For simplicity, we'll work in a pipe, i.e. in 1D.

\[v = Ax \]

We'll study a section of fluid \(Ax \) long. The 'ends' of this section are surfaces at \(x \) and \(x + Ax \). These surfaces are made of particles. We'll look at the equation of motion of their displacement \(D(x) \) and \(D(x + Ax) \). Let's suppose that the fluid has a density of \(\rho \).

Thus, this section has a mass

\[M = \rho V = \rho Ax. \]

Suppose we increase the pressure on the section. Its volume \(\Delta V = A Ax \) will change as

\[\Delta V = A \left[D(x + Ax) - D(x) \right] \]

Doing a Taylor expansion of the first term

\[\approx A \left[D(x) + \frac{\partial D}{\partial x} Ax - D(x) \right] \]

\[= A \frac{\partial D}{\partial x} Ax \]

\text{(1)}
THE PICTURE OF THE SECTION IS THIS

\[\Delta x \]

\[F(x) \quad \text{to} \quad F(x+\Delta x) \]

NEWTON TELLS US THAT

\[M\Delta v = \sum F \quad \text{or} \]

\[pA\Delta x \frac{2^2D}{2t^2} = -\left(F(x+\Delta x) - F(x) \right) \quad \text{Expanding} \quad F(x+\Delta x) \]

\[= -\left(\frac{dF}{dx} \Delta x \right) \]

\[= -\frac{dF}{dx} \Delta x \]

\[\Rightarrow \quad pA \frac{2^2D}{2t^2} = -\frac{dF}{dx} \quad (2) \]

NOW WE NEED TO FIGURE OUT WHAT "F" IS!

WE KNOW THAT

\[\Delta P = -\frac{B}{V} \Delta V \]

SO

\[F = A\Delta P = -\frac{BA}{V} \Delta V \]
Hence from Eqn (1)

\[F = -\frac{BA^2}{V} \frac{\partial D}{\partial x} \Delta x \]

Taking \(\frac{\partial}{\partial x} \) then \(\frac{\partial F}{\partial x} = -\frac{BA^2}{V} \frac{\partial^2 D}{\partial x^2} \Delta x \)

Using \(V = AAx \) and Eqn (2) we find

\[PA \frac{\partial^2 D}{\partial t^2} = -\left(-\frac{BA^2}{AAx} \frac{\partial^2 D}{\partial x^2} \Delta x \right) \]

\[\therefore \frac{\partial^2 D}{\partial x^2} = \left(\frac{P}{B} \right) \frac{\partial^2 D}{\partial t^2} \rightarrow V = \sqrt{\frac{B}{P}} \]

The wave Eqn for \(P = D(x,t) \) ! Sound is a wave that travels at \(V = \sqrt{\frac{B}{P}} \).

Note:
- Solids same as before
- Superposition "
- Energy "