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Abstract

Modified dispersion relations from effective field theory are shown to alter the Chandrasekhar

mass limit. At exceptionally high densities, the modifications affect the pressure of a degenerate

electron gas and can increase or decrease the mass limit, depending on the sign of the modifica-

tions. These changes to the mass limit are unlikely to be relevant for the astrophysics of white

dwarf or neutron stars due to well-known dynamical instabilities that occur at lower densities.

Generalizations to frameworks other than effective field theory are discussed.
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I. INTRODUCTION

The principle of Lorentz Invariance is at the heart of the contemporary formulation of

physical theory, in particular the Standard Model and general relativity. Given the central-

ity of Lorentz Invariance (LI) it is wise to explore as many avenues as possible that test

this principle. One avenue investigated in recent years is the physics of modified dispersion

relations (MDR). A remarkable result of these studies is that astrophysical data significantly

limit Planck scale - suppressed modifications (see e.g. [1, 2] for reviews). The successful

limits on the modifications are due to the high degree of sensitivity of particle process thresh-

olds to Lorentz Violation (LV). Given the delicate interplay between the modifications of the

particles involved, it is helpful to look for systems in which the effects of the modification

on a single particle type are isolated. An apparently ideal system is the physics of a degen-

erate electron gas since the pressure of such a gas supports the gravitational attraction of

white dwarfs. Further, the Chandrasekhar mass limit, about 1.4M�, of white dwarf stars is

obtained in the ultra-relativistic limit, precisely where modifications of dispersion relations

are expected to be large.

Modified dispersion relations often take the form of an expansion in LV terms

E2 = p2 +m2 + κ3
p3

MP

+ κ4
p4

M2
P

+ ... (1)

where the parameters κi may differ for different particle species and MP is the Planck mass,

which we take to be MP =
√
~/(4πG) ≈ 3.45 × 1027 eV (c = 1). In such MDR models

the usual energy-momentum conservation laws hold so there is a preferred frame, which we

take to be the one where the cosmic microwave background is isotropic[16]. While these

modified dispersion relations could be viewed simply as a phenomenological expansion to

test LV, this form has been suggested in a variety of settings including string theory tensor

vacuum expectation values, heuristic calculations of the semiclassical limit of loop quantum

gravity, spacetime foam, non-commutative geometry, analogs of emergent gravity, and some

braneworld models [1, 2].

Given the energy scale of the modifications, it might seem that testing such modifications

might simply be impossible, However even the early work [4, 5] demonstrated that particle

process thresholds are highly sensitive to these modifications. Using several particle pro-

cesses and observed energies, much of the parameter space is ruled out [4, 5]. For instance
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the recent work of Macione et. al. achieves a limit on the parameter space of electrons of

less than 10−5 [3].

In this paper we report on numerical solutions to the exact equations for the Chan-

drasekhar mass limit with modified dispersion relations. We extend the analysis of [6],

relaxing the unphysical assumption of constant density. We find significant differences with

the reported results: The mass limit may be raised or lowered depending on the sign of

the modifications in the electron dispersion relation; and physical equilibrium radii exist for

both signs of the MDR parameter κ. Finally we show that, despite the existence of new mass

limits, there would be no effect on white dwarf astrophysics. The effects are only important

in the Planck-scale regime far above astrophysically accessible densities.

This paper is organized as follows. The next two sub-sections are devoted to discussions

of MDR and the mass limit. In section II we derive the corrections to the mass limit due

to MDR. In the final section III we summarize the results, compare with results previously

reported in [6], and comment on the applicability of the calculation to other frameworks

with modified dispersion relations.

A. Modified Dispersion Relations

To achieve precise limits on the parameters it is necessary to have some additional knowl-

edge of the dynamics of the field theories. This may be achieved in the context of effective

field theory, where effective field theory is used to determine the (non-renormalizable) mass

dimension five (or higher) LV operators.

Myers and Pospelov found that there are essentially only three operators that simulta-

neously break local LI and preserve gauge and rotation invariance. Introducing a preferred

frame field na, the mass dimension 5 operators are [7]

− ζ

MP

naFac n · ∂(nbF̃
bc) +

1

2MP

naψ̄γa(ξ1 + ξ2γ5)(n · ∂)2ψ (2)

where ζ, ξi are dimensionless parameters, F̃ ab is the dual of the usual Fab = ∂aAb − ∂bAa of

Maxwell theory. The dispersion relations for fermions become

E± = p2 +m2 + η±
p3

MP

(3)

where the different signs correspond to the two helicity states. Typically, the modifications

become important when they become comparable to the mass terms. For an electron this
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occurs at an energy scale of 3
√
m2
eMP ∼ 10 TeV - significantly below the Planck scale.

While these energy scales are beyond terrestrial experiments, astrophysical processes at

these energy scales effectively constrain the cubic modifications [3–5].

The fact that electron cubic MDR have two parameters leads to new effects. At sufficiently

high energies electrons are unstable to helicity decay [1]. If η− > η+ then the negative helicity

electrons will decay producing a photon and positive helicity electron. While there is no

kinematic threshold for this process, an effective threshold may be derived by studying

the reaction rate. The resulting effective threshold is (m2
eMP/∆η)1/3 or about 10 TeV for

∆η = |η+ − η−| < 0.4, as determined by photon stability [1]. The lifetimes of the negative

helicity electron decrease around this effective energy; lifetimes for a 1 TeV electron is about

1 s while for a 50 TeV electron it is reduced to about 10−9 s [1]. However the lifetimes increase

at higher energies due to the fact that the states become more chiral. The MDR effects on

the Chandrasekhar mass only occur at such high energies that the electron population is

effectively in one helicity state. Assuming that the astrophysical processes, e.g. accretion,

driving the increase in electron energy are sufficiently slow as compared to the lifetimes of

the helicity states all the electrons would have positive helicity. Since the same analysis

applies for the other case, η+ > η−, the resulting degenerate electron gas will all be in the

helicity state associated with the smallest parameter. Hence we will denote the electron

parameter with κ, where κ = min(η+, η−).

For the purposes of studying the effect on the physics of compact stars we assume κ is

order one and write the MDR as

E2 = p2
[
1 + κ

(
p

MP

)n]
+m2. (4)

While the case of dimension 5 operators and cubic modifications (n = 1) is the most interest-

ing, since the analysis easily generalizes we present the mass limit calculation for arbitrary

n. The range of validity for this effective description is p < MP .

B. Chandrasekhar Mass Limit

White dwarf stars are an end stage of stellar evolution for stellar masses less than ∼ 8M�.

As the star cools and contracts, the electron wavefunctions begin to overlap appreciably. As

the star contracts further, the electrons are forced into higher and higher momentum states
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to satisfy the Pauli exclusion principle, forming a degenerate electron gas with relativistic

Fermi energy. Because the thermal energy is so much lower than the Fermi energy the

temperature is effectively zero. The Chandrasekhar mass limit, about 1.4M�, of white

dwarfs stars arises when the Newtonian gravitational attraction due to the nuclei (often

comprised of carbon and helium) is balanced by the outwards pressure of degenerate, cold

electrons. The mass limit is obtained for an ultra-relativistic Fermi gas, when E/me ∼ 104

with central densities in excess of ρ ∼ 106 g cm−3. Thus the Chandrasekhar mass limit is

derived in the framework of Newtonian gravitation and the statistical mechanics of an ideal,

non-interacting, ultra-relativistic gas of electrons at T = 0.

The Chandrasekhar mass limit is largely of theoretical interest. Other physics comes into

play at high densities introducing processes known as dynamical instabilities. Depending

on the details of the star’s composition, two processes transform the physics of the star.

At densities ρ ∼ 109 − 1011 the electrons acquire sufficient energy to induce inverse β-

decay and the star turns into a neutron star in a process called neutronization. At the

critical density of ∼ 1010 g cm−3 the onset of general relativistic instabilities causes the

star to collapse. These threshold densities are composition dependent so, for instance, the

general relativistic instability is irrelevant to iron white dwarfs, which undergo neutronization

before gravitational collapse. For helium and carbon white dwarfs, the situation is reversed,

instabilities due to general relativity occur before neutronization.

II. CHANDRASEKHAR MASS LIMITS WITH MODIFIED DISPERSION RELA-

TIONS

To determine the actual mass limit - with or without modifications - a numerical analysis

must be done. In calculating the electron degeneracy pressure, which supports the gravita-

tional attraction, we assume that the star is isotropic and assume that the velocity of the

star is not large in the preferred frame. The pressure is given by

P =
1

3
〈ne p · v〉 (5)

where ne is the electron number density. We use the group velocity in the MDR case, so

that

v :=
dE

dp
=

p

E

(
1 + κ

n+ 2

2

pn

Mn
P

)
. (6)
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As the temperature is effectively zero, all the states below the Fermi momentum, pF , are

occupied. Hence the pressure in the continuum limit simply becomes

P =
8π

3h3

∫ pF

0

p4

E

(
1 + κ

n+ 2

2

pn

Mn
P

)
dp (7)

Introducing the dimensionless momentum x := p/me and the parameter δ := κ(me/MP )n

we have

P =
8πm4

e

3h3

∫ xF

0

x4
(

1 + δ (n+2)
2
xn
)

√
1 + x2 + δ xn+2

dx (8)

A white dwarf’s mass depends on the star’s composition. To express the white dwarf

density then it is conventional to parameterize the density in terms of the number density

of electrons and the atomic mass unit mu = 1.66 × 10−24 g, so that ρ = µmu ne, where

µ is the electronic molecular weight. Since white dwarfs are composed mostly of carbon

with traces of helium, the proton-electron density ratio is close to 2 since these nuclei have

electron-nucleon ratios of 1 to 2.

Before setting up the numerical solution, it is useful to estimate the affect of the modifi-

cations. From equation (8), one can show that the pressure in the ultra- relativistic limit is

approximately

P '
(

2πm4
e

3h3

)[
x4F + δ

2(n+ 1)

(n+ 4)
xn+4
F

]
. (9)

Thus, the MDR effectively add an attractive (for κ < 0) or repulsive (for κ > 0) force that

scales with the Fermi momentum as pn+4
F .

In equilibrium the gravitational attraction must be balanced by the outward force due

to the pressure of the degenerate gas. So, up to factors of order one, the ratio GM2/R4P

should be constant. Using the pressure in the ultra-relativistic regime and ρ ∼ M/R3 we

see that this ratio becomes

GM2

R4P
∝M2/3

[
1− κ

(
M1/3h

m
1/3
u MPR

)n]
, (10)

neglecting factors of order one. In the non-relativistic case the ratio scales as M1/3R so

increasing mass requires decreasing radius to maintain the value of the ratio. This drives

the system into the relativistic regime given in equation (10). The leading term is constant

in R indicating that here are equilibrium solutions for suitable mass - the mass limit - and

radius. However, if the mass exceeds the limit then the gravitational force will exceed the

pressure and the star will collapse. The correction due to MDR modifies this description. In
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equilibrium the ratio of equation (10) has a definite value, as before. For κ > 0 as the mass

M is increased, equilibrium may be restored by decreasing the star’s radius R, achieving a

new equilibrium at higher density. For κ < 0, as the mass is increased the correction term

must play a role and the star must increase in relative size to remain in equilibrium. For a

star at the Chandrasekhar mass limit the correction, approximately (M/mu)
n/3(LP/R)n, is

negligible, only 10−14 for n = 1. (LP is the Planck length.) We will see that this is born out

in the numerical analysis.

At T = 0 all states are inside a sphere of radius pF in momentum space so the number

density is simply

ne = 2
4π

3

(pF
h

)3
(11)

giving a density of

ρ =
8π

3
µmu

(me

h

)3
x3F ≡ µρox

3
F (12)

where

ρo :=
8π

3
mu

(me

h

)3
' 9.81× 105 g cm−3 (13)

and xF = pF/me.

In the context of the Chandrasekhar mass limit (see [8, 9]), the star is in equilibrium when

the gradient of the degeneracy pressure supports the Newtonian gravitational attraction. For

a spherically symmetric mass distribution the radial pressure gradient satisfies

dP

dr
= −Gρ(r)m(r)

r2
(14)

Differentiating and gathering terms gives

1

r2
d

dr

(
r2

ρ

dP

dr

)
= −4πGρ. (15)

Note that we have not made the approximation that the density ρ(r) is uniform.

To set up the numeric calculation it is useful to introduce the dimensionless electron

energy z(r) = E(r)/me and its value at the center of the star, zc := z(0). A convenient

dimensionless radius ζ is given by

ζ :=
r

ro
with ro :=

1

2
√

3

MP

mu

h

me

1

µzc
' 7.77× 109 1

µzc
cm. (16)

Normalizing the dimensionless energy z(ζ) to the value at the center zc gives the normalized

energy Q(ζ) := z(ζ)/zc. The radial evolution of this normalized energy is determined by the
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equilibrium condition (15). To derive the resulting equation note that

1

ρ

dP

dr
=

1

ρ

dP

dxF

dxF
dz

dz

dr
(17)

=

(
1

µρox3F

)(
8πm4

e

3h3

)x4F
(

1 + δ (n+2)
2
xn+1
F

)
√

1 + x2F + δxn+2
F

( z

xF + δ n+2
2
xn+1
F

)
dz

dr

=

(
8πm4

e

3ρoµh3

)
dz

dr
(18)

The third line follows from the fact we used the group velocity in the expression for the

pressure. Using this result and the dimensionless radius ζ in equation (15) gives

d2Q

dζ2
+

2

ζ

dQ

dζ
+

(
xF (Q)

zc

)3

= 0 (19)

where xF (Q) is the dimensionless momentum in terms of Q(ζ) as determined by the equation

Q2 =
1

z2c
(1 + x2F + δxn+2

F ). (20)

In the usual context of special relativity when κ = δ = 0, xF (Q) is simply given by√
Q2 − 1/z2c . For large values of the central energy, it is possible to approximate the xF (Q)

as

xF ' zc

√
Q2 − 1

z2c

[
1− 1

2
δznc

(
Q2 − 1

z2c

)n/2]
. (21)

The boundary conditions for the evolution equation (19) at ζ = 0 are Q(0) = 1, by definition,

and dQ/dζ|ζ=0 = 0, to ensure vanishing pressure gradient as required by equation (14).

The non-linear differential equation (15) may be solved numerically, once values for the

parameters n, δ, and zc are chosen. To find solutions, the normalized energy Q is evolved

via equation (19) outward from the center of the star. The outer boundary is determined by

vanishing density, which in terms of the normalized energy means that xF (Q) = 0. When

zc is very large, this is well approximated by Q(ζR) ≈ 0. For an example numerical solution

consider the case n = 1, κ = −1, and zc = 1021. First the physical root of the cubic equation

for xF (Q), equation (20), is found by selecting the root for which the density is positive and

small for small Q (since ρ ∝ x2F ∼ Q3). Using this root the resulting equation (19) is

numerically evolved outward until Q(ζR) = 0. The resulting numerical solution is shown in

figure 1 as the (red) leftmost curve. The other solutions for n = 1 are found in a similar

manner. The case for which n = 1, κ = +1, and zc = 1021 is the (green) rightmost curve.
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The mass of the star is determined by integrating the density to the surface of the star

r = R [8, 9]

M =

∫ R

0

4πr2ρ(r)dr = 4πµρoα
3

∫ ζR

0

ξ2x3F (ζ)dζ

= 4πµz3cρoα
3

[
−
∫ ζR

0

d

dζ

(
ζ2
dQ

dζ

)
dζ

]
=
√

3π2

(
2

µ

)2
M3

P

m2
u

[
−ζ2dQ

dζ

]
ζR

(22)

where the second line follows from equation (19). Thus for large zc, the product of the root

of Q(ζ) = 0 and the slope at this radius give the mass of the star.

The mass limit Mch is determined in the ultra-relativistic limit. This is often denoted

zc → ∞. However in the present case the onset of the MDR contributions to the pressure

occur at central energies of zc ∼ 1016. Since this energy is so well separated from the usual

scale zc ∼ 104, we can clearly see the regime of the usual Chandrasekhar mass limit and a

new regime where the MDR effects are manifest.

For the κ = 1 case plotted in figure 1 (n = 1, zc = 1021) we find that, within the extent

of the expected validity of the MDR, the new mass limit MMDR becomes

MMDR = 1.618
(µ

2

)2
M� (23)

about 10 % larger than the usual, 1.456M�, result. The case for which κ = −1 and δzc =

−0.1 gives

MMDR = 1.333
(µ

2

)2
M�. (24)

Notice that it is possible to either increase or decrease the Chandrasekhar mass limit.

The radius of the star is found from ζR, R = roζR. As in the usual case, because of the

scaling of zc in ro, the radii vanish as zc →∞. In the above examples the values for Rµ are

6× 10−12 cm and 8× 10−12 cm, respectively, as anticipated in the qualitative argument. It

is clear from these figures that new physics, such as the general relativistic correction (the

Schwarzchild radius is a few kilometers), dominates well before the MDR effects become

important.

The density ρ/(µρo) ≡ (xF (Q)/zc)
3 for the solutions of the cases κ = ±1 and κ = 0

(|δzc| = 0.1) are plotted in figure 2. They are manifestly non-constant.

The solution space of equilibrium configurations is confined by the regime of validity of

the MDR, δznc < 1. Within this limit the n = 1 case was solved using the exact expression
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for the physical root xF (Q) of the cubic equation. Solutions showed corrected mass limits as

the central normalized energy rose above 1016. As one might expect, the corrections become

significant as δzc increases to 1/2, when the mass limit becomes about 1.94 solar masses for

κ > 0 and .84 for κ < 0. So as the central energy increased from ∼ 1016 the MDR effects

continued to increase (or decrease) the mass limit to the limits of the effective description

at onset of the Planckian regime.

The n > 1 solution spaces displayed qualitatively similar effects on the mass limit. Using

the approximation of equation (21), the solutions were obtained for n = 2, 3, 4. For example,

the mass limit for n = 3, κ = 1, zc = 3× 1021 becomes 1.557(µ/2)2M�.

In summary, the numerical solutions show that the Chandrasekhar mass limit is altered

by about 10/%due to the modifications in the dispersion relations, increasing for positive κ

and decreasing for negative κ. However, these effects occur at such high central densities

that dynamical instabilities occur well before such energies are reached, rendering the MDR

effects irrelevant for astrophysics.

III. CONCLUSION

Unlike the threshold calculations, which are rich in new features and lead to strong

constraints on the parameters (e.g. [3]), the calculation of the Chandrasekhar mass limit

using MDR is straightforward. The mass limit is raised or lowered according to the sign of

the modification. As one can see in the numerical results, the qualitative argument, or from

equation (21) for high zc, the effects become important when δzncQ
n ∼ 1 or near the Planck

scale, E/MP ∼ 1. This is well-beyond the scale at which other well-known processes occur

so these new mass limits are not directly astrophysically relevant.

This exact analysis corrects the results reported in [6], where it is suggested that current

data rule out the κ > 0 case (α < 0 in [6]). In the analysis of [6] the MDR correction to the

radius, δR, is

δR = κ
~

5MP

(
9πM

mu

)1/3
[

1−
(
M

M̃

)2/3
]−3/2

. (25)

where M̃2/3 = (~/3πG)(9π/8mu)
4/3. Hence, as M → M̃ the MDR correction grows arbi-

trarily large. This observation led Camacho to conclude that current data seems to rule out

positive values of κ. This conclusion rests from the (incorrect) assumption that the density
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FIG. 1: Results from numerical integration of the equilibrium condition for n = 1, κ = ±1, and

zc = 1021. Solutions for the normalized energy Q(ζ) are plotted for κ = −1 the lower (red) curve,

κ = 0 - the unmodified case - the middle (blue) curve, and κ = +1 the upper (green) curve. The

inset plot shows the neighborhood of ζ = −7. This plot shows the zeros of Q and the relative

slopes, important for determining the limiting mass, for the cases κ = −1, κ = 0, κ = +1, from left

to right. The color coding is the same as in the larger plot. In addition, the numerical solution

with approximation of equation (21) is included for the κ = 1 case. At this scale it is barely

distinguishable from the solution with the exact relation for the density.

is uniform. However, as the present analysis shows, this is false; as shown in figure 2 the

density is not constant throughout the star. While the radius does increase with central

energies for positive κ, the actual radii at these energies are so small that other processes

such as neutronization and gravitational collapse would occur long before the star evolved

to the state.

Current observations seem to indicate white dwarfs with smaller radii than expected, at

least for iron cores [10, 11]. The conclusion of [6] suggests that solutions with negative κ

(or α > 0), when the white dwarf radius in the MDR case is reduced, lead to a possible

explanation for the smaller radii. However as seen in the result reported after equation (24),
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FIG. 2: The densities ρ/(µρoz
3
c ) are shown for |δzc| = 0.1. On the left of the plot the solutions

are, from top to bottom κ = −1 (red), κ = 0 (blue), and κ = +1 (green).

the model with the realistic density shows significant corrections only at the Planck scale.

The argument rests on fermion statistics and the modified dispersion relation. Hence,

in so far as these relations hold, the calculations of the mass limits generalize beyond the

EFT approach. Barring a subtile modification of statistics, the calculations are valid mutatis

mutandis in the context of doubly special relativity (DSR) theories [12, 13], for which the

modified dispersion relations are regarded as the invariant of a relativity group with two

invariant scales - not only the speed of massless modes, c, but also an invariant length or

energy[17]. As interpreted by Hossenfelder [15] the DSR dispersion relations arise from an

effective description of gravitational effects at high energy-density. One could extend the

mass limit analysis to all momenta since the exact MDR in DSR apply at all momenta. In any

case, the new mass limits would appear not to have astrophysical relevance. Neutronization

and the effects of general relativity, or the theory that replaces it in the DSR context, would

still occur at much lower momenta.

The MDR effects on the Chandrasekhar mass limit may also be interpreted in the context

of generalized uncertainty principle. The non-linear relation between particle momentum

in a high energy-density region and the asymptotic region, induces a modification in the
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Heisenberg uncertainty principle [15]

∆x∆p ≥ ~
2

∣∣∣∣〈∂p∂k
〉∣∣∣∣ (26)

Expanding the modification as ∂p/∂k = 1+κ(p/MP )n and following the method of estimat-

ing the ground state energy of the hydrogen atom from the uncertainty principle, one may

show that the pressure is modified as in equation (7) (up to a factor of 1/2). This leads to

the same effects as derived in the EFT context.
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