
Electromagnetism (PHYS 295): Solutions 3 Spring 2024 v1.5

Solutions:

(1) Solved in the text.

(2) (a) Calculating

(∇ ·A)cartesian = 2

Great. For the cylindrical case,

(∇ ·A)cylindrical =
1

r

∂(rAr)

∂r
=

1

r

∂r2

∂r
= 2.

So it works as it must.
(b) As last time the cartesian divergence is simple; 3 in this case. Now setting up the cylindrical

calculation

A = x̂ı+ 2yȷ̂ = r cos θ(cos θr̂ − sin θθ̂) + 2r sin θ(sin θ + cos θθ̂)

...chugg-chugg...

∇ ·A =
1

r

∂(rAr)

∂r
+

1

r

∂Aθ)

∂θ
= 3

as it should.

(3) We solve this by first solving for the electric field with Gauss’ law inside and outside the
cylinder. Since this is a ‘long’ cylinder, the electric field will point away from the charge and
along the radial direction. We’ll have gaussian surfaces of radius r and length ℓ inside and
outside. Inside, we have r < R and∮

E⃗ · da⃗ = |E⃗|2πrℓ

while

Qencl =

∫
ρd3x =

∫ ℓ

0

dz

∫ 2π

0

dφ

∫ r

0

r · br2dr = ℓ · 2π · br
4

4
=

πbℓr4

2

so by Gauss’ law we have

|E⃗| = br3

4ϵo

inside. Outside, the total the whole cylinder is enclosed so Gauss’ law becomes∮
E⃗ · da⃗ = |E⃗|2πrℓ = Qencl

ϵo
= ℓ · 2π · bR

4

4ϵo

so that

|E⃗| = bR4

4ϵor
.

(Notice the expressions for the electric field inside and outside match when r = R.) Here’s a
sketch of the magnitude of the electric field
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For the potential let’s integrate. Inside,

∆V = V (r)− V (0) = −
∫ r

0

E⃗ · ds⃗ = −
∫ r

0

|E⃗| · dr = − br4

16ϵo
.

I’m leaving V (0) unspecified for the moment, anticipating a choice of where we should set
V = 0. Meanwhile on the outside,

∆V |out = V (r)− V (R) = −
∫ r

R

E⃗ · ds⃗ = −
∫ r

R

bR4

4ϵor
dr = −bR4

4ϵo
ln
( r

R

)
.

Given that the log vanishes when r = R (and diverges at infinity), one nice choice of the V = 0
surface is on the surface of the cylinder. This means fixing

V (0) =
bR4

16ϵo

so that inside

V (r) =
bR4

16ϵo
− br4

16ϵo
when r ≤ R

and outside

V (r) = −bR4

4ϵo
ln
( r

R

)
when r ≥ R

(4) Solved in the text.

(5) I’ll grade these, if there are solutions

(6) For this mathematical exercise we get to practice integrals along paths. First we have a two
part path. The first one vanishes since Ex = 0 when y = 0. For the second part of the path∫

E · ds =
∫ y1

0

Eydy = 3x2
1y1 − y31

where ds = dyȷ̂. The second route also yields this, as it must. So the electric potential

ϕ(x1, y1) = −3x2
1y1 + y31 + C

Taking (minus) the divergence returns the electric field.

(7) The proton gains a kinetic energy of eVV dG in the Van de Graaff. If we assume a spherical
charge distribution for the silver nucleus then the proton will come to rest again when

eVV dG =
47e2

4πϵo

1

r
=⇒ r =

47e

4πϵoVV dG
≃ 1.3× 10−14 m = 120 pm.
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From my point of view this is uncomfortably close (and less than!) to the expected 160 pm
radius of a silver nucleus. Better modeling of the nucleus would make sense here. Ignoring
this, however, we can find the electric field, at this radius of closest approach.

|E| = 47e

4πϵo

1

r2
=

4πϵo
47e

V 2
V dG ≃ 4× 1020 N/C

and this gives an acceleration of

a =
eE

mp
≃ 3.8× 1028 m/s

2

which is large!

(8) Calculating the divergences

∇ · F⃗ =
∂Fx

∂x
+

∂Fy

∂y
+

∂Fz

∂z
= 1 + 1− 2 = 0,

∇ · G⃗ =
∂Gx

∂x
+

∂Gy

∂y
+

∂Gz

∂z
= 0

and

∇ · H⃗ =
∂Hx

∂x
+

∂Hy

∂y
+

∂Hz

∂z
= 2x+ 2x = 4x.

(9) Solved in the text.


