
Electromagnetism (PHYS 295): Solutions 4 Spring 2024 v1.0

Solutions:

(1) The expansion is proportional to
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The first question asks when is it ok to drop the second (and higher order) terms. The Legendre
polynomials have a maximum value of 1 so to find the rough distances we can set them to 1.
More precisely the questions asks when is
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Well, when r =
√

100/4` = 5d, or 5 times the spacing between the charges. If we keep the
octupole term but drop the next one then we are asking at what radius does
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which is much closer.

(2) On the z axis
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Now expanding the fractions
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remembering that the dipole moment p = q` and r̂ = k̂ on the z axis. On the x-axis we have to
add in a sine term since the vertical components add while the horizontal components cancel,
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The second factor is the sine written in terms of the coordinates. Expanding the resulting
(r2 + (`/2)2) denominator simply gives
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(−k̂) = E(r, π/2),

since θ̂(π/2) = −k̂.
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(3) To determine whether the function f is a solution to Laplace’s equation,

∇2f = 0,

we need the form of the Laplacian ∇2. In 2D Cartesian coordinates,
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This is not a solution to Laplace’s equation. But x2 − y2 is a solution since now we have
2− 2 = 0 in the last step above. Plotting this as a surface plot gives

The x-axis is on the lower right.
The gradient is

∇f = 2x̂ı− 2ŷ.

At (0,1) this is −2̂; at (1,0) this is 2̂ı; at (0,-1) this is 2̂; and at (-1,0) this is −2̂ı. Here’s the
vector plot

(4) (2 pts.) Finding E and σ from a potential
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(a) To check whether φ is a viable potential in a region without charge we must show that
∇2φ vanishes. The given potential has dependence on x and z only so we only need to
consider derivatives with respect to x and z
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The second derivatives are
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so it is clear that
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(b) The electric field is given by the gradient so
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(
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So the slope is infinite when x = 0, x = 2π/k, ... and zero when x = π/k, ... It looks
something like

Asking mathematica to plot the vector field gives
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where the magnitude is plotted as a “heat map” with red being large and blue being small.
I have set k = 1 for this plot.
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(c) We can find the charge distribution via the change in the electric field. Given that the
charge is only on the sheet at z = 0 the field must be symmetric around this surface.
Choosing a wee gaussian pillbox with cross-section area A spanning the surface we have,
from Gauss’s law, 2AEz = σA/εo so

σ = 2εoEz|z=0 = −2εo
∂φ

∂z

∣∣∣∣
z=0

= 2εok φo cos(kx).

Weird but ok.

(5) In the first configuration, charge of −q accumulates on the inner surface of the inner shell, since
it is attracted by the charge q in the center. The approximate charge density is σ ∼ −q/(4πr2)
where r is the radius of the inner surface. The conductor is neutral so a charge of q settles
on the outer surface, as far as it can get from the inside charge. (Don’t be tempted to add
charge to the outer surface of the inner shell and the inner surface of the outer shell. That will
yield non-vanishing electric field in the inside cavity in the conductor where the electric field
vanishes.) A little bit of charge accumulates in the slot to ensure that E = 0 in the shell, but
this is less important. Here’s a sketch of the charge and field

The second diagram is similar, with −q charge on innermost surface and +q on the outer
surface. However, in this case the charge is inside a cavity inside the conductor so the electric
is non-vanishing there. Here’s a sketch

We are perhaps tempted to add charge on the other surfaces but this would add an electric
field inside the conductor.

(6) For the “four-square” configuration with charges at (1, 1), (1,−1), (−1, 1) and (−1,−1) the
potential is proportional to
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(Adding in a z coordinate would not change the behavior.) This is constant on the surface
y = 0 as we can see from[
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+
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]−1/2
= 0.

Similarly for the x = 0 surface. We have now known that this image charge configuration has
the correct potentials for the problem of a charged plate bent 90 degrees. Therefore the field
will look like


