
Physics 290 Quantum Physics Fall 2004 

Reference Frames 
HW #1, Due 9/3/04 

 
Read T&R Ch.1 (read quickly), 2.1-2.4 

 
1) Galelean Transformation.  A train moving with a speed of 50 m/s passes through a railway 

station at time t=t’=0.  Fifteen seconds later a firecracker explodes on the track 1.0 km away 
from the train station in the direction that the train is moving.  Find the coordinates (position 
and time) of this event in both the station frame (Home Frame) and the train frame (Other 
Frame).   

2) Briefly describe an inertial reference frame.  Since it takes time for light to travel from an 
event to the origin, an observer at the origin “sees” an event a short time after the event 
happens.  Describe one way that our reference frame can take this travel time into account.  
(This travel time is a nuisance, but it does not cause the problems with simultaneity that we 
will soon meet.) 

3) Use Excel to graph γ = 
21

1
β−

 for 0<β<0.995.  Since β = v/c, you are really plotting γ as 

velocity v approaches the speed of light.  We will spend quite a bit of time working with γ 
and β in the next few weeks.  Make sure that you use enough points to show the shape of the 
curve. 

4) Use a Taylor expansion to show that L2
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=  for v << c (small 

velocities as compared to the speed of light).  You can make your life easier by considering 
β2 as one entity. 

5) The Michelson-Morley experiment: Assume that interferometer arm #1 is in the +x direction 
and interferometer arm #2 is in the +y direction.  Each arm has length L in the lab frame.  
Further assume that the whole experiment is moving in the +x direction with respect to the 
‘ether’ (snicker, snicker).  Assume that light travels at c=3e8m/s with respect to the ‘ether.’   
a) Find the velocity in the lab frame (speed along the ground) of the light in 

i) arm 2 (perpendicular to motion) 
ii) arm 1, first leg (in the direction of the motion of the lab, against the “flow” of ether) 
iii) arm 1, second leg (along with the “flow” of ether) 

b) Show that the total time traveled on arm 2 is given by  
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c) Use Taylor expansions to show that ∆T = T1-T2 = Lβ2.   Note the following Taylor 

expansions:  L2
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d)  Extra Credit:  Imagine watching this experiment from the “ether” frame.  Show that if 
you contract the length of arm 1 (in the direction of the motion) by 
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=  you get no time difference.   Lorentz made this argument 15 

years before Einstein’s theory of relativity. 
6) T&R problem 2.6 
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Time Dilation, Lorentz Transformation 
HW #2, Due 9/10/04 

 
Read T&R Ch 2.4-2.10, Mr. Tompkins Ch. 1, Taylor 3.4-3.6, 3.8 

 
1) At exactly noon (as measured on your watch) your mother thinks of you and wishes that you 

are doing well.  At exactly 1 ms later, you spontaneously decide to do your laundry.  Could 
these events be causally connected?  Briefly explain, then call your mother. 

2) Assume that the speed of light is constant in all frames.  Draw a spacetime diagram showing 
a disagreement between two frames of reference on whether two events are simultaneous.  In 
other words, pick two events that are simultaneous in one frame and show that they are not 
simultaneous in another frame.  Make sure to label and explain your diagram as necessary. 

3) Briefly describe in words how a lack of simultaneity leads two different observers (frames) to 
measure the same object and get different lengths.  

4) Draw a spacetime diagram showing two different frames measuring the length of a meter 
stick.  Show the world lines of the two ends of the stick in the reference frame moving along 
with the stick.  Then show how a second frame measures the length of the stick.  Again, label 
and explain your diagram as necessary. 

5) Two firecrackers A and B are placed at the engine and caboose of a train that is moving in the 
+x direction relative to the ground frame.  According to synchronized clocks on the train, 
both firecrackers explode simultaneously.  Which firecracker explodes first according to 
synchronized clocks on the ground?  Explain using a spacetime diagram. 

6) An event occurs at t = 6.0s and x=4.0s (4 light seconds) in the O Frame.  When and where 
does this event occur in an O’ Frame moving with β=0.50 in the +x direction with respect to 
the O Frame?  Now take your answer and transform it back into the O’ frame. 

7) An event occurs at t’ = 6.0s and x’=4.0s (4 light seconds) in the O’ Frame.  When and where 
does this event occur in an O Frame?  The O’ frame is moving with β=0.60 = 3/5 in the +x 
direction with respect to the Home Frame?  Now take your answer and transform it back into 
the O frame. 

8) A muon is created by a cosmic-ray interaction at an altitude of 60km.  Measured on earth, the 
muon’s speed down is 0.998.  The lifetime for a muon at rest is about 2µs.  Note that you are 
being bombarded with muons as you work this problem. 
a) How far would the muon travel (in the earth’s frame) in a time 2µs measured on earth? 
b) How far does the muon travel (in the earth’s frame) in 2µs measured by the muon?   
c) In the earth frame it looks like time dilation allows the muon to go farther than one would 

expect.  From the muon point of view it appears that length contraction is responsible for 
the muon going farther than one might expect.  Explain the extra distance from both the 
muon and the earth’s point of view. 

9) I sit in my office all day long without moving.  You, however, come to office hours on 
Thursday morning from 9:30 – 12:00 in order to ask wonderful, deep, philosophical questions 
about the nature of time and to discuss our mutual interest in juggling.  You then go about 
your typical day of dancing and frolicking (or at least walking between classes).  At 5pm you 
realize that your physics problem set is due in 17 hrs and you scurry back to my office to 
catch the very end of my 4 – 5:30 pm office hours in order to ask remarkably pointed 
questions like “Is this what you want for #2.”  What is the difference in the time measured by 
your watch and my watch between the two visits.  Who ages faster and can relativity explain 
my aged visage?  Assume a constant velocity for the time that you are moving.  Use a Taylor 
expansion to avoid traumatizing your calculator. 

10) Explain why the twin paradox is not really a problem with relativity.  Extra Credit:  Use a 
spacetime diagram to show where the “extra time” comes from. 
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11) A spaceship leaves earth, travels to Pluto (which is 5.0 hr of distance away, that is, 5 light 
hours), and then returns exactly 11.0 hr later.  If the spaceship’s acceleration time is very 
short, so that it spends virtually all its time traveling at a constant speed, estimate the time 
measured between departure and arrival as measured by the ship’s clock. 

12) Given the following measured values with independent uncertainties given, find the value and 
uncertainty in the expressions below. 

a = 5 ± 1 b = 5 ± 2 c = 15 ± 3 
i) R=a + b  
ii) S = a –b 
iii) T = c/a 
iv) W = ab 
v) X = a(b+c) 
vi) Y= 5c 

13) Estimate the diameter of your head (I don’t care what direction/method you choose).  Assume 
that the uncertainty in your diameter estimate is 1cm.  Find the circumference, surface area, 
and volume of your (spherical) head with uncertainties. 
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Paradoxes and Energy 
HW #3, Due 9/17/04 

 
Read T&R Ch 2.11-2.14, Mr. Tompkins Ch. 3, Taylor 4.2-4.4 
 
1) Explain why the twin paradox is not really a problem with relativity.  Extra Credit:  

Use a spacetime diagram to show where the “extra time” comes from. 
2) A spaceship leaves earth, travels to Pluto (which is 4.0 hr of distance away, that is, 4 

light hours = 4hr*c), and then returns exactly 10.0 hr (measured on earth) later.  If the 
spaceship’s acceleration time is very short, so that it spends virtually all its time 
traveling at a constant speed, estimate the time measured between departure and 
arrival as measured by the ship’s clock. 

3) How fast does an object have to be moving in a given frame if its measured length is 
to be “significantly” different from its rest length?  Assume a significant difference is 
1 part in 10,000. 

4) Use a two observer diagram (and text) to qualitatively explain the pole/barn paradox.  
Show that the farmer does see the pole in the barn, the athlete does not see the pole fit 
into the barn, and (most importantly) that both of these views are consistent with each 
other. 

5) Alex has just caught a lake trout 20 inches long.  Zipping by a motor boat, a game 
warden sees the fish as 12 inches long.  Uh-oh!  The minimum legal length is 16 
inches. 
a) How fast is the game warden moving relative to Alex? 
b) Do you expect that Alex will have to pay a fine? Why or why not? 

6) The photo below was taken in a universe where the speed of light is slower than it is 
in our universe.  Use this picture to estimate c in the other universe.  This is obviously 
a very rough estimate…I am looking for your train of thought more than your answer. 
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7) T&R problem 2.48 
8) How fast is a star traveling if it has a red shift of 2 (we measure its wavelength to be 

twice as long as the emitted wavelength.) 
9) A particle has a initial speed of 0.5c.  At what speed does its momentum increase by 

a) 1%, b) 10%, c) 100%. 
10) What is the speed of a proton when its kinetic energy is equal to a) 10% of its rest 

mass, b) its rest mass, c) 3 times its rest mass. 
11) Calculate the momentum, kinetic energy, and total energy of an electron traveling at a 

speed of a) 0.01c, b) 0.1c, c) 0.9c. 
12) Taylor problem 4.12 
13) In a desperate attempt at procrastination, you measure the length of your roomate’s 

cat several times with the following results (in cm):  60, 65, 59, 64, 62, 57.  A) Find 
the standard deviation in your measurements, b) estimate the uncertainty in any single 
measurement, c) then give the results of your measurement (length of cat ± 
uncertainty in length).  To avoid a mind-numbing calculation, please use the standard 
deviation on your calculator. 
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Relativistic Energy, and Waves 
HW #4, Not due 9/24/04 

 
Read T&R Chapter 3 sections 3.1-3.4, 3.6  
 
1) Which has more mass, a relaxed spring or a compressed spring? 
2) T&R problem 3.73 
3) A free neutron is an unstable particle and beta decays into a proton, and electron, and a 

(essentially) massless neutrino.  How much kinetic energy is available in the decay? 
4) An object has energy E= 1 MeV and momentum p=0.86 MeV/c.  Find its 

a) velocity  
b) mass 
c) kinetic energy, K 

5) If electrical energy costs $0.04 per 106 J ($0.15/kWhr), how fast can you make a 1g object 
travel for $1million. 

6) Two balls of putty, each of mass m, move toward each other with speeds of 0.95 measured in 
the home frame.  The balls stick together forming a single motionless lump.  What is the mass 
of the lump. 

7) Compute the speeds of electrons (rest energy =511KeV) and protons (rest energy = 938MeV) 
with kinetic energies of 10MeV.  Use relativistic and non-relativistic methods.  Compare your 
results. 

8) How much energy would be required to accelerate a particle of mass m from rest to a speed 
of a) 0.5  b) 0.99 

9) A π- (mass 140 MeV) decays to a µ- (mass 106 MeV) and a neutrino.  The neutrino is 
essentially massless, like a flash of light.  If the pion is at rest when it decays, find the speed 
of the emitted muon. 

10) A photon (consider this a flash of light for now) with energy E0 hits an electron of mass m 
which is initially at rest.  The photon scatters (“bounces”) directly backward from the 
collision.  Use conservation of momentum and energy to find the final energy of the photon E 
in terms of E0 and me.  This process is called Compton scattering. 

11) Some ears can hear frequencies as low as 50 Hz and as high as 20kHz.  What are the 
corresponding wavelengths?  What is the wavelength of WHCL, the campus radio 
station?   

12) Qualitatively describe the pattern that results when visible light goes through 1) a 
10cm wide window, 2) a 20µm wide slit, 3) a 50nm wide slit. (Note:  in case you 
have not done this yet, put your finger and thumb very close together right in front of 
your eye.  Look through the very narrow slit at a distant street light.  You should be 
able to see a single slit diffraction pattern!) 

13) Draw, label, and very briefly explain a diagram showing 2-slit interference.  Red laser 
light (λ=633nm) goes through two narrow slits 40µm apart.  How far apart are the 
spots on a wall 4m away? 

14) Estimate the energy of a visible photon in eV and J. 
15) Estimate the number of photons that enter one of your eyes from a 60W bulb 100m 

away. 
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Relativistic Energy, and Waves 
HW #5, Due 10/8/04 

 
Read T&R Finish Ch. 3, Mr. Tomkins Chapter 8 
 
1) Photoelectric Effect:  Assume that the intensity of the monochromatic (one color=one 

frequency) light shining on a cathode is the same for all frequencies.  Plot the 
following experimental results and explain your plots using the photon model. 
a) How does the kinetic energy of emitted electrons vary as a function of the 

frequency of the light. 
b) How does the current of emitted electrons vary as a function of the frequency of 

the light.  Include a wide range of frequencies. 
2) Photoelectric Effect:  Assume that monochromatic light is shining on the cathode in a 

photoelectric effect experiment.  Plot (or describe) the following experimental results 
and explain your plots using the photon model. 
a) How does the kinetic energy to vary with light intensity? 
b) How does the current of emitted electrons to vary with light intensity? 

3) T&R 3.32:  The human eye is sensitive to a pulse of light containing as few as 100 
photons.  For yellow light of λ = 580 nm how much energy is contained in the pulse.  
Provide your answer in eV. 

4) How hot is the surface of the sun?  Assume that the most intense wavelength from the 
sun is in the visible region of the spectrum. 

5) Paint your favorite professor completely black, then estimate the power of the thermal 
radiation from him/her.  Compare your answer to a typical 60W lightbulb.  Is your 
favorite professor rather bright? Or pretty dim? 

6) Estimate the wavelength and frequency of the maximum in the thermal radiation 
spectrum coming from your roomate’s cat.  If I am “white with fury” and this 
problem set makes your “blood boil,” who is hotter? 

7) A 10cm x 10cm black plate at a temperature of 300 K is place next to a similar plate 
at 200 K.  What is the net amount of power transferred between them through thermal 
(blackbody) radiation.  How much does your answer change if the cooler plate is 
close to 0 K? 

8) Use the frequency-space treatment that we used in class to consider the number of  
standing wave modes for a two dimensional square crystal whose sides are 0.1m long.  
Assume that the speed of sound is 5000m/s in this material.  Estimate the number of 
modes with frequencies between 1MHz and 1.1MHz. 

9) When low energy X-rays scatter backward off a material, you can get two different 
energies (frequencies) in the backscattered beam.   
a) Explain why using the Compton scattering formula.   
b) Describe what happens to a pingpong ball if you bounce it off a) a golf ball and b) 

a bowling ball. 
c) Relate part a to part b. 

10) In a photoelectric experiment similar to the one described in class, I measured the 
stopping voltage of the photoelectrons as a function of the wavelength of light shining 
on the cathode.  From the following data, find the value for Planck’s constant, h, and 
the work function, W.  Remember that E=hν and use eV for your unit of energy.  You 
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can use a TRENDLINE from Excel to find the slope and intercept.  For extra credit 
use the LINEST function to evaluate the uncertainty in your results. 

Wavelength (nm) Stopping Voltage (V) 
300 2.1 
350 1.45 
420 0.9 
500 0.4 
520 0.3 

 
11) T&R 3.18:  Use a computer to calculate Planck’s radiation law (from the book) for a 

temperature of 3000K, which is the temperature of a typical tungsten filament in an 
incandescent light bulb.  Plot the intensity versus wavelength.   
a) Estimate (roughly) the fraction of the power in the visible region. 
b) Compare the intensity at 400nm, 700nm, and at the peak of the spectrum.  
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Bohr Model 
HW #6, Due 10/15/04 

 
Read T&R Chapter 4, Mr. Tompkins Ch. 9 
 
1) An electron and a proton in an atom are 10-10m apart. 

a) Find the Coulomb force between the particles. 
b) Find the electrical potential energy between the particles. 

2) Two protons in a nucleus are 10-15m apart. 
a) Find the Coulomb force between the particles. 
b) Find the electrical potential energy between the particles. 

3) Use Excel to plot the electrical potential energy between an electron and a proton 
which are separated by a distance r where r ranges from 10-11 m to 5x10-10 m.  

4) The Bohr atom: 
a) List the primary assumptions of the Bohr model.  (You can use my assumptions or the 

book’s assumptions.) 
b) Calculate the classical relationship between electron speed and radius using a “planetary” 

(purely classical) model of the hydrogen atom. 
c) Calculate the relationship between electron speed and radius using Bohr’s angular 

momentum assumption. 
d) Use the above to find possible radii for electron orbits in the Bohr model.  Calculate the 

value of the smallest Bohr radius in nm. 
e) Find the allowable energies for the hydrogen atom using the Bohr model. 

5) Derive the Rydberg equation from the allowed Bohr energies.  Plug in numbers to find the 
Rydberg constant from fundamental constants. 

6) Use an energy level diagram to show (label) the longest wavelength transitions in the Balmer 
series.  Use a second diagram to show (label) the longest wavelength transitions in the 
Lyman, Balmer, and Paschen series of the hydrogen atom. 

7) Use the allowed Bohr energies to calculate the energy of the first (lowest energy) line in the 
Balmer series of the hydrogen atom.  From this energy, calculate the wavelength of this line. 

8) Spend a moment being thankful that there are no uncertainty calculations on this problem set.  
List creative ways to celebrate. 
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de Broglie, Uncertainty Principle 
HW #7, Due 10/22/04 

 
Read T&R Chapter 5, Mr. Tompkins Ch. 10 
 
1) Of the following quantities, which increase and which decrease for the electron in the 

Bohr model as n increases?  a) frequency of revolution, b) speed, c) de Broglie 
wavelength, d) potential energy, e) kinetic energy, f) total energy?  Derive your 
results using our results from class, or briefly explain your reasoning. 

2) Consider a helium nucleus with one electron (singly ionized helium).   
a) Calculate the energy of the photon from the n=2 to n=1 transition.   
b) How much does the reduced mass correction change your result? 

3) Find an approximate value for the wavelength of  
a) Yourself walking to class 
b) A 100 eV electron 
c) A thermal (room temperature) neutron  
d) An ultra-cold neutron traveling at 3m/s.  Compare the size of these neutrons 

(approximately its wavelength) to the size of an atom. 
4) Find an approximate (within a factor of 10 or so) value for h in the quantum jungle 

using the gazelles. (see Tomkins p. 120) 
 
 
 

Gazelle Pic Here 
 
 
 
 

5) In my work, I deal with neutrons with wavelengths between 0.05 nm and 0.5nm.  
What energies (in eV) and velocities do these correspond to. 

6) 0.5 nm neutrons Bragg scatter off a graphite crystal and come out perpendicular to the 
incident beam.  What is the spacing of the Bragg planes in the graphite?  Draw a 
diagram showing the Bragg planes and the angle that you used in your calculation. 
Note:  this is how we made a monoenergetic beam of neutrons in my old research 
group at NIST.  It is a very common technique in neutron physics. 

7) Electrons are accelerated in an electric field caused by a 22 volt potential difference.  
They are traveling in a mercury vapor, which has its first excited state at an energy of 
5 eV.  Describe what happens to the electrons along their path.  What is their final 
energy if they start at the negative electrode? 

8) Fourier Transforms: 
a) A flute plays a very short note at a nominal frequency of 880 Hz.  The note lasts 

only 1/32 of a second.  What is the approximate range of frequencies contained in 
the sound pulse? 

b) If a phone line is only capable of transmitting a range of frequencies accessible to 
the human ear (50 Hz – 20,000 Hz) what is the shortest pulse that can be 
transmitted over the line.  (Think about slow modems.) 
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9) If an exited state of an atom has a lifetime of 10-7 s, what is the uncertainty in the 
energy of photons emitted by such atoms as they decay to the ground state?  This is 
called the natural line width. 

10) Consider an electron confined in an atom.  (see General Knowledge for size) 
a) What is the uncertainty in the momentum of the electron? 
b) If the electron’s momentum is equal to ∆p from part a, what is the electron’s 

energy? 
11) Using the same reasoning as the above question, what is the lowest energy allowed 

for a proton (mass = 938 MeV/c2) confined in a nucleus?  Note the difference in 
energy scale between atoms and nuclei. 

12) The Bohr magneton:  A current going around a loop of wire creates a magnetic field.  
Use variables throughout this problem. 
a) The current is essentially the amount of charge that passes a given point in one 

second.  The current I due to a charge e moving around in a circle with a 
frequency f  is ef because the charge passes a given point on the circle many times 
in one second.  (frequency of orbit=1/period of orbit.  See problem 1)  Find the 
current due to the electron in the first Bohr orbit. 

b) The magnetic moment of a current loop is IA, where A is the area of the loop.  
Find the magnetic moment of the electron in the first Bohr orbit. This magnetic 
moment is called a Bohr magneton and is the typical unit for measuring atomic 
magnetic moments.  You should get µB=eħ/2m.  The front cover of your book 
lists the actual value in several sets of units. 
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Schrodinger Equation 
HW #8, Due 10/29/04 

 
Read T&R Chapter 6.1-6.4 
 
1) T&R Question 6.9 (not problem 6.9)  Can a wave packet be formed from a 

superposition of wave functions of the type ψ(x,t)=Aei(kx-ωt)?  Can it be normalized? 
Answer yes/no, yes/no, then relate this to the fact that a short musical note requires a 
range of frequencies, and to the fact that a confined particle requires a range of 
momenta (wavelengths). 

2) T&R Problem 6.3:  Show that the free particle wavefunction, ψ(x,t)=Aei(kx-ωt), 
satisfies the Schrodinger equation. 

3) Given the following (highly unlikely) wavefunction of an electron, what is the 
probability that we will find (measure) the electron at a position greater than 0?    
Remember to normalize. 
 
 
 

 
4) Normalize the following wavefunctions.  A and a are constants. You may use a math 

table (remember Schaum’s Outline that you bought at the beginning of the year?). 
a) arArex /)( −=ψ  (consider only the region from r=0 to infinity)(T&R prob 6.5) 

b) 
2

)( axAex −=ψ (consider all x) 
5) T&R 6.15:  For the infinite square-well potential, find the probability that  a particle 

in its ground state is in each third of the one-dimensional box of length L. 
6) Explain in words what is meant by normalization of a wave function. 
7) Find values of θ such that eiθ = -1, eiθ = +i, eiθ = -i.  
8) What are the three lowest energies allowed for an electron confined to a box that is 

roughly the diameter of an atom?  What is the lowest energy allowed for a proton 
confined in a box the size of a nucleus?  Note the difference in energy scale between 
atoms and nuclei. 

9) Imagine a particle in a box whose wavefunction at time t=0 is a superposition of the 
box’s 1st and 2nd energy eigenfunctions, ψE1(x) and ψE2(x): 

ψ(x) = AψE1(x) + BψE2(x) 
where A and B are real constants.   
a) Find ψ(x,t).  (add the time component of the wavefunction) 
b) Show that the absolute square of the wave function is not time-independent, but 

instead oscillates with ω=(E2-E1)/ћ.  In other words, show that at least one term 
of ψ*ψ oscillates.  You can reduce your result using Schaum, but you do not need 
to.   

c) What is the physical interpretation of this result? 
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Square Wells, Expectation Values, Qualitative Solutions 
HW #9, Not Due 11/5/04 

Read T&R Chapter 6.4-6.7 
 

1) Consider an electron wavefunction given by ψ(x) = Asin(πx) for 0<x<3 and given by 
ψ(x) = 0 everywhere else.  Determine the probability of finding (measuring) the 
electron between x=0 and x=0.5. 

2) What are the three lowest allowed energies for an electron confined to a box that is 
roughly the diameter of an atom?  What is the lowest energy allowed for a proton 
confined in a box the size of a nucleus?  Note the difference in energy scale between 
atoms and nuclei. 

3) Infinite square well potential: 
a) Find the normalized wavefunctions for a one-dimensional infinite square well 

(box) of length L. 
b) Find the expectation value of the position, <x>, for the n=2 wavefunction. 
c) Find the expectation value of the momentum,  <px>, for the n=2 wavefunction. 
d) Find the expectation value for the momentum squared, <px

2>, for the n=2 
wavefunction.  Why this is different than <px>2? (think about it physically). 

4) Consider the wavefunctions ψ and ψ’=eiθψ, where θ is real.  Show that these 
wavefunctions will yield the same probability of finding any given expectation value, 
<o>,  (using any operator, ô).  This means that there is no physical way to distinguish 
between them and they are completely equivalent:  The overall complex phase of the 
wavefunction is arbitrary. 

5) (T or F)  For a given potential, there is a valid ψ(x) for every value of energy. 
6) Sketch a qualitatively valid wavefunctions (correct shape)  for bound states in the 

following potentials.  Also sketch qualitatively valid wavefunctions (correct shape) 
for unbound states in the following potentials.  (an unbound state has more energy 
than the sides of the potential well.) 
a)  

 
 
b)  
 

7) Consider the ground state of a finite square well potential.  What happens to the 
energy as the height of the walls gets higher?  Hint:  First, draw a wavefunction for a 
finite well of length L.  Then draw a similar wavefunction for an infinite square well.  
What happens to the wavelength?   

8) The potential for a simple harmonic oscillator is given by V(x) = ½ mω2x2.  (Recall 
from class that classically ω2=kspring/m.) 
a) Try axAex −=)(ψ as a solution.  Is there any value of a that makes this work for 

all values of x? 
b) Try 

2

)( axAex −=ψ as a solution. 
c) Find the value of a for the improved guess in part b). 
d) Find the value of A that normalizes the wavefunction.   
e) Write the COMPLETE (all parts!) wavefunction for the ground state of a simple 

harmonic oscillator. 
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9) Imagine a particle in a box whose wavefunction at time t=0 is a superposition of the 
box’s 1st and 2nd energy eigenfunctions, ψE1(x) and ψE2(x): 

ψ(x) = AψE1(x) + BψE2(x) 
where A and B are real constants.   
a) Find Ψ(x,t).  (in other words, add the time component of the wavefunction) 
b) Show that the absolute square of the wave function is not time-independent, but 

instead it oscillates with ω=(E2-E1)/ћ.  In other words, show that at least one term 
of Ψ*Ψ oscillates.  You can reduce your result using Schaum, but you do not need 
to.   

c) What is the physical interpretation of this result?   
10) The wavefunction corresponding to the ground state in a simple harmonic oscillator is 

given by 
2

)( axAex −=ψ where a = mω/2ħ. 
a) NOTE:  an ‘even’ function is symmetric about x=0 so that f(x) = f(-x). For an odd 

function, f(x) = -f(-x).  You should be able to convince yourself that 

0_ =⋅∫
∞

∞−

dxfunctionodd  and this may make your life easier. 

b) Find the expectation value <x>. 
c) Find the expectation value <px>. 
d) Explain why these are the results that you would expect classically. 
e) Find the expectation value of <x2>. 
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Tunneling and Transitions 
HW #10, Due 11/19/04 

Finish T&R Chapter 6 
 
1)  Imagine a particle in a box whose wavefunction at time t=0 is a superposition of the 

box’s 1st and 2nd energy eigenfunctions, ψE1(x) and ψE2(x): 
ψ(x) = AψE1(x) + BψE2(x) 

where A and B are real constants.   
a) Find Ψ(x,t).  (in other words, add the time component of the wavefunction) 
b) Show that the absolute square of the wave function is not time-independent, but 

instead it oscillates with ω=(E2-E1)/ћ.  In other words, show that at least one term 
of Ψ*Ψ oscillates.  You can reduce your result using Schaum, but you do not need 
to.   

c) What is the physical interpretation of this result?   
2) Allowed Region:  Case I:  Show that the general solution, ψI(x) = AeikIx + Be-ikIx, is a 

solution to the Schrodinger equation for V(x) = V0 assuming that E>V0.  Find the 
value of k in terms of E and V0.  For E>V0, finding kI requires taking the square root 
of a positive number. 

3) Forbidden Region:  Case II:  Show that the general solution, ψII(x) = Ce-αx + Deαx, is 
a solution to the Schrodinger equation for V(x) = V0 assuming that E<V0.  Find the 
value of α.  How is this solution qualitatively different from the solution for E>V0 
that you worked with in question 2?  

4) If you use the allowed solution (k=sqrt[2m(E-V0)/ħ2]) in the forbidden region, then 
the argument inside the square root is negative and k becomes complex.  Show that 
this method still gives the forbidden region solution above. 

5) For a finite square well, write the possible solutions in the three regions.  Write the 
boundary conditions that can be used to solve for any coefficients.  You need n 
equations with n unknowns to make the system solvable.  

6) For a barrier with height V0 > E, write the possible solutions in the three regions.  
Write the boundary conditions that can be used to solve for any coefficients.  You 
need n equations with n unknowns to make the system solvable. It may be helpful to 
consider making the incoming wave into a wave packet so that it can be normalized. 

7) Consider a finite square well potential with its bottom at potential V=0 and its walls 
at potential V0.  Describe the difference in energy level spacing for E< V0 (bound 
states) as compared to E>V0.  Consider the curvature of the wavefunction outside the 
well to describe why this is true.  For E>V0 you may want to consider wave packets 
instead of pure energy states. 

 
 
 

8) Sketch the wavefunction for the following potential assuming E<V0.  Use (and 
modify) your sketch to briefly describe tunneling. 
 
 

V=V0 

V=0 

V=V0 

V=0 

E 



Physics 290 Quantum Physics Fall 2004 

Tunneling and Transitions 
HW #11, Due 13/3/04 

T&R Chapter 7, Mr. Tompkins Chapter 11 
 
1) Consider an electron moving radially toward or away from a proton.  Having a radial 

separation of less than zero is physically impossible, so the electron’s wavefunction 
must go strictly to zero at r=0 as if there were an infinite barrier there.  The potential 
energy function of the electron at other values of r due to its electrostatic attraction to 

the proton is given by 
r

erV 1
4

)(
0

2

πε
−=  

a) List the qualitative “rules” for the shape of the wavefunction that we found from 
using curvature arguments.  Include the number of bumps, bump amplitude vs. 
V(x), wavelength vs. V(x). 

b) For each “rule” give a brief justification using the curvature of ψ, ψ2

2

x∂
∂ , and the 

Schrodinger equation. 
c) Qualitatively sketch the first three radial energy eigenfunctions for the electron in 

a hydrogen atom.  
 

 
 
 

2) A particle of mass m moves in a one-dimensional potential V(x) as shown.  The 
wavefunction for one of the energy states is sketched as well. 

 V(x) = 0   0 < x < L

V0

0 L 2L

to infinityV(x)

 
V(x) = V0  L < x < 2L 
V(x) = ∞  elsewhere   

The particle has energy E and wavefunction as sketched: 
ψ1(x) = A sin(k1x) 0 < x < L 
ψ2(x) = B sin(k2x)L < x < 2L 
ψ(x) = 0  elsewhere 
Note that ψ(0) = ψ(L) = ψ(2L) = 0 

a) Determine E in eV if V0 = 1 eV.  Hint: find the ratio k1/k2 in terms of L and also 
in terms of E and V0. 

b) From the continuity conditions (for ψ(x) and ψ′(x)) at x = L, derive the ratio of 
the amplitudes in the 2 regions. 

V(x) 
r 
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c) Find the probability that the particle would be found between 0 and L. 
d) Write down the complete wave function Ψ(x,t) for this particle between 0 and L. 
e) Do you think the function ψ(x) described above corresponds to the lowest energy 

(ground) state of the system?  If not, then sketch the shape of ψ(x) for the ground 
state.   

Extra Credit:  Give upper and lower limits for the energy of the ground state (think 
about wavelengths).  Briefly explain you reasoning. 

Hint:  Note that 2
1

_

2

0

2 )(sin)(sin == ∫∫
+

+ periodhalf

a

a

dd θθθθ
π

 

 
 
3) Spherical coordinates: 

a) Show that a volume element in spherical coordinates is given by dv = r2sin(θ)dρ 
dθ dφ. 

b) Find the volume of a sphere of radius R by integrating ∫ dvrV )( over all space 

where 
Rr
Rr

for
for

rV
>
≤

=
0
1

)(  

c) Find the expectation value for <Lz> for the n=2, l=1, ml=1 wavefunction of the 

hydrogen atom.  The Lz operator is given by 
φ∂
∂

−= hiLz
ˆ .  Find the angular 

wavefunction from the table of Spherical Harmonics on p. 227.  The radial 
wavefunction can be found on p. 243, but you do not need to use it explicitly. 

Note that this is much simpler than it might appear.  Remember that for 
normalized wavefunctions ∫= dvψψ *1  

1) Show that the ground state of hydrogen given below is normalized over all space. 

are
a

r /

3100
1),,( −=
π

ϕθψ  

2) Use separation of variables to find the time-independent Schrodinger equation from the time-
dependent Schrodinger equation.  (Yes, this is in your notes and in the book but I want to 
make sure that you understand the separation of variables technique before you try 6.) 
a) Guess a solution Ψ(x,t) = ψ(x)T(t).  Plug this into the time dependent Schrodinger Eqn. 
b) Divide by ψ(x)T(t). Isolate all of the x terms on one side and  the t terms on the other 

side. 
c) Each side must equal a constant.  Let the constant equal E.  Try T(t)=eiEt/ћ in the time 

equation. 
d) What is left is the time independent Schrodinger Equation. 
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3) A particle of mass m is perfectly confined to a square box whose edges are L long 
(see below).  To solve this (2-D version of the infinite well) you have to start with the 
2-D time-independent Shrodinger equation written in Cartesian coordinates: 

 

   ψψ
∂

ψ∂
∂

ψ∂ EyxV
yxm

h
=+








+− ),(

2 2

2

2

22

 

 
Use the separation of variables technique to derive the wavefunctions and 
allowed energies for a particle in this 2-D box.  Note that V(x,y,z) = Vx(x) + Vy(y) 
where Vx(x) is an infinite square well potential in the x direction, with Vx(x)=0 
inside the well and Vx(x)=infinity outside the well. 
1st step: Assume Ψ(x,y)=X(x)Y(y) and V(x,y) = Vx(x) + Vy(y). 
2nd step: Plug Ψ(x,y,z) into the time-independent Schrodinger Eqn. Divide both 
sides by X(x)Y(y).  Isolate all the x terms, but only the x terms, on one side.   
3rd step: Note that your equation must equal a constant (say…Ex).  Set the x terms 
equal to the constant.  Try X(x) = sin(kxx) in this x differential equation.  
(Remember that Vx(x) = 0 inside the well.) 
4th step:  Use the walls as constraints to find the possible values of kx.  You may 
want to use nx.  (consider the 1D square well for help.)  Find Ex in terms of nx. 
5th step:  Try Y(y) = sin(kyy) in the y differential equation.  Again, constrain ky 
using the walls and by introducing ny. 
6th step:  What is Etotal in terms of nx and ny.  How does this compare to the 1D 
square well? 
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Hydrogen Quantum Numbers, Multielectron Atoms 
HW #12, Not Due 12/10/04 

T&R Chapter 8 
 
1) Make a table showing the quantum numbers for all of the possible states of the one electron 

atom for n=1, 2, and 3.  Also indicate the number of electrons that each energy level can hold. 
2) For the following hydrogen states given by (n, l, ml, ms) that are possible, make a table 

showing the values of E, L, Lz, S, Sz.  For the states that are not possible, tell why they are 
not possible. 
a) (1, 0, 0, ½) 
b) (1, 1, 1, ½) 
c) (3, 0, 0, -½) 
d) (2, 1, -1, -½) 
e) (3, -1, 0, ½) 
f) (3, 2, 2, ½) 
g) (3, 2, 1, 0) 
h) (2, 0, 1, -½) 

3) For the 3s and 3d levels, make a table showing all of the possible values of E, L, Lz, S, Sz. 
4) For a 3d state, calculate the smallest angle that the angular momentum (or magnetic moment) 

can make with the z-axis. 
5) (T&R7:30) For the hydrogen atom, determine whether the following transitions are allowed, 

and if they are, find the energy involved (in terms of E0) and whether a photon is absorbed or 
emitted. 
a) (5, 2, 1, ½)  (5, 2, 1, -½) 
b) (4, 3, 0, ½)  (4, 2, 1, -½) 
c) (5, 2, -2, -½)  (1, 0, 0, -½) 
d) (2, 1, 1, ½)  (4, 2, 1, ½) 

6) List the allowed transitions (4p  3s, etc) in a one electron atom between the n=4 and n=3 
energy levels. 

7) What is the difference between an atomic energy level, an atomic state, and an atomic 
spectral line? 

8) Draw an energy level diagram for the first 4 states of hydrogen with separate columns for s, 
p, d… levels.  Indicate all allowed transitions. 

9) Briefly describe the mechanism for spin-orbit coupling and list the n=3 states in order of their 
energies. 

10) Draw an energy level diagram showing how the energy of s and p states change when you 
include a) spin-orbit interactions with no external field and b) an external field. 

11) Briefly describe the mechanism for hyperfine splitting. 
12) In multi-electron atoms, why do the 4s states fill up before the 3d states? 
13) Consider three angular momenta, L1 = 1, L2 = 2, and L3 = 3/2.  Give the possible total angular 

momenta that you could get by adding the following together.  For part a), also give all the 
possible Lz values for each possible value of L1 + L2. 
a) L1 + L2 
b) L2 + L3 
c) L1 + L3 

14) Define L, S, and J for a multielectron atom in an LS coupling scheme. 
15) Describe the difference between LS coupling and JJ coupling. 
16) (T&R 8:13) For the hydrogen atom in the 3d excited state find the possible values of l, ml, j, 

s, ms, mj.  Give the spectroscopic notation for each possible configuration. 


