Solutions:

(1) Solved in the text.
(2) (a) Calculating

$$
(\nabla \cdot \mathbf{A})_{\text {cartesian }}=2
$$

Great. For the cylindrical case,

$$
(\nabla \cdot \mathbf{A})_{\text {cylindrical }}=\frac{1}{r} \frac{\partial\left(r A_{r}\right)}{\partial r}=\frac{1}{r} \frac{\partial r^{2}}{\partial r}=2
$$

So it works as it must.
(b) As last time the cartesian divergence is simple; 3 in this case. Now setting up the cylindrical calculation

$$
\mathbf{A}=x \hat{\imath}+2 y \hat{\jmath}=r \cos \theta(\cos \theta \hat{r}-\sin \theta \hat{\theta})+2 r \sin \theta(\sin \theta+\cos \theta \hat{\theta})
$$

...chugg-chugg...

$$
\nabla \cdot \mathbf{A}=\frac{1}{r} \frac{\partial\left(r A_{r}\right)}{\partial r}+\frac{1}{r} \frac{\left.\partial A_{\theta}\right)}{\partial \theta}=3
$$

as it should.
(3) We solve this by first solving for the electric field with Gauss' law inside and outside the cylinder. Since this is a 'long' cylinder, the electric field will point away from the charge and along the radial direction. We'll have gaussian surfaces of radius r and length ℓ inside and outside. Inside, we have $r<R$ and

$$
\oint \vec{E} \cdot d \vec{a}=|\vec{E}| 2 \pi r \ell
$$

while

$$
Q_{\text {encl }}=\int \rho d^{3} x=\int_{0}^{\ell} d z \int_{0}^{2 \pi} d \varphi \int_{0}^{r} r \cdot b r^{2} d r=\ell \cdot 2 \pi \cdot \frac{b r^{4}}{4}=\frac{\pi b \ell r^{4}}{2}
$$

so by Gauss' law we have

$$
|\vec{E}|=\frac{b r^{3}}{4 \epsilon_{o}}
$$

inside. Outside, the total the whole cylinder is enclosed so Gauss' law becomes

$$
\oint \vec{E} \cdot d \vec{a}=|\vec{E}| 2 \pi r \ell=\frac{Q_{e n c l}}{\epsilon_{o}}=\ell \cdot 2 \pi \cdot \frac{b R^{4}}{4 \epsilon_{o}}
$$

so that

$$
|\vec{E}|=\frac{b R^{4}}{4 \epsilon_{o} r}
$$

(Notice the expressions for the electric field inside and outside match when $r=R$.) Here's a sketch of the magnitude of the electric field

For the potential let's integrate. Inside,

$$
\Delta V=V(r)-V(0)=-\int_{0}^{r} \vec{E} \cdot d \vec{s}=-\int_{0}^{r}|\vec{E}| \cdot d r=-\frac{b r^{4}}{16 \epsilon_{o}}
$$

I'm leaving $V(0)$ unspecified for the moment, anticipating a choice of where we should set $V=0$. Meanwhile on the outside,

$$
\left.\Delta V\right|_{\text {out }}=V(r)-V(R)=-\int_{R}^{r} \vec{E} \cdot d \vec{s}=-\int_{R}^{r} \frac{b R^{4}}{4 \epsilon_{o} r} d r=-\frac{b R^{4}}{4 \epsilon_{o}} \ln \left(\frac{r}{R}\right) .
$$

Given that the log vanishes when $r=R$ (and diverges at infinity), one nice choice of the $V=0$ surface is on the surface of the cylinder. This means fixing

$$
V(0)=\frac{b R^{4}}{16 \epsilon_{o}}
$$

so that inside

$$
V(r)=\frac{b R^{4}}{16 \epsilon_{o}}-\frac{b r^{4}}{16 \epsilon_{o}} \text { when } r \leq R
$$

and outside

$$
V(r)=-\frac{b R^{4}}{4 \epsilon_{o}} \ln \left(\frac{r}{R}\right) \text { when } r \geq R
$$

(4) Solved in the text.
(5) I'll grade these, if there are solutions
(6) For this mathematical exercise we get to practice integrals along paths. First we have a two part path. The first one vanishes since $E_{x}=0$ when $y=0$. For the second part of the path

$$
\int \mathbf{E} \cdot d \mathbf{s}=\int_{0}^{y_{1}} E_{y} d y=3 x_{1}^{2} y_{1}-y_{1}^{3}
$$

where $d \mathbf{s}=d y \hat{\jmath}$. The second route also yields this, as it must. So the electric potential

$$
\phi\left(x_{1}, y_{1}\right)=-3 x_{1}^{2} y_{1}+y_{1}^{3}+C
$$

Taking (minus) the divergence returns the electric field.
(7) The proton gains a kinetic energy of $e V_{V d G}$ in the Van de Graaff. If we assume a spherical charge distribution for the silver nucleus then the proton will come to rest again when

$$
e V_{V d G}=\frac{47 e^{2}}{4 \pi \epsilon_{o}} \frac{1}{r} \Longrightarrow r=\frac{47 e}{4 \pi \epsilon_{o} V_{V d G}} \simeq 1.3 \times 10^{-14} \mathrm{~m}=120 \mathrm{pm}
$$

From my point of view this is uncomfortably close (and less than!) to the expected 160 pm radius of a silver nucleus. Better modeling of the nucleus would make sense here. Ignoring this, however, we can find the electric field, at this radius of closest approach.

$$
|E|=\frac{47 e}{4 \pi \epsilon_{o}} \frac{1}{r^{2}}=\frac{4 \pi \epsilon_{o}}{47 e} V_{V d G}^{2} \simeq 4 \times 10^{20} \mathrm{~N} / \mathrm{C}
$$

and this gives an acceleration of

$$
a=\frac{e E}{m_{p}} \simeq 3.8 \times 10^{28} \mathrm{~m} / \mathrm{s}^{2}
$$

which is large!
(8) Calculating the divergences

$$
\begin{gathered}
\nabla \cdot \vec{F}=\frac{\partial F_{x}}{\partial x}+\frac{\partial F_{y}}{\partial y}+\frac{\partial F_{z}}{\partial z}=1+1-2=0 \\
\nabla \cdot \vec{G}=\frac{\partial G_{x}}{\partial x}+\frac{\partial G_{y}}{\partial y}+\frac{\partial G_{z}}{\partial z}=0
\end{gathered}
$$

and

$$
\nabla \cdot \vec{H}=\frac{\partial H_{x}}{\partial x}+\frac{\partial H_{y}}{\partial y}+\frac{\partial H_{z}}{\partial z}=2 x+2 x=4 x
$$

(9) Solved in the text.

