Reading: Finish reading Chapter 13, sections 1-8.
(1) (a) Separate the TISE form of Schrödinger's equation (equation 3.22 on page 631) in spherical coordinates assuming that

$$
V(r)=\frac{1}{2} \mu \omega^{2} r^{2}
$$

This is a 3D harmonic oscillator. Assume the mass is μ.
(b) Find the angular solutions - much like we just did in class.
(c) When you get to the radial equation it is convenient to define

$$
R(r)=\frac{u(r)}{r}, \rho=\alpha r=\sqrt{\frac{\mu \omega}{\hbar}} r, \text { and } \lambda=\frac{2 E}{\hbar \omega}
$$

Show that the ODE becomes

$$
\frac{d^{2} u}{d \rho^{2}}-\frac{\ell(\ell+1)}{\rho^{2}} u-\rho^{2} u=-\lambda u
$$

(d) to be continued... Please note your results so far so you an pick this up in Questions 19.

