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Spin networks, essentially labeled graphs, are ‘‘good quantum numbers’’ for the quantum theory of
geometry. These structures encompass a diverse range of techniques which may be used in the
quantum mechanics of finite dimensional systems, gauge theory, and knot theory. Though accessible
to undergraduates, spin network techniques are buried in more complicated formulations. In this
paper a diagrammatic method, simple but rich, is introduced through an association of 232
matrices with diagrams. This spin network diagrammatic method offers new perspectives on the
quantum mechanics of angular momentum, group theory, knot theory, and even quantum geometry.
Examples in each of these areas are discussed. ©1999 American Association of Physics Teachers.
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I. INTRODUCTION

Originally introduced as a quantum model of spat
geometry,1 spin networks have recently been shown to p
vide a basis for the states of quantum geometry—kinem
states in the Hamiltonian study of quantum gravity.2 At their
roots, spin networks provide a description of the quant
mechanics of two-state systems. Even with this humble fo
dation, spin networks form a remarkably diverse struct
which is useful in knot theory, the quantum mechanics
angular momentum, quantum geometry, and other areas

Spin networks are intrinsically accessible to undergra
ates, but much of the material is buried in more comp
formulations or lies in hard-to-find manuscripts. This artic
is intended to fill this gap. It presents an introduction to t
diagrammatic methods of spin networks, with an empha
on applications in quantum mechanics. In so doing, it off
undergraduates not only a fresh perspective on angular
mentum in quantum mechanics but also a link to lead
edge research in the study of the Hamiltonian formulation
quantum gravity. One quantum operator of geometry is p
sented in detail; this is the operator which measures the
of a surface.

The history of spin networks goes back to the early s
enties when Penrose first constructed networks as a fu
mentally discrete model for three-dimensional space. D
culties inherent in the continuum formulation of physics l
Penrose to explore this possibility.3 These difficulties come
from both quantum and gravitational theory as seen fr
three examples: First, while quantum physics is based
noncommuting quantities, coordinates of space are comm
ing numbers, so it appears that our usual notion of sp
conflicts with quantum mechanics. Second, on a more p
matic level, quantum calculations often yield divergent a
swers which grow arbitrarily large as one calculates phys
quantities on finer and smaller scales. A good bit of mach
ery in quantum field theory is devoted to regulating a
renormalizing these divergent quantities. However, many
these difficulties vanish if a smallest size or ‘‘cutoff’’ is in
troduced. A discrete structure, such as a lattice, provi
such a cutoff. Thus, were space–time built from a lattice
network, then quantum field theory would be spared man
the problems of divergences. Third, there is a hint com
from general relativity itself. Since regular initial data, say
collapsing shell of matter, can evolve into a singularity, re
tivity demonstrates that the space–time metric is not alw
well-defined. This suggests that it is profitable to study ot
972 Am. J. Phys.67 ~11!, November 1999
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methods to model space–time. As the absolute space
time of Newton is a useful construct to apply in many eve
day calculations, perhaps continuous space–time is sim
useful as a calculational setting for a certain regime of ph
ics.

Motivated by these difficulties, Penrose constructed a d
crete model of space. The goal was to build a consis
model from which classical, continuum geometry emerg
only in a limit. Together with John Moussouris, he was ab
to show that spin networks could reproduce the famil
three-dimensional angles of space—a ‘‘theory of quantiz
directions.’’4 In this setting, spin networks were trivalen
graphs labeled by spins. For applications in quantum ge
etry it is better to work with spin networks with higher va
lence vertices.

These suitably generalized spin networks have b
shown to form the eigenspace of operators measuring g
metric quantities such as area and volume.5 These new spin
network techniques arose out of a powerful suite of meth
for background-independent quantization that has been
veloped over the past few years. Spin networks are fanta
cally useful both as a basis for the states of quantum ge
etry and as a computational tool. Spin network techniq
were used to compute the spectrum of area and volu
operators.6 Spin networks, first used as a combinatorial ba
for space–time, now find uses in quantum gravity, kn
theory, and group theory.

This spin network primer begins by associating 232 ma-
trices with diagrams. The first goal is to make the diagra
matics ‘‘planar isotopic,’’ meaning the diagrams are inva
ant under smooth deformations of lines in the plane. It
analogous to the manipulations which one would expect
ordinary strings on a table. Once this is completed, the st
ture is enriched in Sec. II C to allow combinations and int
sections between lines. This yields a structure which inclu
the rules of addition of angular momentum. It is further e
plored in Sec. III with the diagrammatics of the usual angu
momentum relations of quantum mechanics.~A reader more
familiar with the angular momentum states of quantum m
chanics may wish to go directly to this section to see h
spin networks are employed in this setting.! In Sec. IV this
connection to angular momentum is used to give a diagr
matic version of the Wigner–Eckart theorem. The article fi
ishes with a discussion on the area operator of quantum g
ity.
972© 1999 American Association of Physics Teachers
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II. A PLAY ON LINE

This section begins by building an association between
Kronecker delta functions, the 232 identity matrix~or dA

B),
and a line. It is not hard to ensure that the lines behave
elastic strings on a table. The association and this requ
ment lead to a little bit of knot theory, to the full structure
spin networks, and to a diagrammatic method for the qu
tum mechanics of angular momentum.

A. Line, bend, and loop

The KroneckerdA
B is the 232 identity matrix in compo-

nent notation. Thus,

~dA
B!5S 1 0

0 1D
andd0

05d1
151 while d0

15d1
050. The indicesA andB in this

expression may take one of two values, 0 or 1. The diagr
matics begins by associating the Kroneckerd with a line

The position of the indices ond determines the location o
the labels on the ends of the line. Applying the definitio
one has

If a line is the identity then it is reasonable to associat
curve with a matrix with two upper~or lower! indices. There
is some freedom in the choice of this object. As a promis
possibility, one can choose the antisymmetric matrixeAB ,

~eAB!5~eAB!5S 0 1

21 0D
so that

Similarly,

As a bent line is a straight line ‘‘with one index lowered
this choice fits well with the diagrammatics:dA

CeCB5eAB .
After a bit of experimentation with these identification

one discovers two awkward features. The diagrams do
match the expected moves of elastic strings in a plane. F
since dA

CeCDeDEdE
B5eADeDB52dA

B , straightening a line
yields a negative sign:

~1!

Second, as a consequence ofeADeBCeCD52eAB ,
973 Am. J. Phys., Vol. 67, No. 11, November 1999
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However, these ‘‘topological’’ difficulties are fixed by mod
fying the definition of a bent line. One can add ani to the
antisymmetric tensors

Since each of the two awkward features contains a pai
e’s, the i fixes these sign problems. However, there is o
more property to investigate.

On account of the relationdA
DdB

CẽCD52 ẽAB one has~the
indicesC andD are added to the diagram for clarity!

—not what one would expect for strings. This final proble
can be cured by associating a minus sign with each cross

Thus, by associating ani with every e and a sign with
every crossing, the diagrams behave as continuously
formed lines in a plane. The more precise name of this c
cept is known as planar isotopy. Structures which can
moved about in this way are called topological. What th
association of curves withd’s and ẽ ’s accomplishes is that i
allows one to perform algebraic calculations by moving lin
in a plane.

A number of properties follow from the above definition
The value of a simple closed loop takes a negative value7

~3!

since ẽABẽAB52eABeAB522; a closed line is a number
This turns out to be a generic result in that a spin netw
which has no open lines is equivalent to a number.

A surprisingly rich structure emerges when crossings
considered. For instance the identity, often called
‘‘spinor identity,’’ links a pair of epsilons to products o
deltas,

eACeBD5dA
BdC

D2dA
DdC

B .

Using the definitions of theẽ matrices one may show tha
diagrammatically, this becomes

~4!

Note that the sign changes, e.g.,

This diagrammatic relation of Eq.~4! is known as ‘‘skein
relations’’ or the ‘‘binor identity.’’ The utility of the relation
becomes evident when one realizes that the equation ma
applied anywhere within a larger diagram.

One can also decorate the structure by ‘‘weighting’’
‘‘tagging’’ edges.8 Instead of confining the diagrams to b
simply a sum of products ofd ’s and e’s, one can include
other objects with a tag. For instance, one can associa
tagged line with any 232 matrix such ascA

B ,
973Seth A. Major
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These tags prove to be useful notation for angular mom
tum operators and for the spin networks of quantum geo
etry. Objects with only one index can frequently be rep
sented as Kronecker delta functions with only one index.
example,

The result of these associations is a topological struc
in which algebraic manipulations ofd ’s, e’s, and other 2
32 matrices are encoded in manipulations of open or clo
lines. For instance, straightening a wiggle is the same
simplifying a product of twoẽ ’s to a singled. It also turns
out that the algebra is ‘‘topological:’’ Any two equivalen
algebraic expressions are represented by two diagrams w
can be continuously transformed into each other. Making
of a result of Reidemeister and the identities above it take
few lines of de algebra to show that the spin network di
grammatics is topologically invariant in a plane.

B. Reidemeister moves

Remarkably, a knot9 in three-dimensional space can b
continuously deformed into another knot, if and only if th
planar projection of the knots can be transformed into e
other via a sequence of four moves called the ‘‘Reidemei
moves.’’10 Though the topic of this primer is mainly o
two-dimensional diagrams, the Reidemeister moves
given here in their full generality—as projections of knots
three-dimensional space. While in two dimensions one
only an intersection,

when two lines cross, in three dimensions one has the ‘‘o
crossing,’’

and the ‘‘undercross,’’

as well as the intersection

There are four moves:
• Move 0:In the plane of projection, one can make smoo

deformations of the curve

• Move I: As these moves are designed for on
dimensional objects, a curl may be undone,

This move does not work on garden-variety string. T
string becomes twisted~or untwisted!. ~In fact, this is the
way yarn is made.!

•Move II: The overlaps of distinct curves are not knotte
974 Am. J. Phys., Vol. 67, No. 11, November 1999
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• Move III: One can perform planar deformations und
~or over! a diagram

With a finite sequence of these moves the projection o
knot may be transformed into the projection of any oth
knot which is topologically equivalent to the original. If on
knot may be expressed as another with a sequence of t
moves then the knots are called ‘‘isotopic.’’ Planar isotopy
generated by all four moves with the significant caveat t
there are no crossings

only intersections

Planar isotopy may be summarized as the manipulations
would expect for elastic, nonsticky strings on a table top—
they are infinitely thin.

Move I on real strings introduces a twist in the string. Th
move is violated by any line which has some spatial exten
the transverse direction, such as ribbons. Happily, there
diagrammatic spin networks for these ‘‘ribbons’’ as well.11

C. Weaving and joining

The skein relations of Eq.~4! show that given a pair of
lines, there is one linear relation among the three quantit

and

So a set of graphs may satisfy many linear relations. It wo
be nice to select a basis which is independent of this iden
After some work, this may be accomplished by choosing
antisymmetric combinations of the lines—‘‘weaving with
sign.’’ 12 The simplest example is for two lines,

~5!

For more than two lines the idea is the same. One sums
permutations of the lines, adding a sign for each cross
The general definition is

~6!

in which as represents one permutation of then lines andusu
is the minimum number of crossings for this permutatio
The boxeds in the diagram represents the action of t
permutation on the lines. It can be drawn by writing 12¯n,
then permutation just above it, and connecting the same
ments by lines.
974Seth A. Major
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In this definition, the labeln superimposed on the edg
record the number of ‘‘strands’’ in the edge. Edge are u
ally labeled this way, though I will leave simple 1-lines u
labeled. Two other notations are used for this weaving wit
sign

These antisymmetrizers have a couple of lovely prop
ties, retracing and projection: The antisymmetrizers are ‘
reducible,’’ or vanish when a pair of lines is retraced,

~7!

which follows from the antisymmetry. Using this and th
binor identity of Eq.~4! one may show that the antisymm
trizers are ‘‘projectors’’~the combination of two is equal to
one!

Making the simplest closed diagram out of these lin
gives the loop value often denoted asDn ,

The factorn11 expresses the ‘‘multiplicity’’ of the numbe
of possible ‘‘A values’’ on an edge withn strands. Each line
in the edge carries an index, which takes two possible val
To see this, note that for an edge witha strands the sum o
the indicesA,B,C,... is 0,1,2,...,a. So that the sum takesa
11 possible values. One may show using the recursion
lations for Dn ~Ref. 13! that the loop value is equal to thi
multiplicity. As we will see in Sec. III, the number of pos
sible combinations is the dimension of the representation

As an example of the loop value, the 2-loop has value
This is easily checked using the relations for the basic lo
value @Eq. ~3!# and the expansion of the 2-line using th
skein relation

~8!

Edges may be further joined into networks by making u
of internal trivalent vertices,

The dashed circle is a magnification of the dot in the diagr
on the left. Such dashed curves indicate spin network st
ture at a point. The ‘‘internal’’ labelsi, j, k are positive
integers determined by the external labelsa, b, cvia

i 5~a1c2b!/2, j 5~b1c2a!/2, k5~a1b2c!/2.

As in quantum mechanics the external labels must satisfy
triangle inequalities

a1b>c, b1c>a, a1c>b

and the suma1b1c is an even integer. The necessity
these relations can be seen by drawing the strands thro
the vertex.
975 Am. J. Phys., Vol. 67, No. 11, November 1999
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With this vertex one can construct many more comp
networks. After the loop, the next simplest closed graph
two vertices,

The general evaluation, given in the appendix, of this d
gram is significantly more complicated. As an example
give the evaluation ofu~1,2,1! using Eq.~8!,

One can build ever more complicated networks. In fact, o
can soon land a dizzying array of networks. I have collec
a small zoo in the appendix with full definitions.

Now all the elements are in place for the definition of sp
networks. A spin network consist of a graph, with edges a
vertices, and labels. The labels, associated edges, repr
the number of strands woven into edges. Any vertex w
more than three incident edges must also be labeled
specify a decomposition into trivalent vertices. The graphs
spin networks need not be confined to a plane. In a pro
tion of a spin network embedded in space, the crossi
which appear in the projection may be shown as in the
idemeister moves with over-crossing

and under-crossing

III. ANGULAR MOMENTUM REPRESENTATION

As spin networks are woven from strands which take t
values, it is well-suited to represent two-state systems. I
perhaps not surprising that the diagrammatics of spin n
works include the familiarujm& representation of angular mo
mentum. The notations are related as

~Secretly, the ‘‘u’’ for ‘‘up’’ tells us that the index A only
takes the value 1. Likewise ‘‘d’’ tells us the index is 0.! The
inner product is given by linking upper and lower indices, f
instance,

K 1

2

1

2U 1

2

1

2L ;u
l

l

51.

For higher representations,14

~9!

in which
975Seth A. Major



-

nn
o

at

d

o
ts
tio
ac

f

t

en-

ith
era-

op-

n

oes
-

Nrs5S 1

r !s! ~r 1s!! D
1/2

, j 5
r 1s

2
, m5

r 2s

2
. ~10!

The parentheses in Eq.~9! around the indices indicate sym
metrization, e.g.,u(AdB)5uAdB21uBdA. The normalization
Nrs ensures that the states are orthonormal in the usual i
product. A useful representation of this state is in terms
the trivalent vertex. Using the notation

for u and similarly ford I have

Angular momentum operators also take a diagramm
form. As all spin networks are built from spin-1

2 states, it is
worth exploring this territory first. Spin-1

2 operators have a
representation in terms of the Pauli matrices

s15S 0 1

1 0D , s25S 0 2 i

i 0 D , s35S 1 0

0 21D ,

with

Ŝi5
\

2
s i

for i 51,2,3. One has

s3

2 U12 1

2L 5
1

2 U12 1

2L ,

which is expressed diagrammatically as

Or, since Pauli matrices are traceless,

and using Eq.~8! one has15

A similar relation holds for the statesu 1
22 1

2&. The basic ac-
tion of the spin operators can be described as a ‘‘han
which acts on the state by ‘‘grasping’’ a line.16 The result,
after using the diagrammatic algebra, is either a multiple
the same state, as fors3 , or a new state. If the operator ac
on more than one line, a higher dimensional representa
then the total action is the sum of the graspings on e
edge.17

The Ĵz operator can be constructed out of thes3 matrix.
976 Am. J. Phys., Vol. 67, No. 11, November 1999
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The total angular momentumz component is the sum o
individual measurements on each of the subsystems.18 In dia-
grams, the action of theĴz operator becomes

[\u jm&.

The definition of the quantitiesr ands was used in the las
line.

This same procedure works for the other angular mom
tum operators as well. TheĴx operator is constructed from

the Pauli matrixs1 . When acting on one line the operatorĴx
matrix ‘‘flips the spin’’ and leaves a factor

The reader is encouraged to try the same procedure forĴy .
The raising and lowering operators are constructed w

these diagrams as in the usual algebra. For the raising op
tor Ĵ15 Ĵ11 i Ĵ2 one has

In a similar way one can compute

Ĵ2Ĵ1u jm&5\2~r 11!su jm&,

from which one can compute the normalization of these
erators: Taking the inner product witĥjmu gives the usual
normalization for the raising operator

Ĵ1u jm&5\As~r 11!u jm&5\A~ j 2m!~ j 1m11!u jm&.

Note that sincer ands are non-negative and no larger tha
2 j , the usual condition onm,2 j <m< j , is automatically
satisfied.

Though a bit more involved, the same procedure g
through for theĴ2 operator. It is built from the sum of prod

ucts of operatorsĴ25 Ĵx
21 Ĵy

21 Ĵz
2. Acting once with the ap-

propriate Pauli operators, one finds
976Seth A. Major
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Acting once again, some happy cancellation occurs and
result is

Ĵ2u jm&5
\2

2 S r 21s2

2
1rs1r 1sD u jm&,

which equals the familiarj ( j 11). Actually, there is a pretty
identity which gives another route to this result. The Pa
matrices satisfy

~11!

so the product is a 2-line. Similarly, theĴ2 operator may be
expressed as a 2-line. As will be shown in Sec. V this s
plifies the above calculation considerably.

IV. A BIT OF GROUP THEORY

As we have seen, spin networks, inspired by express
simple d and e matrices in terms of diagrams, are close
related to the familiar angular momentum representation
quantum mechanics. This section makes a brief excur
into group theory to exhibit two results which take a cle
diagrammatic form, Schur’s lemma and the Wigner–Eck
theorem.

Readers with experience with some group theory m
have noticed that spin network edges are closely relate
the irreducible representations of SU~2!. The key difference
is that, on account of the sign conventions chosen in S
II A, the usual symmetrization of representations is repla
by the antisymmetrization of Eq.~6!. In fact, each edge o
the spin network is an irreducible representation. The tag
the edges can identify how these are generated—through
spatial dependence of a phase, for instance.

Since this diagrammatic algebra is designed to handle
combinations of irreducible representations, all the fami
results of representation theory have a diagrammatic fo
For instance, Schur’s lemma states that any matrixT which
commutes with two~inequivalent! irreducible representa
tionsDg andDg8 of dimensionsa11 andb11 is either zero
or a multiple of the identity matrix

TDg5Dg8T for all gPG⇒T5 H 0
l

if aÞb
if a5b.

Diagrammatically, this is represented as

The constant of proportionality is given byl which, being a
closed diagram, is equivalent to a number.

The Wigner–Eckart theorem also takes a nice form in
diagrammatic language, providing an intuitive and fresh p
977 Am. J. Phys., Vol. 67, No. 11, November 1999
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spective on the theorem. It can help those who feel lost in
mire of irreducible tensor operators, reduced matrix e
ments, and Clebsch–Gordon coefficients. A general oper
Tm

j grasping a line in thej 1 representation (2j 1 lines! to give
a j 2 representation is expressed as

Just from this diagram and the properties of the trival
vertex, it is already clear that

u j 12 j 2u< j < j 11 j 2 .

Likewise it is also the case that

m25m11m.

These results are the useful ‘‘selection rules’’ that are of
given as a corollary to the Wigner–Eckart theorem. Not
that the operator expression is a diagram with the three
j, j 1 , and j 2 . This suggests that it might be possible to e
press the operator as a multiple of the basic trival
vertex.19 Defining

one can combine the two lower legs together with Eq.~21!.
Applying Schur’s lemma, one finds

~12!
where

This relation expresses the operator in terms of a multiple
the trivalent vertex. It also gives a computable expression
the multiplicative factor. Comparing the first and last term
with the usual form of the theorem,20

^ j 2m2uTm
j u j 1m1&5^ j 2uuTm

j uu j 1&^ jm j1m1u j 2m2&,

one can immediately see that the reduced matrix elem
^ j 2uuTm

j uu j 1& is thev of Eq. ~12!. In this manner, any invari-
ant tensor may be represented as a labeled, trivalent gra

V. QUANTUM GEOMETRY: AREA OPERATOR

In this final example of the spin network diagramma
algebra, the spectrum of the area operator of quantum gra
977Seth A. Major
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is derived. Before beginning, I ought to remark that the h
work of defining what is meant by the quantum area opera
is not done here. The presentation instead concentrate
the calculation of the spectrum.

There are many approaches to constructing a quan
theory of gravity. The plethora of ideas arises in part fro
the lack of experimental guidance and in part from the co
pletely new setting of general relativity for the techniques
quantization. One promising direction arises out of an eff
to construct a background-independent theory which m
the requirements of quantum mechanics. This field may
called ‘‘loop quantum gravity’’ or ‘‘spin-net gravity.’’21 The
key idea in this approach is to lay aside the perturba
methods usually employed and, instead, directly quantize
Hamiltonian theory. Recently this field has bloomed. Th
is now a mathematically rigorous understanding of the ki
matics of the theory and a number of~in principle, testable!
predictions of quantum geometry. One of the intriguing
sults of this study of quantum geometry is the discrete na
of space.

In general relativity the degrees of freedom are encode
the metric on space–time. However, it is quite useful to
new variables to quantize the theory.22 Instead of a metric, in
the canonical approach the variables are an ‘‘electric fiel
which is the ‘‘square root’’ of the spatial metric, and a vect
potential. The electric fieldE is not only vector but also
takes 232 matrix values in an ‘‘internal’’ space. This elec
tric field is closely related to the coordinate transformat
from curved to flat coordinates~a triad!. The canonically
conjugateA, usually taken to be the configuration variable,
similar to the electric vector potential but is more approp
ately called a ‘‘matrix potential’’ forA also is matrix valued.
It determines the effects of geometry on spin-1

2 particles as
they are moved through space.23 States of loop quantum
gravity are functions of the potentialA. A convenient basis is
built from ketsus& labeled by spin networkss. In this appli-
cation of spin networks, they have special tags or weights
the edges of the graph. Every strande of the gravitational
spin network has the ‘‘phase’’ associated with it.24 An ori-
entation along every edge helps to determine these phas
weights. The states of quantum geometry are encoded in
knottedness and connectivity of the spin networks.

In classical gravity the area of a surfaceS is the integral

AS5E
S
d2xAg,

in which g is the determinant of the metric on the surface25

The calculation simplifies if the surface is specified byz
50 in an adapted coordinate system. Expressed in term
E, the area of a surfaceS only depends on thez-vector
component26

AS5E
S
d2xAEz•Ez. ~13!

The dot product is in the ‘‘internal’’ space. It is the sam
product between Pauli matrices as appears in Eq.~11!. In the
spin network basis,E is the momentum operator. Asp
→2 i\(d/dx) in quantum mechanics, the electric fie
analogously becomes a ‘‘hand,’’
978 Am. J. Phys., Vol. 67, No. 11, November 1999
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The t is proportional to a Pauli matrix,t5( i /2)s. The k
factor is a sign: It is positive when the orientations on t
edge and surface are the same, negative when the ed
oriented oppositely from the surface, and vanishes when
edge is tangent to the surface. TheE operator acts like the
angular momentum operatorĴ. Since theE operator van-
ishes unless it grasps an edge, the operator only acts w
the spin network intersects the surface.

The square of the area operator is calculated first. Cal
the square of the integrand of Eq.~13! Ô, the two-handed
operator at one intersection is

Ôus&52 (
eI ,eJ

k IkJĴI• ĴJus&, ~14!

where the sum is over edgeseI at the intersection. Here,ĴI

denotes the vector operatorĴ5 Ĵx1 Ĵy1 Ĵz acting on the edge

eI . This Ô is almostĴ2, but for the sign factorsk I . The area
operator is the sum over contributions from all parts of t
spin network which thread through the surface. In terms oÔ
over all intersectionsi,

ÂSus&5
G

4c3 (
i

Ôi
1/2us&,

including the dimensional constants.
As a first step, one can calculate the action of the oper

Ô on an edgee labeled byn as depicted in Fig. 1~a!. In this
case, the hands act on the same edge so the sign is 1k I

2

51, and the angle operator squared becomes proportion

Ĵ2! In the calculation one may make use of the Pauli mat
identity of Eq.~11!,

The edge is shown in the diagram so it is removed s
network s giving the stateu(s2e)&. Now the diagram may
be reduced using the recoupling identities. The bubble m
be extracted with Eq.~18!,

Fig. 1. Two types of intersections of a spin network with a surface.~a! One
isolated edgee intersects the surface transversely. The normaln̂ is also
shown.~b! One vertex of a spin network lies in the surface. All the nonta
gent edges contribute to the area. Note that the network can be knotte
978Seth A. Major
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in which Eq. ~17! was also used in the second line. Putti
this result into the area operator, one learns that the
coming from all the transverse edges is27

ÂSus&5
G\

c3 (
i
Ani~ni12!

4
us&5 l P

2(
i

Aj i~ j i11!us&.

~15!

The units\, c, and G are collected into the Planck lengt
l P5AG\/c3;10235m. The result is also reexpressed
terms of the more familiar angular momentum variablej
5n/2.

The full spectrum of the area operator is found by cons
ering all the intersections of the spin network with the s
faceS, including vertices which lie on the surface as in F
1~b!. Summing over all contributions28

ÂSus&5
l P
2

2 (
v

@2 j v
u~ j v

u11!12 j v
d~ j v

d11!2 j v
t ~ j v

t 11!#1/2us&,

in which j v
u( j v

d) is the total spin with a positive~negative!
signk and j v

t is the total spin of edges tangent to the surfa
at the vertexv.

This result is utterly remarkable in that the calculati
predicts that space is discrete. Measurements of area
only take these quantized values. As is the case in m
quantum systems there is a ‘‘jump’’ from the lowest possi
nonzero value. This ‘‘area quanta’’ is ()/2)l p

2. In an analo-
gous fashion, as for an electron in a hydrogen atom, surfa
make a quantum jump between states in the spectrum o
area operator.

VI. SUMMARY

This introduction to spin networks diagrammatics offers
view of the diversity of this structure. Touching on kn
theory, group theory, and quantum gravity this review giv
a glimpse of the applications. These techniques also off
new perspective on familiar angular momentum represe
tions of undergraduate quantum mechanics. As shown w
the area operator in Sec. V, it is these same techniques w
are a focus of frontier research in the Hamiltonian quanti
tion of the gravitational field.
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APPENDIX: LOOPS, THETAS, TETS, AND ALL
THAT

This appendix contains the basic definitions and formu
of diagrammatic recoupling theory using the conventions
Kauffman and Lins29—a book written in the context of the
more general Temperley–Lieb algebra.

The functionu(m,n,l ) is given by

~16!

where a5( l 1m2n)/2, b5(m1n2 l )/2 and c5(n1 l
2m)/2. An evaluation which is useful in calculating th
spectrum of the area operator isu(n,n,2), for which a51,
b5n21, andc51,

u~n,n,2!5~21!~n11!
~n12!! ~n21!!

~2n! !2

5~21!~n11!
~n12!~n11!

2n
. ~17!

A ‘‘bubble’’ diagram is proportional to a single edge,

~18!

The basic recoupling identity relates the different ways
which three angular momenta, saya, b, andc, can couple to
form a fourth one,d. The two possible recouplings are re
lated by

~19!

where on the right-hand side is the 6j symbol defined below.
It is closely related to theTet symbol. This is defined by30

~20!

in which

a15 1
2~a1d1e!, b15 1

2~b1d1e1 f !,

a25 1
2~b1c1e!, b25 1

2~a1c1e1 f !,

a35 1
2~a1b1 f !, b35 1

2~a1b1c1d!,

a45 1
2~c1d1 f !, m5max$ai%, M5min$bj%.

The 6j symbol is then defined as
979Seth A. Major
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H a b i

c d jJª
TetFa b i

c d jGD i

u~a,d,i !u~b,c,i !
.

These satisfy a number of properties including the ortho
nal identity

(
l

H a b l

c d jJ H d a i

b c lJ 5d i
j

and the Biedenharn–Elliot or Pentagon identity

(
l

H d i l

e m cJ H a b f

e l i J H a f k

d d l J
5H a b k

c d i J H k b f

e m cJ .

Two lines may be joined via

~21!

One also has occasion to use the coefficient of thel-
move,’’

~22!
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