Topics in Mathematical Physics (PHYS 320): QPS 2

Welcome to the problem set on Fourier series, Laplace transforms, and series solutions!

- Please submit your solutions in class on Tuesday March 5.
- Please use your notes Mathematica, Wolfram Alpha, Schaum's, and Boas, but no other resources. If you use software please include printouts of your work using the program(s).
- You may not consult any other resources such as the math methods sites on the internet.
- Your solutions must be entirely your own work.
- Please check your results.
(1) (10 pts.) Using the second shifting property find the Laplace transform of the unit step function

$$
u_{a}(x)= \begin{cases}0, & x \leq a \\ 1, & x>a\end{cases}
$$

Assume $a>0$.
(2) (10 pts.) Solve $u^{\prime \prime}+4 u^{\prime}+4 u=0$ for $u(x)$ with initial conditions $u(0)=1$ and $u^{\prime}(0)=0$ using Laplace transforms.
(3) (20 pts.) Solve the initial value problem

$$
u^{\prime \prime}(x)+0.02 u^{\prime}(x)+36 u(x)=f(x) \text { for } u(0)=0 \text { and } u^{\prime}(0)=0
$$

where the function $f(x)$ is a periodic function with period 6 . On the domain $(0,6)$ it is given by

$$
f(x)= \begin{cases}6 x^{2}, & 0 \leq x \leq 3 \\ 0, & 3<x<6\end{cases}
$$

Use Laplace transforms to obtain a solution. Hint: Try working with just f on the interval $(0,6)$ first. Then build in the periodicity.
(4) (5 pts.) Find the Wronskian for the "spherical Bessel equation"

$$
x^{2} y^{\prime \prime}+2 x y^{\prime}+\left(x^{2}-\ell(\ell+1)\right) y=0
$$

(5) (15 pts.) Solve the ODE

$$
u^{\prime \prime}+4 x^{2} u=0
$$

using the series method if $u(0)=4$ and $u^{\prime}(0)=-2$. Find an approximate value for $u(2)$.

