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RESONANCE BEHAVIOR OF A DRIVEN DAMPED OSCILLATOR 
 

 
Objective:   • Study resonance in a simple mechanical system.  

          • Find the resonance curve, Q, and the damping coefficient from data. 
  
Prelab: 
There are two ways to estimate Q-factor described in this lab.  

a) If the natural frequency 𝜔" = 10.334 ± 0.002	radians/second, and the damping 
constant 𝛽 = (0.331 ± 0.005)	/second,	then what is Q in standard form? 

b) If the peak frequency 𝑓< = 1.5848 ± 0.0012	Hz and the frequency width 𝛥𝑓 =
0.1009 ± 0.0005 Hz, then what is Q in standard form? 

c) Did these two estimates of Q agree or not? How can you tell? 
   
Apparatus:  Sonic ranger, LoggerPro, spring, mass hanger, apparatus for magnetic 
damping, mass selection, scale, signal generator, oscilloscope, amplifier, and mechanical 
driver. 
 
Introduction: 
This week explore the motion of a damped oscillator and the phenomenon of resonance 
in a driven, damped oscillating system.  
 
When a driving force is added to this physical system, the equation of motion can be 
written as 

     (1) 

 
where 𝛽 is the damping constant, m is the mass, t is time, and x is position. 
We use a modified loudspeaker connected to a frequency generator to produce a driving 
force of the form .  Notice that w is the driving frequency; a parameter 
that we typically control. The late time, `particular’, or steady state solution to this 
differential equation is given by 
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This lab focuses on equation (3), the relationship between the amplitude of the 

late time solution and the driving angular frequency. In class and the reading you saw the 
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effects of resonance and the curves of amplitude A and total energy as a function of 
frequency.   
 
 Q in a resonant system describes mechanical amplification: the ratio of the 
resonance amplitude to the amplitude of the end of the spring vibrated by the driver is Q.  
In this lab you will determine Q two ways, one from the damped motion in Part I and the 
second from the resonance curve in Part II. 
 
 
Part I: Building your system and determining its properties 
 
Recall that the solution to the equation of motion including drag is given by  
 

    (5) 
 

and the effect of drag is to shift the frequency of oscillation to 

.    (6) 

 
(1) Start with the neodymium magnet and support stand far from the aluminum rod. 
Using the logger pro file “Motion Tracker.cmbl” find a way to measure the natural 
angular frequency, w0, of the oscillator. Although the mass moves through air and thus has 
some damping, we consider this arrangement to be our “un-damped” oscillator. 
 
(2) Move the magnet and support stand so the magnet is 2 – 5 mm from the aluminum 
rod.  If the space between the magnet and the rod is too large, damping will be so small as 
to make it difficult to obtain a resonance curve in Part II.  Start the system oscillating, 
collect data in logger pro.  Using an applicable fit, determine wd and b with their 
uncertainties.   
 
(3) Compute wd in standard form from your data for w0 and b.  How different is the 
calculated wd from your logger pro measured wd?  Is there evidence of a systematic error?   
 
(4) Determine Q in standard form from your data. It is approximately 

            (7) 

for light damping. If it is not in the range 3-20, ask your instructor to help adjust the 
magnet to increase or decrease damping.  Once you have a system with Q in the right 
range, compute it with uncertainty.  Once you have your magnet properly placed, keep it 
in the same place for part 2.  If the magnet location changes, your wd will change, which 
means you will have to start back at part I-2.   
 
 

x(t) = xme
−βt cos(ωdt +ϕ )

ωd = ωo
2 −β 2 =

k
m
−
b2

4m2

Q ≈
ω0

2β



  4-3 

 
Part II: Resonance  
 

In this part of the lab you take frequency and amplitude data so you can create 
your very own resonance curve for the mechanical system in front of you!    
  
 Here’s how: 
 
(1) Turn on the frequency generator, power amplifier (switch is on the back), and the 
oscilloscope.  Set the generators frequency to the oscillator’s natural frequency.   
 
 (2) Measure the frequency on the oscilloscope and enter it in a table of frequencies and 
amplitudes.  Start plotting your 𝐴C	vs. f data right away so that you will be able to see 
where you need more data points. 
 
(3) Each time the frequency is changed you must wait until the system settles down to 
measure the new amplitude—we say the transient has died away and we see only the late 
time solution of equation (2). Wait to check that you have the late time solution before 
you take oscillator amplitude and frequency data for your table. 
 
(4) Set LoggerPro to take 10 seconds of data and find the amplitude and frequency of 
oscillation using Logger Pro to curve fit.  This is your first amplitude vs. frequency data 
point! 
 
 (5) Explore the amplitude squared vs. frequency space by incrementing the frequency 
and repeating steps 2 and 4.  In the end you should have about 10 points, centered on the 
resonance frequency, showing how amplitude depends on the driving frequency.  Choose 
your frequencies appropriately. Make sure that you follow the curve away from 
resonance, above and below, to fill out both sides of your resonance curve. 
 
(6) The quality factor, Q, is a measure of the damping in terms of the natural angular 
frequency.  The Q of a resonant system can also be found from the resonance curve you 
created in step (5) above: the higher the Q the sharper the curve.   
 
Open the Resonance Curve Fit.cmbl file on the desktop, hit “Use file as is”.  Now you 
can paste your frequency and amplitude squared data into the table.  Select “curve fit” 
from the analyze drop down menu.  At the bottom of the curve fit options, you will see a 
Resonance Curve fit.  It will be fitting the following function to your data:  

    ,   (8) Amplitude2 = B
(C − f 2 )2 +Df 2



  4-4 

 
where f is the frequency, and B, C and D are fitting constants. Select it and press “try fit” 
to see how well it draws a curve over your data.  You may have to go back and take more 
data to fill in the area around the peak, or not include some data point to get logger pro to 
successfully fit the data.  Using the cursor on the resonance curve provided by the fit, 
estimate the width of the curve at one-half the maximum height and the uncertainty.  
This will give you the “Q” of the mass-spring system with the relation 

         (9) 

 
This is an important way of characterizing resonant systems.  Using uncertainties 
compare this result for Q with what you obtained in Part I (5). Do they agree?  Is there 
evidence of a systematic error?  
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