
Phys 295: Example Mid-term Solution Sketches Spring 2024 v1.0

This a mix of hints and more complete solutions.

Problem hints:

(1) Here’s a sketch of an electric field created by three charges:

Determine the signs of the charges and their relative magnitudes. (The black curvy lines show
the direction of field lines at that point. Why do you think the author decided to include
them?)

I’ll number the charges from the left q1, q2, q3.
• From the directions of field lines q1 > 0. It is the largest charge.
• From the field lines q2 is negative. By counting field lines

q2 =
6

14
q1

• From the field lines q3 is negative. By counting field lines

q2 =
7

14
q1 =

1

2
q1

The black curves are around an impossible field line; it is inconsistently oriented. So the black
curves show what happens to the field lines at this point. They diverge as shown. It is an
alternative to a ”twist the star” approach we have used, where we would avoid lines passing
through this point.

(2) Arranging charges: There are many ways to do this problem.
(a) I’ll place the two +4q charges a distance 2a apart and find where the electric field vanishes.

This will be where to place the −1q charge. Let the x axis be between the two charges
and the origin in the middle. Then

E =
4q

4πεo(a+ x)2
ı̂+

4q

4πεo(a− x)2
(−ı̂) = − 4axq

πεo(x2 − a2)2
ı̂

1



2

This vanishes at x = 0 so - no surprise - the equilibrium is in the center. To check whether
the +4q charges are also in equilibrium, consider the one on the positive side of the axis

E =
4q

4πεo(2a)2
ı̂+

q

4πεoa2
(−ı̂) = 0

so these charge is in equilibrium as well. By symmetry the other +4q charge is as well.
(b) A sketch of field lines

(c) To check the stability of the −q charge I’ll displace it slightly in the positive x direction.
Then the force on it is

F =
1

4πεo

[
4q2

(a− x)2
ı̂− 4q2

(a+ x)2
ı̂

]
=

q2

πεo

4ax

(a2 − x2)2
> 0

so when the charge is displaced to the right it experiences a force to the right; the charge
accelerates away from the equilibrium. This is an unstable equilibrium point.
We also need to look at the perpendicular direction. Displacing the charge “upwards” as
shown

we have

F = −2 sin θ̂ =
−8q2

4πεo(a2 + ε2)

ε√
a2 + ε2

̂ ' − 2q2

πεoa3
ε̂.

This is of the form “F = −kx” so the solution is stable in this direction. (The approxima-
tion uses the fact that the displacement is small so we can neglect terms of higher order
in ε/a.) In summary the equilibrium is stable in the perpendicular direction and unstable
in along the axis. This is called a “saddle point”.
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(3) Starting from the differential form of Gauss’ law derive the integral form.

Starting with the differential form

∇ ·E =
ρ

εo

we integrate over volume. On the left hand side the divergence theorem gives
∫
E · da while on

the right hand side we obtain the charge enclosed so we obtain the integral form∫
E · da =

qencl
εo

(4) A solid sphere of radius R is charged with radially dependent density ρ = kor
2 where ko is a

positive constant in units of C/m5. Find the E-field inside and outside the sphere.

Hint: Use Gauss’s law to show that inside

E =
kor

3

5εo
and outside E =

koR
5

5εo r2

(5) Consider a uniformly charged, long cylinder of radius R. Assume the volume charge density is
ρ.
(a) Using Gauss’ law find the electric field inside (0 ≤ r ≤ R) and outside (r ≥ R).
(b) Sketch the electric field lines.
(c) Make a plot of |E(r)| from r = 0 to r = 4R.

Hint: Inside choosing a gaussian surface of length ` and radius r < R Gauss’ law gives∫
E · da = E · 2πr` =

1

εo
ρπr2` or E =

ρr

2εo

Outside is similar but the charge integral is cutoff at R so

E =
ρR2

2εor
.

(6) An Infinite sheet has a uniform surface charge density σ. Find the E-field everywhere. Solve
for the E-field around two sheets of opposite charge separated by a distance d.

Use Gauss’s law to show that E = σ/2εo on both sides. Inside the capacitor the field is
σ/εo. Outside, the field vanishes.

(7) Find the electric potential V (z) on the axis of a disk with uniform surface charge density σ
and radius a. Find an expression for the E- field when z � a and check that it conforms to
what you expect.

By direct integration of

dV =
1

4πεo

dq

r
=

1

4πεo

σr′dϕdr′

r

we find

φ =
σ

2εo

(√
z2 + a2 − z

)
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To check this result I will expand φ when z � a using (1 + x)n ' 1 + nx. This far away the
disk should look like a point charge. (You might have first found E.) The potential becomes

V =
σ z

2εo

(√
1 +

a2

z2
− 1

)
' σ

2εo

(
a2

2z2

)
=

Q

4πεo

1

z

with Q = σπa2. This yields an electric field of the form E = Q/4πεoz
2 which has the correct

form of a point charge.

(8) Find the electric field of a charge q positioned a distance h above a a conducting plate. Find
the surface charge distribution on the plate.

An image charge problem. The potential is

V =
q

4πεo

([
x2 + y2 + (z − h)2

]−1/2 − [x2 + y2 + (z + h)2
]−1/2)

which is constant on the xy plane. Since E = σ/εo above a charged conductor and since
Ez = −∂φ/∂z we have

σ =
−qh

2π(x2 + y2 + h2)3/2

(9) A charge q sits a bit off center by a distance a in a parallel plate capacitor with separation d
(a < d/2). Find an approximate form of electric potential in the capacitor. Make a careful
sketch of the electric field inside.

Looks like an image charge problem. Let me set coordinates so that the origin is at the
center of the capacitor and next to the charge. Let’s assume that the charge is at x = a. To
start let’s place −q charges at d/2−a beyond the near plate (at x = d−a) and d/2 +a beyond
the far plate (at x = −d − a). Hmm, but each of these will mess with the field at the other
plate so let’s try to cancel these effects by placing two additional +q charges at x = 2d + a
and x = −2d+ a. The process continues. It would be hopeless except as the image charges are
placed further away we can neglect their contribution. The potential is

V =
q

4πεo

([
(x− a)

2
+ y2

]−1/2
−
[
(x− d+ a)

2
+ y2

]−1/2
−
[
(x+ d+ a)

2
+ y2

]−1/2
. . .

)
(To be in 3D you can add in a +z2 in each of the distances.) At x = ±d/2 the potential terms
cancel pairwise - but one term is always left over, hence the need for the infinite sum, which
can be written as (I think)

V =
q

4πεo

[
1√

(x− a)2 + y2
+

∞∑
n=1

(
(−1)n√

(x− nd+ a)2 + y2
+

(−1)n√
(x+ nd+ a)2 + y2

)]

Here’s my sketch of the field:
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(10) A hollow spherical shell of radius a has charge Q, which is uniformly painted over the surface.
By finding the energy stored in the electric field, find the energy stored in this configuration.

The energy is

U =
εo
2

∫
E2dv

while the field is

E =
Q

4πεo

1

r2
for r > a

Thus,

U =
εo
2

∫ ∞
a

Q2

(4πεo)2
1

r4
4πr2dr =

Q2

8πεo

[
−1

r

]∞
a

=
Q2

8πεo

1

a

(11) Find the monopole, dipole (and quadrupole if you wish) moments of your configuration of
charges in problem 2.

For the monopole contribution we add up all the charges to find Q = 4q− q+ 4q = 7q. The
potential associated to this is

V =
1

4πεo

7q

r

where r is from the −q charge at the center.
The dipole term is found from suming over all the qd’s for the charges. So the total in the

x direction is

p = (4q)(−a) + (−q)(0) + (4q)(a) = 0.

The dipole moment vanishes so there is no dipole contribution to the potential. (The other
directions also vanish because the charges are at y = 0 and z = 0.)

The quadrupole contribution is a bit more complicated, as it is a two component object - a
matrix! The charges are at x = −a, x = 0, and x = a.

Qxx =
1

2

(
3a2 − a2

)
(4q + 4q) = 8qa2

while

Qyy = Qzz =
1

2
(−a2)(8q) = −4qa2
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All the other components vanish. The associated potential is

V =
1

4πεo

∑
r̂ir̂jQij

r3
=

1

4πεo

8qa2 − 8qa2

r3
= 0

So, the only contribution to the potential is the monopole term.

(12) A battery, capacitor, and resistor are connected in series around a loop. Initially the there is
no charge on the capacitor. What is the charge at time t?

Everything is in series so we have

E + IR+
Q

C
= 0 or

E
R

+
dQ

dt
+

Q

RC
= 0

which has a solution

Q(t) = EC
(
e−t/RC − 1

)
when the capacitor carries no initial charge.


