
Electromagnetism (PHYS 295): Solutions 5 Spring 2024 v1.0

Solutions:

(1) The approximate parallel plate capacitor has capacitance,

C =
ϵoA

d
.

where A = 1.3 cm2. As the air breaks down the electric field reaches E! = 3× 10−6 N/C. The
field is constant in a parallel plate capacitor so the potential is V = Ed. Now, the charge is

Q = CV =
ϵoA

d
Ed = ϵoAE ≃ 4.5× 10−9 C

Not so much! (about 2.8× 1010 electrons.)

(2) Done in text. But (d) is essentially “the image charge configuration works as shown in parts
(a) - (c)”.

(3) Done in the text. The key step in these problems is to identify which quantity is the same and
which quantity adds. For example for capacitors in series the Q is the same and the potentials
add.

(4) Done in text but David’s version seems more confusing than it needs to be. Here’s essentially
the same solution but in a form that is easier to follow (maybe!).

We want to maximize the energy stored without exceeding a maximum electric field Emax,
which the book calls E0. From a sketch of the charged configuration is clear that the maximum
electric field must be on the inner sphere of radius b. It is

Emax =
Q

4πϵo

1

b2

This relation links Q and b together. The energy stored is

U =
ϵo
2

∫
E2d3x.

Anywhere inside the electric field is,

E =
Q

4πϵo

1

r2
= Emax

b2

r2
,

using Emax and thus getting the correct scaling of the electric field and the radius b. So,

U =
ϵo
2

∫
E2

max

b4

r4
d3x =

ϵoE
2
max

2

∫
b4

r4
r2dr sin θdθdφ

using the spherical volume element r2 sin θdθdφdr. The angular integrations are simple - just
giving 4π leaving

U = 2πϵoE
2
max

∫ a

b

b4

r2
dr

to integrate. This evaluates to

U = 2πϵoE
2
max(b

4)

(
−1

a
+

1

b

)
= 2πϵoE

2
max

(
1

b3
− b4

a

)
. (1)

1
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Since we want to store the maximum amount of energy we should extremize this with respect
to the inner shell radius b. So

dU

db
= 0 =⇒ 3b2 − 4

b3

a
= 0 or b =

3

4
a.

Let’s check that this is actually a maximum. We can see this with a plot of U/(2πϵoE
2
maxa

3)
vs. b/a
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which peaks at 0.75. (You can also check this by taking another derivative of 1 and seeing that
dU2/db2 < 0 at b = 3a/4.) The total energy in the optimal configuration is then U with this
value for b, which is

U =
27

128
πϵoE

2
maxa

3.

Anyone see a reason why “3/4” is natural? (I don’t but am curious.)

(5) We have an inner conductor with radius b and charge Q and an outer conductor with radius
a and charge −Q. The cylinder has length L. The electric field will be radial. I’ll choose a
cylindrical gaussian surface at radius r. By Gauss’ law, E will be∫

E · da =
qencl
ϵo

=⇒ 2πrLE =
Q

ϵo
or E =

Q

2πϵoLr
r̂

I have neglected the fringing field on the ends of the bottle. The magnitude of the potential
difference is then

V =

∫
E · ds =

∫ a

b

Q

2πϵoLr
dr =

Q

2πϵoL
ln(a/b)

So the capacitance would be

C =
Q

V
=

2πϵoL

ln(a/b)
.

For the limit we need to send the radii to ‘very large’ but keep them separated (or else we have
no capacitor!). So let a = b+ d where d is the separation of the plates. The log becomes

ln(a/b) = ln

(
b+ d

b

)
= ln

(
1 +

d

b

)
≃ d

b
.

This last approximation is a handy one - you can derive it from the Taylor series of ln(1 + x)
for small x. Thus,

C =
2πϵoL

ln(a/b)
≃ 2πbLϵo

d
=

ϵoA

d

as expected. (The area of the ‘very large’ cylinder or plate is A ≃ 2πbL.)
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(6) So this pile of e−, each with charge −1.6× 10−19 C travel roughly at c around the circle of 240
m. This means that the current is effectively the charge times the frequency of revolution

I = Qf = 1011 · (−1.6× 10−19) · 3× 108

240
≃ −0.02 A = −20 mA.

a macroscopic current! The sign shows that the current flows in the opposite direction to the
electrons.


