑

〈G1,...,Gκ/2〉∈Ξo
L

E(YG1) · · ·E(YGκ/2
)

We now apply Lemma 4.12. Recall for t ∈ {ρ, τ, ν, η}, that an unbalanced, non-cylindrical,
2-connected graph G is of type t or a type t 2-connected graph iff E(YG) = t. Let C = Ξo

L.
Then, Ck is the collection of all possible ordered collections of unbalanced, non-cylindrical,
2-connected graphs 〈H2

1 , . . . , H
2
k〉 that may be generated by algorithm L up to step k,

1 ≤ k ≤ κ/2. In addition, the f of Lemma 4.12 in this case is the map that takes any of
the connected 2-graphs H2

k to f(H2
k) = E(YH2

k
), so that T = {t1 = ρ, t2 = τ, t3 = ν, t4 = η}.

This is because the H2
k in this case are unbalanced, non-cylindrical, 2-connected graphs.

Now, for 1 ≤ j ≤ 4, A1(tj), as defined in Lemma 4.12 in reference to C = Ξo
L, is simply

the number of H2
1 generated from algorithm L that are of type tj, and for 2 ≤ k ≤ κ/2, and

any xk−1 = 〈H2
1, . . . , H

2
k−1〉 ∈ Ck−1, Ak(xk−1; tj) as defined in in Lemma 4.12 in reference

to C = Ξo
L, is simply the number of 〈H2

1 , . . . , H
2
k〉 generated from algorithm L such that

〈H2
1 , . . . , H

2
k−1〉 = 〈H2

1, . . . , H
2
k−1〉, and H2

k is of type tj. Lettting Ck−1 = ∅, x0 ∈ C0 = ∅, and
A1(∅; tj) = A1(tj), then, for 1 ≤ k ≤ κ/2 and any xk−1 ∈ Ck−1, we can count |Ak(xk−1; tj)|
with sufficient accuracy to finish the proof.

In particular, for 1 ≤ k ≤ κ/2, on the kth step, after having chosen xk−1 = 〈H2
1, . . . , H

2
k−1〉 ∈

Ck−1, from Lemma 4.11, exactly 3(k − 1) hyper-rows and 3(k − 1) hyper-columns of [n]3e are
removed, so that the points of H2

k are chosen exactly from some (n − 3(k − 1))2-array
depending on the algorithm up until time k. If, by Lemma 4.11, we let Q(∅) = ∅, and
Q(xk−1) = {i1, . . . , i3(k−1)} for 2 ≤ k ≤ κ/2, then Q(xk−1) is the set of row and column
coordinates of the hyper-rows and hyper-columns that are removed after the (k − 1)st step.
Then, to pick an unbalanced, non-cylindrical, 2-connected graph H2

k on the kth step , the
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first point can be chosen in
n

∑

s1,s2=1
s1 6=s2, s1,s2 6∈Q(xk−1)

us1,s2

ways. Conditional on the first point, if we let

〈a(t1), b(t1)〉 = 〈0, 0〉,
〈a(t2), b(t2)〉 = 〈1, 1〉,
〈a(t3), b(t3)〉 = 〈0, 1〉,
〈a(t4), b(t4)〉 = 〈1, 0〉,

the second point, for the graph H2
k to be of type tj, can be chosen in

n
∑

s3=1
s3 6=s1,s2, s2 /∈Q(xk−1)

uhb(tj)(ga(tj)(s1,s2),s3)

Now, let

δn =
4

max
i=1

κ
2
−1

max
j=0

max
A⊂[n],|A|=k

{
∑

k∈A

mi
k}

δ′n = 8 max{δn(
n

∑

i=1

m2
i )(

n
∑

i=1

mi), δn(
n

∑

i=1

mi)
2, δ2

n(
n

∑

i=1

m2
i ), δ

2
n(

n
∑

i=1

mi)
2, δ3

n}

ǫn = α2βn3(
1

α2β
(

1

n3

n
∑

i=1

m2
i

∑

j=1

mj

n
∑

s=1

ms) − 1) + δ′n .

implying by Lemma 4.13 that ǫn = on(n3). Thus, setting Q(xk−1) = Q to ease the notation,
and noting that for any 1 ≤ i, j, s ≤ n,

mi,jmhb(tj)(ga(tj)(i,j),s) = m2
i mjms or mi,jmhb(tj)(ga(tj)(i,j),s) = mim

2
jms,

it follows from our observations above that

2|Ak(xk−1; tj)| =
n

∑

i,j=1
i6=j, i,j 6∈Q

mi,j

n
∑

s=1
s 6=i,j, s/∈Q

mhb(tj)(ga(tj)(i,j),s)

=
n

∑

i=1
i6∈Q

m2
i

n
∑

j=1
j 6=i, j 6∈Q

mj

n
∑

s=1
s 6=i,j, s/∈Q

ms

= (
n

∑

i=1

m2
i −

∑

i∈Q

m2
i )(

∑

j=1

mj −
∑

j∈Q∪{i}

mj)(
n

∑

s=1

ms −
n

∑

s∈Q∪{i,j}

ms)

40



Obviously,

(
n

∑

i=1

m2
i −

∑

i∈Q

m2
i )(

∑

j=1

mj −
∑

j∈Q∪{i}

mj)(
n

∑

s=1

ms −
n

∑

s∈Q∪{i,j}

ms)

≤
n

∑

i=1

m2
i

∑

j=1

mj

n
∑

s=1

ms

= α2βn3 + (
n

∑

i=1

m2
i

∑

j=1

mj

n
∑

s=1

ms − α2βn3)

= α2βn3 + α2βn3(
1

α2β
(

1

n3

n
∑

i=1

m2
i

∑

j=1

mj

n
∑

s=1

ms) − 1)

≤ α2βn3 + ǫn .

On the other hand,

(
n

∑

i=1

m2
i −

∑

i∈Q

m2
i )(

∑

j=1

mj −
∑

j∈Q∪{i}

mj)(
n

∑

s=1

ms −
n

∑

s∈Q∪{i,j}

ms)

≥ (
n

∑

i=1

m2
i − δn)(

∑

j=1

mj − δn)(
n

∑

s=1

ms − δn)

= (
n

∑

i=1

m2
i

∑

j=1

mj

n
∑

s=1

ms) − (2δn(
n

∑

i=1

m2
i )(

n
∑

i=1

mi) + δn(
n

∑

i=1

mi)
2 − δ2

n(
n

∑

i=1

m2
i ) − 2δ2

n(
n

∑

i=1

mi)
2 + δ3

n) .

However, we see that

|2δn(
n

∑

i=1

m2
i )(

n
∑

i=1

mi) + δn(
n

∑

i=1

mi)
2 − δ2

n(
n

∑

i=1

m2
i ) − 2δ2

n(
n

∑

i=1

mi)
2 + δ3

n| ≤ δ′n,

which implies that

(
n

∑

i=1

m2
i −

∑

i∈Q

m2
i )(

∑

j=1

mj −
∑

j∈Q∪{i}

mj)(
n

∑

s=1

ms −
n

∑

s∈Q∪{i,j}

ms)

≥ (
n

∑

i=1

m2
i

∑

j=1

mj

n
∑

s=1

ms) − δ′n

= α2βn3 + α2βn3(
1

α2β
(

1

n3

n
∑

i=1

m2
i

∑

j=1

mj

n
∑

s=1

ms) − 1) − δ′n

= α2βn3 − ǫn .
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Thus,

||Ak(xk−1; ρ)| − α2β
n3

2
| ≤ ǫn .

It now follows from Lemma 4.12 that

1

(κ/2)!

∑

〈G1,...,Gκ/2〉∈Ξo
L

E(YG1) · · ·E(YGκ/2
) =

1

(κ/2)!
(
α2β(ρ + τ + ν + η)

2
)κ/2n(3κ)/2 + on(n(3κ)/2)

=
1

(κ/2)!
(
α2β(ρ + τ + ν + η)

2
)κ/2n(3κ)/2(1 + on(1)).

Equation (∗∗)
Let n, κ ∈ Z

+, and σ ∈ P ∗
[κ]. To simplify, let Cσ = l, and rσ

s = rs for s = 1, . . . , l. For
s = 1, . . . , l, let m be the number of rs that are odd. We are assuming at least one ri 6= 2,
which means that the largest l can be is κ

2
− 1

2
which is only and integer when κ is odd.

Recall also that κ − 3m has to be even, and 3m ≤ κ.
Recall algorithm R from the proof of Lemma 4.10. In this algorithm, if m = 0, it is

understood that steps 3 and 4 are not performed, and if 3m = κ, that steps 1 and 2 are not
performed:

1. Step 1: Choose a 2-connected graph.

Let 2 ≤ i ≤ κ−3m
2

.

2. Step i: Assuming the 2-connected graphs G2
1, . . . , G

2
i−1 have been chosen mutually

disjoint, choose a 2-connected graph from [n]3e\ ∪i−1
j=1 G2

j .

3. Step κ−3m
2

+ 1: Choose a 3-connected graph G3
1 from [n]3e\ ∪

κ−3m
2

j=1 G2
j .

Let κ−3m
2

+ 1 ≤ q ≤ κ−3m
2

+ m.

4. Step q: Let s = q − κ−3m
2

. Assuming the 2-connected graphs G2
1, . . . , G

2
κ−3m

2

, and the

3-connected graphs G3
1, . . . , G

3
s−1 have been chosen mutually disjoint, choose a 3-connected

graph G3
s from [n]3e\ ∪

κ−3m
2

i=1 G2
i ∪

⋃s−1
j=1 G3

j .

5. Step κ−3m
2

+ m + 1: Collect the resulting κ−3m
2

+ m connected graphs.

Note that
∑

κ−3m
2

i=1 |G2
i | +

∑m
j=1 |G3

j | = 2κ−3m
2

+ 3m = κ ≤ |[n]3e|, which implies the algorithm
is possible.

Let 0 < 3m ≤ κ. We already saw in Lemma 4.10 that algorithm R gives an upper bound
on |g(σ)κ

n|, given by

1

2!

( 1

((κ − 3m)/2)!
(λn3)(κ−3m)/2 1

m!
(λn4)m

)

≤ 1

2!

λκ

(κ − 3m)/2)!m!
n(1/2)(3κ−m)
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≤ 1

2!

λκ

(κ − 3m)/2)!m!
n(1/2)(3κ−1) = on(n(3κ)/2).

Now, let m = 0. In this case, κ is even, and the largest l can be is κ
2
− 1, which would

be when there σ consists of one 4 and κ
2
− 2 2’s. Then, by Corollary 4.3, and Lemma 4.9, if

follows that for all n ≥ N ,

|g(σ)κ
n| ≤ λn5(λn3)

κ
2
−2 ≤ λκn(3κ)/2−1 = on(n(3κ)/2),

λ and N from Lemma 4.9.
This just follows from using the proceeding simple algorithm:

1. Step 1: Choose an 4-connected set G1.

Let 2 ≤ i ≤ κ
2
− 1.

2. Step i: Assuming the connected graphs G1, . . . , Gi−1, |Gs| = 2, 2 ≤ s ≤ i − 1, have
been chosen mutually disjoint, choose an 2-connected graph from [n]3e\ ∪i−1

j=1 Gj.

3. Step κ
2
: Form the collection of κ

2
− 1 connected graphs {Gj}l

j=1.

As
∑j

j=1 |Gj| = κ ≤ |[n]3e|, this algorithm is possible for any n, κ ∈ Z
+, κ ≤ |[n]3e|. Then,

any member of {{B(G)1, . . . , B(G)N(G)}}G∈gκ
n(σ) can be achieved with this algorithm, because

m = 0, and thus, we can use Lemma 4.3.
Thus, we have proved that |gκ

n(σ)| = on(n(3κ)/2). Because |Yi,j,k| < C for all (i, j, k) ∈
Z

3
e,+, we conclude

∑

{(is,js,ks)}κ
s=1∈gκ

n(σ)

E(Yi1,j1,k1 · · ·Yiκ,jκ,kκ) ≤ Cκon(n(3κ)/2) = on(n(3κ)/2)

Q.E.D.

Proposition 2.6 Let n, κ ∈ Z
+, κ ≤ |[n]3e|.

∑

σ∈P[κ]

∑

{(is,js,ks)}κ
s=1∈gκ

n(σ)

E(Yi1,j1,k1 · · ·Yiκ,jκ,kκ)
tκ

n(3κ)/2

=

{

1
(κ/2)!

(α2β(ρ+τ+ν+η)
2

)κ/2tκ(1 + on(1)) : κ even

tκon(1) : κ odd.

Proof. For κ ∈ Z
+, κ even, let σ2 ∈ P∗

[κ] such that rσ2
s = 2 for 1 ≤ s ≤ κ/2. Then, we

begin by noting that for κ ≥ 1 and σ ∈ P[κ], we have established by Lemma 4.10 and Lemma
4.14 that

∑

{(is,js,ks)}κ
s=1∈gκ

n(σ)

E(Yi1,j1,k1 · · ·Yiκ,jκ,kκ)
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=

{

1
(κ/2)!

(α2β(ρ+τ+ν+η)
2

)κ/2n(3κ)/2(1 + on(1)) : σ = σ2

on(n(3κ)/2) : else

It should be said that
∑

{(is,js,ks)}κ
s=1∈gκ

n(σ) E(Yi1,j1,k1 · · ·Yiκ,jκ,kκ) is not only on(n(3κ)/2), but

actually equal to zero when σ ∈ P[κ]\P∗
[κ].

So, we have for κ odd that
∑

σ∈P[κ]

∑

{(is,js,ks)}κ
s=1∈gκ

n(σ)

E(Yi1,j1,k1 · · ·Yiκ,jκ,kκ)
tκ

n(3κ)/2

=
tκ

n(3κ)/2

∑

σ∈P[κ]

∑

{(is,js,ks)}κ
s=1∈gκ

n(σ)

E(Yi1,j1,k1 · · ·Yiκ,jκ,kκ)

=
tκ

n(3κ)/2

∑

σ∈P[κ]

on(n(3κ)/2)

= tκon(1),

as p(κ) ≤ 2κ < ∞.
Similarly, for κ even,

∑

σ∈P[κ]

∑

{(is,js,ks)}κ
s=1∈gκ

n(σ)

E(Yi1,j1,k1 · · ·Yiκ,jκ,kκ)
tκ

n(3κ)/2

=
∑

{(is,js,ks)}κ
s=1∈gκ

n(σ2)

E(Yi1,j1,k1 · · ·Yiκ,jκ,kκ)
tκ

n(3κ)/2

+
∑

σ∈P[κ]
σ 6=σ2

∑

{(is,js,ks)}κ
s=1∈gκ

n(σ)

E(Yi1,j1,k1 · · ·Yiκ,jκ,kκ)
tκ

n(3κ)/2

=
tκ

n(3κ)/2

∑

{(is,js,ks)}κ
s=1∈gκ

n(σ2)

E(Yi1,j1,k1 · · ·Yiκ,jκ,kκ)

+
tκ

n(3κ)/2

∑

σ∈P[κ]
σ 6=σ2

∑

{(is,js,ks)}κ
s=1∈gκ

n(σ)

E(Yi1,j1,k1 · · ·Yiκ,jκ,kκ)

=
tκ

n(3κ)/2

1

(κ/2)!
(
α2β(ρ + τ + ν + η)

2
)κ/2n(3κ)/2(1 + on(1)) +

tκ

n(3κ)/2

∑

σ∈P[κ]
σ 6=σ2

on(n(3κ)/2)

=
1

(κ/2)!
(
α2β(ρ + τ + ν + η)

2
)κ/2tκ(1 + on(1)) + tκon(1)

=
1

(κ/2)!
(
α2β(ρ + τ + ν + η)

2
)κ/2tκ(1 + on(1)).

again because p(κ) ≤ 2κ < ∞.
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5 Proof of Lemma for Theorem 1.2

5.1 Proof of Lemma 3.1

Lemma 3.1 Let {mi}∞i=1 ∈ L. Then, for 1 ≤ l ≤ 4,

1

n3

n
∑

s1,s2=1
s1 6=s2

ms1,s2
∑

k1=1

n
∑

s3=1
s3 6∈{s1,s2}

mhb(tl)
(ga(tl)

(s1,s2),s3)
∑

k2=1

Ys1,s2,k1Yhb(tl)
(ga(tl)

(s1,s2),s3),k2

P→ α2βtl .

Proof.
Let 1 ≤ l ≤ 4. First, we note that

lim
n

1

n3

n
∑

s1,s2=1
s1 6=s2

ms1,s2
∑

k1=1

n
∑

s3=1
s3 6∈{s1,s2}

mhb(tl)
(ga(tl)

(s1,s2),s3)
∑

k2=1

E(Ys1,s2,k1Yhb(tl)
(ga(tl)

(s1,s2),s3),k2)

= tl lim
n

1

n3

n
∑

s1,s2=1
s1 6=s2

ms1,s2

n
∑

s3=1
s3 6∈{s1,s2}

mhb(tl)
(ga(tl)

(s1,s2),s3)

= tl lim
n

1

n3

n
∑

s1,s2=1

ms1,s2

n
∑

s3=1
s3 6∈{s1,s2}

mhb(tl)
(ga(tl)

(s1,s2),s3) +

tl lim
n

1

n3

n
∑

s1=1

ms1,s1

n
∑

s3=1
s3 6=s1

mhb(tl)
(ga(tl)

(s1,s2),s3)

= tl lim
n

1

n3

n
∑

s1,s2=1

ms1,s2

n
∑

s3=1

mhb(tl)
(ga(tl)

(s1,s2),s3) +

tl lim
n

1

n3

n
∑

s1,s2=1

ms1,s2

∑

s3∈{1,2}

mhb(tl)
(ga(tl)

(s1,s2),s3) +

tl lim
n

1

n3

n
∑

s1=1

ms1,s1

n
∑

s3=1
s3 6=s1

mhb(tl)
(ga(tl)

(s1,s2),s3)

→ α2βtl .

Thus, it suffices to assume that E(Ys1,s2,k1Yhb(tl)
(ga(tl)

(s1,s2),s3),k2) = 0 for all 1 ≤ s1, s2, s3 ≤
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n, 1 ≤ k1 ≤ mi,j, 1 ≤ k2 ≤ mhb(tl)
(ga(tl)

(s1,s2),s3), and show that

1

n3

n
∑

s1,s2=1
s1 6=s2

ms1,s2
∑

k1=1

n
∑

s3=1
s3 6∈{s1,s2}

mhb(tl)
(ga(tl)

(s1,s2),s3)
∑

k2=1

Ys1,s2,k1Yhb(tl)
(ga(tl)

(s1,s2),s3),k2

P→ 0 .

In consideration thereof, let ǫ > 0. Then,

P(| 1

n3

n
∑

s1,s2=1
s1 6=s2

ms1,s2
∑

k1=1

n
∑

s3=1
s3 6∈{s1,s2}

mhb(tl)
(ga(tl)

(s1,s2),s3)
∑

k2=1

Ys1,s2,k1Yhb(tl)
(ga(tl)

(s1,s2),s3),k2 | > ǫ)

≤ 1

ǫ2n6
E(

1

n3

n
∑

s1,s2=1
s1 6=s2

ms1,s2
∑

k1=1

n
∑

s3=1
s3 6∈{s1,s2}

mhb(tl)
(ga(tl)

(s1,s2),s3)
∑

k2=1

Ys1,s2,k1Yhb(tl)
(ga(tl)

(s1,s2),s3),k2)
2

However,

E(
1

n3

n
∑

s1,s2=1
s1 6=s2

ms1,s2
∑

k1=1

n
∑

s3=1
s3 6∈{s1,s2}

mhb(tl)
(ga(tl)

(s1,s2),s3)
∑

k2=1

Ys1,s2,k1Yhb(tl)
(ga(tl)

(s1,s2),s3),k2)
2

≤ 1

n6

n
∑

s1,...,s6=1

ms1,s2
∑

k1=1

mhb(tl)
(ga(tl)

(s1,s2),s3)
∑

k2=1

ms4,s5
∑

k3=1

mhb(tl)
(ga(tl)

(s4,s5),s6)
∑

k4=1

|E(Ys1,s2,k1Yhb(tl)
(ga(tl)

(s1,s2),s3),k2Ys4,s5,k3Yhb(tl)
(ga(tl)

(s4,s5),s6),k4)| +

≤ 1

n6

n
∑

s1,...,s6=1
hb(tl)

(ga(tl)
(s1,s2),s3)=〈s1,s2〉

ms1,s2
∑

k1=1

ms1,s2
∑

k2=1

ms4,s5
∑

k3=1

mhb(tl)
(ga(tl)

(s4,s5),s6)
∑

k4=1

|E(Ys1,s2,k1Ys1,s2,k2Ys4,s5,k3Yhb(tl)
(ga(tl)

(s4,s5),s6),k4)| +

1

n6

n
∑

s1,...,s6=1
〈s4,s5〉=〈s1,s2〉

ms1,s2
∑

k1=1

mhb(tl)
(ga(tl)

(s1,s2),s3)
∑

k2=1

ms1,s2
∑

k3=1

mhb(tl)
(ga(tl)

(s1,s2),s6)
∑

k4=1

|E(Ys1,s2,k1Yhb(tl)
(ga(tl)

(s1,s2),s3),k2Ys1,s2,k3Yhb(tl)
(ga(tl)

(s1,s2),s6),k4)| +

1

n6

n
∑

s1,...,s6=1
hb(tl)

(ga(tl)
(s4,s5),s6)=〈s1,s2〉

ms1,s2
∑

k1=1

mhb(tl)
(ga(tl)

(s1,s2),s3)
∑

k2=1

ms4,s5
∑

k3=1

ms1,s2
∑

k4=1

|E(Ys1,s2,k1Yhb(tl)
(ga(tl)

(s1,s2),s3),k2Ys4,s5,k3Ys1,s2,k4)| +
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1

n6

n
∑

s1,...,s6=1
〈s4,s5〉=hb(tl)

(ga(tl)
(s1,s2),s3)

ms1,s2
∑

k1=1

mhb(tl)
(ga(tl)

(s1,s2),s3)
∑

k2=1

mhb(tl)
(ga(tl)

(s1,s2),s3)
∑

k3=1

mhb(tl)
(ga(tl)

(hb(tl)
(ga(tl)

(s1,s2),s3)),s6)
∑

k4=1

|E(Ys1,s2,k1Yhb(tl)
(ga(tl)

(s1,s2),s3),k2Yhb(tl)
(ga(tl)

(s1,s2),s3),k3Yhb(tl)
(ga(tl)

(hb(tl)
(ga(tl)

(s1,s2),s3)),s6),k4)| +

1

n6

n
∑

s1,...,s6=1
hb(tl)

(ga(tl)
(s4,s5),s6)=hb(tl)

(ga(tl)
(s1,s2),s3)

ms1,s2
∑

k1=1

mhb(tl)
(ga(tl)

(s1,s2),s3)
∑

k2=1

ms4,s5
∑

k3=1

mhb(tl)
(ga(tl)

(s1,s2),s3)
∑

k4=1

|E(Ys1,s2,k1Yhb(tl)
(ga(tl)

(s1,s2),s3),k2Ys4,s5,k3Yhb(tl)
(ga(tl)

(s1,s2),s3),k4)| +

1

n6

n
∑

s1,...,s6=1
hb(tl)

(ga(tl)
(s4,s5),s6)=〈s4,s5〉

ms1,s2
∑

k1=1

mhb(tl)
(ga(tl)

(s1,s2),s3)
∑

k2=1

ms4,s5
∑

k3=1

ms4,s5
∑

k4=1

+

|E(Ys1,s2,k1Yhb(tl)
(ga(tl)

(s1,s2),s3),k2Ys4,s5,k3Ys4,s5,k4)|

≤ 1

n6

n
∑

s1,s2,s4,s5,s6=1

m2
s1,s2

ms4,s5mhb(tl)
(ga(tl)

(s4,s5),s6) +

1

n6

n
∑

s1,s2,s3,s6=1

m2
s1,s2

mhb(tl)
(ga(tl)

(s1,s2),s3)mhb(tl)
(ga(tl)

(s1,s2),s6) +

1

n6

n
∑

s1,...,s5=1

m2
s1,s2

mhb(tl)
(ga(tl)

(s1,s2),s3)ms4,s5 +

1

n6

n
∑

s1,s2,s3,s6=1

ms1,s2m
2
hb(tl)

(ga(tl)
(s1,s2),s3)mhb(tl)

(ga(tl)
(hb(tl)

(ga(tl)
(s1,s2),s3)),s6)

1

n6

n
∑

s1,...,s5=1

ms1,s2m
2
hb(tl)

(ga(tl)
(s1,s2),s3)ms4,s5 +

1

n6

∑

s1,...,s5=1

ms1,s2mhb(tl)
(ga(tl)

(s1,s2),s3)m
2
s4,s5

≤ 1

n6

n
∑

s1,s2,s4,s5,s6=1

m2
s1

m2
s2

m2
s4

ms5ms6 +

1

n6

n
∑

s1,s2,s3,s6=1

(m3
s1

m3
s2

ms3ms6 + m4
s1

m2
s2

ms3ms6)

1

n6

n
∑

s1,...,s5=1

m3
s1

m2
s2

ms3ms4ms5 +

47



1

n6

n
∑

s1,s2,s3,s6=1

(m4
s1

ms2m
2
s3

ms6 + m3
s1

m2
s2

m2
s3

ms6 + m3
s1

ms2m
3
s3

ms6)

1

n6

n
∑

s1,...,s5=1

m2
s1

ms2m
2
s3

ms4ms5 +

1

n6

∑

s1,...,s5=1

m2
s1

ms2ms3m
2
s4

m2
s5

=
6

n
max

0≤i1,j1,...,i5,j5≤4
{(E(X1)

i1)j1 · · · (E(X1)
i5)j5}(1 + on(1))

Q.E.D.
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