Electromagnetism (PHYS 295): Solutions 3 Spring 2024 v1.5

Solutions:
(1) Solved in the text.

(2) (a) Calculating
(V- A)

Great. For the cylindrical case,
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So it works as it must.
(b) Aslast time the cartesian divergence is simple; 3 in this case. Now setting up the cylindrical
calculation

A = 27+ 2yj = r cos 0(cos 07 — sin 0) + 2r sin O(sin 0 + cos 06)

...chugg-chugg...
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as it should.

(3) We solve this by first solving for the electric field with Gauss’ law inside and outside the
cylinder. Since this is a ‘long’ cylinder, the electric field will point away from the charge and
along the radial direction. We’ll have gaussian surfaces of radius r and length ¢ inside and
outside. Inside, we have r < R and
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so by Gauss’ law we have

while
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inside. Outside, the total the whole cylinder is enclosed so Gauss’ law becomes
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(Notice the expressions for the electric field inside and outside match when r = R.) Here’s a
sketch of the magnitude of the electric field
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For the potential let’s integrate. Inside,
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I'm leaving V(0) unspecified for the moment, anticipating a choice of where we should set
V = 0. Meanwhile on the outside,
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Given that the log vanishes when r = R (and diverges at infinity), one nice choice of the V=10
surface is on the surface of the cylinder. This means fixing
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and outside
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Solved in the text.
T’ll grade these, if there are solutions

For this mathematical exercise we get to practice integrals along paths. First we have a two
part path. The first one vanishes since £, = 0 when y = 0. For the second part of the path
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where ds = dyj. The second route also yields this, as it must. So the electric potential

¢(1,y1) = =32iy1 +yi + C

Taking (minus) the divergence returns the electric field.

The proton gains a kinetic energy of eVy4¢ in the Van de Graaff. If we assume a spherical
charge distribution for the silver nucleus then the proton will come to rest again when
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eVyvaa = ~13x107"% m =120 pm.
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From my point of view this is uncomfortably close (and less than!) to the expected 160 pm
radius of a silver nucleus. Better modeling of the nucleus would make sense here. Ignoring
this, however, we can find the electric field, at this radius of closest approach.
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and this gives an acceleration of
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which is large!

Calculating the divergences
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Solved in the text.



