
Electromagnetism (PHYS 295): Solutions 2 Spring 2024 v1.5

Solutions:

(1) By linearity of the field we can consider this the sum of a sphere with charge density ρ and
radius a and a sphere with charge density −ρ and radius a/2. For both points we need the
field at the surface of a sphere. Using Gauss’s law and a spherical gaussian surface just at r,

E4πr2 =
ρ

ϵo

4

3
πr3 =⇒ E =

ρr

3ϵo
.

Now at A,

Etotal = Ebig sphere + Elittle sphere = 0− ρa

2 · 3ϵo
= − ρa

6ϵo
.

The field points upwards.
At B we need the field of the little sphere a away from the surface (r = 3a/2) so we need to

use Gauss’s law again∫
E · da =

qencl
ϵo

gives E4π

(
3a

2

)2

= − ρ

ϵo

4

3
π
(a
2

)3

=⇒ E = − ρa

54ϵo
r̂.

That’s the bit for the small sphere. Now adding the two fields gives,

E =
ρa

3ϵo
− ρa

54ϵo
=

17ρa

54ϵo
.

This points downwards.

(2) Here’s my sketch of the geometry

where θ = 60◦ and r = 5 cm. The flux is

Φ = E⃗ · a⃗ = Ea cos θ = Eπr2 cos θ ≃ 0.59 Nm2/C

(3) Here’s my sketch of the field:
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The point where the electric field vanishes is 1 +
√
2 ≃ 2.4 to the right of the +q charge (in

units of the distance between charges). This point is off the page to the right. Also, there
should be 8 lines going out to infinity, since from far away (r ≫ d) the configuration looks like
a point charge of −q. I have 7 - sorry!

(4) This is an energy conservation problem. For a spherical object the scalar potential is the same
as a point source outside the sphere,

V =
1

4πϵo

Q

r

(assuming we set V = 0 at r → ∞). Signs can be confusing in this problem. I assume David’s
σ and q have the same sign. Otherwise the “−q” charge wouldn’t be attracted to the sphere.
This means that −qQ and −qσ are both negative.

Inside a hollow sphere the electric field vanishes and so the potential is constant. Since
the potential is constant, the speed inside will be as well. Now far away, where the potential
vanishes, the charge starts from rest so the total energy E = 0. As the charge falls inward falls
we have

E = 0 =
1

2
mv2 +

qQ

4πϵo

1

r
.

When r = R we have

1

2
mv2 − qQ

4πϵo

1

R
= 0 =⇒ v =

√
2Rσq

ϵom
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where I have used Q = 4πσR2. The velocity is directed inward. This is the same velocity as
at the center.

(5) We’ll use superposition to find the field. We know from class that the field on either side of
the sheet of charge with surface charge density σ has magnitude E = σ/2ϵo and points away
from the sheet. In the slab the electric field can only point in the x (horizontal) direction so
we can use Gauss’s law inside. Here’s a sketch of the gaussian pillbox and coordinate

Let the area of the ends of the pill box be A then from Gauss’ law,∫
E · da =

qencl
ϵo

we have 2EA =
ρ

ϵo
2xA =⇒ E =

ρx

ϵo
ı̂

I have called the area of the left and right sides of the gaussian pillbox A. Similarly outside we
have ∫

E · da =
qencl
ϵo

or 2EA =
ρ

ϵo
dA =⇒ E =

ρd

2ϵo
ı̂.

This gives rise to three regions for the total electric field. Left of the sheet of charge we add
the fields from the sheet and the slab - they both point to the left -

E = −
(

σ

2ϵo
+

ρd

2ϵo

)
ı̂.

Right of the sheet of charge and in the slab we have

E =

(
σ

2ϵo
+

ρx

ϵo

)
ı̂,

keeping in mind that x < 0 in part of this region and that the electric field from the sheet
points right. And to the right of everything we have

E =

(
σ

2ϵo
+

ρd

2ϵo

)
ı̂.

(6) (2 pts.) The charge density varies with radius so we need to integrate to find the amount
of charge within a Bohr radius ao. But first, since we don’t know C, we need to find the
constant C. We know the total charge of the electron is −e. Hence,

−e =

∫
ρdv = −C

∫ ∞

0

e−2r/ao4πr2dr or e = C4π2
(ao
2

)3

where I looked up the integral on my handy page of integrals – you may wish to start your
own collection if you haven’t already done so! – I found C = e/πa3o.
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The amount of charge qao
of the electron inside a Bohr radius is then

qao = − e

πa3o

∫ ao

0

e−2r/ao4πr2dr.

This is essentially the same integration as before but now the upper limit is at a finite ao. The
integral works out to be

qao = q

(
−1 +

5

e2

)
≃ −0.323e ≃ −5.2× 10−20 C,

where in the first step I temporarily switched e → q to distinguish the exponential “e = exp(1)”
from the charge “e”. The net charge is then qnet ≃ 0.677e ≃ 1.08 × 10−19 C since there is a
proton at the center of the atom.

We’re now asked to find the electric field at this radius. The electric field is spherically
symmetric (since ρ has no angular dependence) and we can use Gauss’s law

E4πa2o =
qencl
ϵo

≃ 0.677e

ϵo
.

The electric field is

E⃗ ≃ 0.677e

4πϵoa2o
r̂ ≃

(
3.48× 1011 V m−1

)
r̂.

That is a strong field! (If you just computed the electric field due to the electron, would obtain
−1.7× 1011.)

(7) This one has a solution in the book. Note the use of limits - it’s a really good idea! Optional
for next time: How would you solve this if the ring was not fixed?

(8) Kelvin Water Dropper: Since a spark is produced when there is a large buildup of charge, the
dropper must generate charge on the brass spheres.

How does this happen? Let’s assume an initial asymmetry of charge between the two copper
cylinder-bucket halves. (It doesn’t matter how small this is.) The cylinders have electric fields
like this
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The E-field causes the OH− and H+ ions to migrate in the water. Here’s the field

(Thanks to Mikel Zemborain for this sketch!) When a drop forms the effect is greater and
negative charge collects at the bottom of the drop.

When the drop pinches off it will be negatively charged. It falls into the bucket connected to
the other cylinder, which is already negatively charged, increasing its charge. So the process
builds up charge. When the buildup of charge is great enough the spark occurs and the process
starts again.

This is a playful example of a physical instability.


