Electromagnetism (PHYS 295): Solutions 5

Solutions:

(1) The approximate parallel plate capacitor has capacitance,

$$
C=\frac{\epsilon_{o} A}{d}
$$

where $A=1.3 \mathrm{~cm}^{2}$. As the air breaks down the electric field reaches $E_{!}=3 \times 10^{-6} \mathrm{~N} / \mathrm{C}$. The field is constant in a parallel plate capacitor so the potential is $V=E d$. Now, the charge is

$$
Q=C V=\frac{\epsilon_{o} A}{d} E d=\epsilon_{o} A E \simeq 4.5 \times 10^{-9} \mathrm{C}
$$

Not so much! (about 2.8×10^{10} electrons.)
(2) Done in text. But (d) is essentially "the image charge configuration works as shown in parts (a) - (c)".
(3) Done in the text. The key step in these problems is to identify which quantity is the same and which quantity adds. For example for capacitors in series the Q is the same and the potentials add.
(4) Done in text but David's version seems more confusing than it needs to be. Here's essentially the same solution but in a form that is easier to follow (maybe!).

We want to maximize the energy stored without exceeding a maximum electric field $E_{\max }$, which the book calls E_{0}. From a sketch of the charged configuration is clear that the maximum electric field must be on the inner sphere of radius b. It is

$$
E_{\max }=\frac{Q}{4 \pi \epsilon_{o}} \frac{1}{b^{2}}
$$

This relation links Q and b together. The energy stored is

$$
U=\frac{\epsilon_{o}}{2} \int E^{2} d^{3} x
$$

Anywhere inside the electric field is,

$$
E=\frac{Q}{4 \pi \epsilon_{o}} \frac{1}{r^{2}}=E_{\max } \frac{b^{2}}{r^{2}}
$$

using $E_{\max }$ and thus getting the correct scaling of the electric field and the radius b. So,

$$
U=\frac{\epsilon_{o}}{2} \int E_{\max }^{2} \frac{b^{4}}{r^{4}} d^{3} x=\frac{\epsilon_{o} E_{\max }^{2}}{2} \int \frac{b^{4}}{r^{4}} r^{2} d r \sin \theta d \theta d \varphi
$$

using the spherical volume element $r^{2} \sin \theta d \theta d \varphi d r$. The angular integrations are simple - just giving 4π leaving

$$
U=2 \pi \epsilon_{o} E_{\max }^{2} \int_{b}^{a} \frac{b^{4}}{r^{2}} d r
$$

to integrate. This evaluates to

$$
\begin{equation*}
U=2 \pi \epsilon_{o} E_{\max }^{2}\left(b^{4}\right)\left(-\frac{1}{a}+\frac{1}{b}\right)=2 \pi \epsilon_{o} E_{\max }^{2}\left(\frac{1}{b^{3}}-\frac{b^{4}}{a}\right) \tag{1}
\end{equation*}
$$

Since we want to store the maximum amount of energy we should extremize this with respect to the inner shell radius b. So

$$
\frac{d U}{d b}=0 \Longrightarrow 3 b^{2}-4 \frac{b^{3}}{a}=0 \text { or } b=\frac{3}{4} a
$$

Let's check that this is actually a maximum. We can see this with a plot of $U /\left(2 \pi \epsilon_{o} E_{\text {max }}^{2} a^{3}\right)$ vs. b / a

which peaks at 0.75 . (You can also check this by taking another derivative of 1 and seeing that $d U^{2} / d b^{2}<0$ at $b=3 a / 4$.) The total energy in the optimal configuration is then U with this value for b, which is

$$
U=\frac{27}{128} \pi \epsilon_{o} E_{\max }^{2} a^{3}
$$

Anyone see a reason why " $3 / 4$ " is natural? (I don't but am curious.)
(5) We have an inner conductor with radius b and charge Q and an outer conductor with radius a and charge $-Q$. The cylinder has length L. The electric field will be radial. I'll choose a cylindrical gaussian surface at radius r. By Gauss' law, E will be

$$
\int \mathbf{E} \cdot d \mathbf{a}=\frac{q_{e n c l}}{\epsilon_{o}} \Longrightarrow 2 \pi r L E=\frac{Q}{\epsilon_{o}} \text { or } \mathbf{E}=\frac{Q}{2 \pi \epsilon_{o} L r} \hat{r}
$$

I have neglected the fringing field on the ends of the bottle. The magnitude of the potential difference is then

$$
V=\int \mathbf{E} \cdot d \mathbf{s}=\int_{b}^{a} \frac{Q}{2 \pi \epsilon_{o} L r} d r=\frac{Q}{2 \pi \epsilon_{o} L} \ln (a / b)
$$

So the capacitance would be

$$
C=\frac{Q}{V}=\frac{2 \pi \epsilon_{o} L}{\ln (a / b)}
$$

For the limit we need to send the radii to 'very large' but keep them separated (or else we have no capacitor!). So let $a=b+d$ where d is the separation of the plates. The log becomes

$$
\ln (a / b)=\ln \left(\frac{b+d}{b}\right)=\ln \left(1+\frac{d}{b}\right) \simeq \frac{d}{b}
$$

This last approximation is a handy one - you can derive it from the Taylor series of $\ln (1+x)$ for small x. Thus,

$$
C=\frac{2 \pi \epsilon_{o} L}{\ln (a / b)} \simeq \frac{2 \pi b L \epsilon_{o}}{d}=\frac{\epsilon_{o} A}{d}
$$

as expected. (The area of the 'very large' cylinder or plate is $A \simeq 2 \pi b L$.)
(6) So this pile of e^{-}, each with charge $-1.6 \times 10^{-19} \mathrm{C}$ travel roughly at c around the circle of 240 m . This means that the current is effectively the charge times the frequency of revolution

$$
I=Q f=10^{11} \cdot\left(-1.6 \times 10^{-19}\right) \cdot \frac{3 \times 10^{8}}{240} \simeq-0.02 \mathrm{~A}=-20 \mathrm{~mA}
$$

a macroscopic current! The sign shows that the current flows in the opposite direction to the electrons.

