Reading: Boas Chapter 12, section 17.
(1) You started this one in Questions 18 - I just include the first (corrected) parts since they had a bad typo. For Thursday start with part e.
(a) Separate the TISE form of Schrödinger's equation (equation 3.22 on page 631) in spherical coordinates assuming that

$$
V(r)=\frac{1}{2} \mu \omega^{2} r^{2}
$$

This is a 3D harmonic oscillator. Assume the mass is μ.
(b) Find the angular solutions - much like we just did in class.
(c) When you get to the radial equation it is convenient to define

$$
R(r)=\frac{u(r)}{r}, \rho=\alpha r=\sqrt{\frac{\mu \omega}{\hbar}} r, \text { and } \lambda=\frac{2 E}{\hbar \omega}
$$

Show that the ODE becomes

$$
\frac{d^{2} u}{d \rho^{2}}-\frac{\ell(\ell+1)}{\rho^{2}} u-\rho^{2} u=-\lambda u
$$

(d) Up to typos this is where you finished for Tuesday.
(e) Use our analysis in asymptopia to motivate the change of dependent variable to

$$
u(\rho)=\rho^{\ell+1} e^{-\rho^{2} / 2} f(\rho)
$$

(f) Solve for $f(\rho)$ by finding a named special function ODE.
(g) Write the solutions in the form $\psi_{n l m}(r, \theta, \varphi)$ - the 'story so far'.
(h) Find the energy levels E_{n}.

