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Spin networks, essentially labeled graphs, are “good quantum numbers” for the quantum theory of
geometry. These structures encompass a diverse range of techniques which may be used in the
quantum mechanics of finite dimensional systems, gauge theory, and knot theory. Though accessible
to undergraduates, spin network techniques are buried in more complicated formulations. In this
paper a diagrammatic method, simple but rich, is introduced through an associatior 2of 2
matrices with diagrams. This spin network diagrammatic method offers new perspectives on the
quantum mechanics of angular momentum, group theory, knot theory, and even quantum geometry.
Examples in each of these areas are discussedi99@ American Association of Physics Teachers.

[. INTRODUCTION methods to model space—time. As the absolute space and
time of Newton is a useful construct to apply in many every-
Originally introduced as a quantum model of spatialday calculations, perhaps continuous space—time is simply
geometry’ spin networks have recently been shown to pro-yseful as a calculational setting for a certain regime of phys-
vide a basis for the states of quantum geometry—kinematigs.
states in the Hamiltonian study of quantum gravi#t their Motivated by these difficulties, Penrose constructed a dis-
roots, spin networks provide a description of the quantumyrete model of space. The goal was to build a consistent
mechanics of two-state systems. Even with this humble foung,qodel from which classical, continuum geometry emerged
dation, spin networks form a remarkably diverse structurg,y in g |imit. Together with John Moussouris, he was able
which is useful in knot theory, the quantum mechanics Ofto show that spin networks could reproduce the familiar

angular momentum, quantum geometry, and other areas. three-dimensional angles of space—a “theory of quantized

Spin networks are intrinsically accessible to undergradu-,. - . A . . . )
ates, but much of the material is buried in more COmplexdlrectlons. In this setting, spin networks were trivalent

formulations or lies in hard-to-find manuscripts. This articlegraphs labeled by spins. For applications in quantum geom-

is intended to fill this gap. It presents an introduction to the€tY it is better to work with spin networks with higher va-

diagrammatic methods of spin networks, with an emphasi€nce vertices. _ _
on applications in quantum mechanics. In so doing, it offers These suitably generalized spin networks have been
undergraduates not only a fresh perspective on angular mghown to form the eigenspace of operators measuring geo-
mentum in quantum mechanics but also a link to leadingMetric quantities such as area and voltihThese new spin
edge research in the study of the Hamiltonian formulation ofetwork techniques arose out of a powerful suite of methods
quantum gravity. One quantum operator of geometry is prefor background-independent quantization that has been de-
sented in detail; this is the operator which measures the aresloped over the past few years. Spin networks are fantasti-
of a surface. cally useful both as a basis for the states of quantum geom-
The history of spin networks goes back to the early sevetry and as a computational tool. Spin network techniques
enties when Penrose first constructed networks as a fundaere used to compute the spectrum of area and volume
mentally discrete model for three-dimensional space. Diffi-operators. Spin networks, first used as a combinatorial basis
culties inherent in the continuum formulation of physics ledfor space—time, now find uses in quantum gravity, knot
Penrose to explore this possipil?tyThese difficulties come  theory, and group theory.
from both quantum and gravitational theory as seen from Thjs spin network primer begins by associating 2 ma-
three examples: First, while quantum physics is based ORjces with diagrams. The first goal is to make the diagram-
honcommuting quantities, coordinates of space are COMMU[qaicq “planar isotopic,” meaning the diagrams are invari-
ing numbers, so it appears that our usual notion of SPaCeht under smooth deformations of lines in the plane. It is

conflicts with quantum mechanics. Second, on a more prag- . . .
matic level, quantum calculations often yield divergent anganalogous to the manipulations which one would expect for

- L -__ordinary strings on a table. Once this is completed, the struc-
swers which grow arbitrarily large as one calculates IOhySICa?ure is anichgd in Sec. Il C to allow combineftions and inter-

guantities on finer and smaller scales. A good bit of machin=""= ; T o
ery in quantum field theory is devoted to regulating angsSections betwee_n_llnes. This yields a structure v_vh|ch includes
renormalizing these divergent quantities. However, many of'€ rules of addition of angular momentum. It is further ex-
these difficulties vanish if a smallest size or “cutoff” is in- Plored in Sec. III_W|th the diagrammatics o_f the usual angular
troduced. A discrete structure, such as a lattice, provide§'omentum relations of quantum mechani@s reader more
such a cutoff. Thus, were space—time built from a lattice of@miliar with the angular momentum states of quantum me-
network, then quantum field theory would be spared many oghanics may wish to go directly to this section to see how
the problems of divergences. Third, there is a hint comingspin networks are employed in this settinh Sec. IV this
from general relativity itself. Since regular initial data, say aconnection to angular momentum is used to give a diagram-
collapsing shell of matter, can evolve into a singularity, rela-matic version of the Wigner—Eckart theorem. The article fin-
tivity demonstrates that the space—time metric is not alwaysshes with a discussion on the area operator of quantum grav-
well-defined. This suggests that it is profitable to study otheity.
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II. A PLAY ON LINE
A@ =" ﬂ . (2)

This section begins by building an association between the
Kronecker delta functions, theX22 identity matrix(or 5?),
and a line. It is not hard to ensure that the lines behave likélowever, these “topological” difficulties are fixed by modi-
elastic strings on a table. The association and this requirdying the definition of a bent line. One can add iato the
ment lead to a little bit of knot theory, to the full structure of antisymmetric tensors

spin networks, and to a diagrammatic method for the quan-
tum mechanics of angular momentum. €AB — €AB = i€4B SO that €45 = m .
A B
Since each of the two awkward features contains a pair of
A. Line, bend, and loop €'s, thei fixes these sign problems. However, there is one
5 _ _ o more property to investigate.
The Kro_necker&A is the 2x 2 identity matrix in compo- On account of the relatiod? 65é.p= —&ag One hagthe
nent notation. Thus, indicesC andD are added to the diagram for clapity
X Q)
68 = A B -
( A) (O 1) A B

—not what one would expect for strings. This final problem
and 50= 61=1 while 55= 6;=0. The indicesA andB in this €@ be cured by associating a minus sign with each crossing.
expression may take one of two values, 0 or 1. The diagram- Thus, by associating anwith every e and a sign with

matics begins by associating the KronecKawith a line every cr_ossing, the diagrams behave_ as continuously de-
formed lines in a plane. The more precise name of this con-

cept is known as planar isotopy. Structures which can be
B\ moved about in this way are called topological. What this
6,4 ~ ) . P . ~ . . .
A association of curves with's andé’'s accomplishes is that it
allows one to perform algebraic calculations by moving lines
The position of the indices oA determines the location of in a plane.
the labels on the ends of the line. Applying the definitions A number of properties follow from the above definitions.
one has The value of a simple closed loop takes a negative Value

) =land0) = (. O :—2’ (3)

If a line is the identity then it is reasonable to associate a =~ —nB B o
curve with a matrix with two uppefor lower indices. There =~ SinCe'éagé™"= —€xpe” = —2; a closed line is a number.
is some freedom in the choice of this object. As a promisingThis turns out to be a generic result in that a spin network

possibility, one can choose the antisymmetric makrix, which has no open lines is equivalent to a number.
A surprisingly rich structure emerges when crossings are
0o 1 considered. For instance the identity, often called the
(€AB)=(6AB)=( ) “spinor identity,” links a pair of epsilons to products of
-1 0 deltas,
so that ence®P=06262— 5062 .

caB ™~ m ) Using the definitions of th& matrices one may show that,
Similarly, diagrammatically, this becomes

o~ ) }J\+><+i)(c=0. @

As a bent line is a straight line “with one index lowered”
this choice fits well with the diagrammaticé,feCB= €AR -
After a bit of experimentation with these identifications, —6% 68 becomes + X .

one discovers two awkward features. The diagrams do not

match the expected moves of elastic strings in a plane. FirsThis diagrammatic relation of Ed4) is known as *“skein

since 8SecpePEsE=eapePP=— 55, straightening a line relations™ or the “binor identity.” The utility of the relation

yields a negative sign: becqmes evident Wh_en one reahzes that the equation may be

applied anywhere within a larger diagram.

[\/ _ '}’ One can also decorate the structure by “weighting” or

A ) “tagging” edges® Instead of confining the diagrams to be

simply a sum of products 06’s and €'s, one can include
other objects with a tag. For instance, one can associate a

Second, as a consequenceeghegce“P=—€ap, tagged line with any X2 matrix such aslf,'i,

Note that the sign changes, e.g.,
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a-¢ o -DC.

These tags prove to be useful notation for angular momen- « Move I1l: One can perform planar deformations under
tum operators and for the spin networks of quantum geom¢or ovep a diagram

etry. Objects with only one index can frequently be repre-

sented as Kronecker delta functions with only one index. For SN
example, % ~ _\/\/; .

~

A

wt= | . With a finite sequence of these moves the projection of a
knot may be transformed into the projection of any other

The result of these associations is a topological structur&not which is topologically equivalent to the original. If one
in which algebraic manipulations af’s, €'s, and other 2  knot may be expressed as another with a sequence of these
X 2 matrices are encoded in manipulations of open or closethoves then the knots are called “isotopic.” Planar isotopy is
lines. For instance, straightening a wiggle is the same agenerated by all fo_ur moves with the significant caveat that
simplifying a product of twdé's to a singles. It also turns  there are no crossings
out that the algebra is “topological:” Any two equivalent X,
algebraic expressions are represented by two diagrams which
can be continuously transformed into each other. Making usenly intersections
of a result of Reidemeister and the identities above it takes a
few lines of de algebra to show that the spin network dia- X

grammatics is topologically invariant in a plane. Planar isotopy may be summarized as the manipulations one

would expect for elastic, nonsticky strings on a table top—if
they are infinitely thin.
B. Reidemeister moves Move | on real strings introduces a twist in the string. This
move is violated by any line which has some spatial extent in
Remarkably, a knétin three-dimensional space can be the transverse direction, such as ribbons. Happily, there are
continuously deformed into another knot, if and only if the diagrammatic spin networks for these “ribbons” as well.
planar projection of the knots can be transformed into each
other via a sequence of four moves called the “Reidemeister
moves.”!® Though the topic of this primer is mainly on C. Weaving and joining

two-dimensional diagrams, the Reidemeister moves are . . : .
given here in their full generality—as projections of knots in 1N Skein relations of Eq4) show that given a pair of

three-dimensional space. While in two dimensions one halnes, there is one linear relation among the three quantities:
only an intersection, ",

X =

) M

when two lines cross, in three dimensions one has the “ovesnd

crossing,” %
N4 .
VY]

So a set of graphs may satisfy many linear relations. It would

and the “undercross, be nice to select a basis which is independent of this identity.

X, After some work, this may be accomplished by choosing the
_ _ antisymmetric combinations of the lines—"“weaving with a
as well as the intersection sign.” 12 The simplest example is for two lines,

=)0
There are four moves: ? T2 ( : )

* Move 0:In the plane of projection, one can make smooth

deformations of the curve For more than two lines the idea is the same. One sums over

permutations of the lines, adding a sign for each crossing.
/\/ } The general definition is

e Move I.: As these moves are designed for one- I _ 1 el ﬁ
dimensional objects, a curl may be undone, Y U; D7 =] (6)

J - } in which ao represents one permutation of thénes and ol
ﬁ ’ is the minimum number of crossings for this permutation.
This move does not work on garden-variety string. TheThe boxedo in the diagram represents the action of the
string becomes twisteor untwisted. (In fact, this is the permutation on the lines. It can be drawn by writing -18,
way yarn is made. then permutation just above it, and connecting the same ele-
*Move II: The overlaps of distinct curves are not knotted ments by lines.
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In this definition, the labeh superimposed on the edge  With this vertex one can construct many more complex
record the number of “strands” in the edge. Edge are usunetworks. After the loop, the next simplest closed graph has
ally labeled this way, though | will leave simple 1-lines un- two vertices,
labeled. Two other notations are used for this weaving with a a
sign 6(a,b,c) = éj} ~

,', _ ! I The general evaluation, given in the appendix, of this dia-
| T - ’ gram is significantly more complicated. As an example |

These antisymmetrizers have a couple of lovely propergive the evaluation o#(1,2,1) using Eq.(8),
ties, retracing and projection: The antisymmetrizers are “ir-

r
reducible,” or vanish when a pair of lines is retraced, 1
n OO
=0 (7)
1

= (=22 + =
which follows from the antisymmetry. Using this and the (=27 + 2
binor identity of Eq.(4) one may show that the antisymme- _ _
trizers are “projectors”(the combination of two is equal to ©One can build ever more complicated networks. In fact, one
one can soon land a dizzying array of networks. | have collected
a small zoo in the appendix with full definitions.
~ ! Now all the elements are in place for the definition of spin
+ 1 networks. A spin network consist of a graph, with edges and
, . . . vertices, and labels. The labels, associated edges, represent
.Makmg the simplest closed diagram out of these IIneSthe number of strands woven into edges. Any vertex with
gives the loop value often denoted &g, more than three incident edges must also be labeled to
specify a decomposition into trivalent vertices. The graphs of
Q =48, =(-1)"(n+1). spin networks need not be confined to a plane. In a projec-
tion of a spin network embedded in space, the crossings
The factorn+1 expresses the “multiplicity” of the number which appear in the projection may be shown as in the Re-
of possible “A values™” on an edge witim strands. Each line idemeister moves with over-crossing
in the edge carries an index, which takes two possible values. . ,
To see this, note that for an edge watstrands the sum of X
the indicesA,B,C,... is0,1,2,...a. So that the sum takes and under-crossing
+1 possible values. One may show using the recursion re-
lations for A, (Ref. 13 that the loop value is equal to this A
multiplicity. As we will see in Sec. Ill, the number of pos-
sible combinations is the dimension of the representation.
As an example of the loop value, the 2-loop has value 3.

This is easily checked using the relations for the basic loog||, ANGULAR MOMENTUM REPRESENTATION
value [Eq. (3)] and the expansion of the 2-line using the

(-2) =3.

skein relation As spin networks are woven from strands which take two
| \_J values, it is well-suited to represent two-state systems. It is
2 = ) ( +1 i (8)  perhaps not surprising that the diagrammatics of spin net-
| /M works include the familialjm) representation of angular mo-
Edges may be further joined into networks by making usdne€ntum. The notations are related as
of internal trivalent vertices, 11 4 1
3 3)=u"~ | and
~N ~ N i
a b D el
Y = \i4) 1 _ 1 A 1
\¥/ |§—§>:d N’.

0
(Secretly, the " for “up” tells us that the index A only
The dashed circle is a magnification of the dot in the diagramakes the value 1. Likewised" tells us the index is 0. The
on the left. Such dashed curves indicate spin network strudnner product is given by linking upper and lower indices, for
ture at a point. The “internal” labels, j, k are positive instance,
integers determined by the external laba)d, cvia

i=(a+c—b)/2, j=(b+c—a)2, k=(a+b—c)/2. <1 111> '

| ¢
i

As in quantum mechanics the external labels must satisfy the

triangle inequalities ) )
For higher representation®,
atb=c, b+c=a, a+c=b

. , ) im):=|rs)=N,u%u®.. uCdPdE.. .dP, 9
and the suma+b+c is an even integer. The necessity of Ljm)=lrsy=Ny, ©
these relations can be seen by drawing the strands through r s

the vertex. in which
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1 V2. r+s r—s The total angular momentura component is the sum of
)i ) v 1= mE (10 individual measurements on each of the subsystérimsdia-

Ns= (
grams, the action of théZ operator becomes

r'st(r+s

The parentheses in E(P) around the indices indicate sym- rhs
metrization, e.g.u*d® =u”d®-+uBd”. The normalization Jo | jm) ~ — AL
N,s ensures that the states are orthonormal in the usual inner Cg s&)
product. A useful representation of this state is in terms of

the trivalent vertex. Using the notation I

A o
A T TEy

for u and similarly ford | have
|
1 r+s
r+s r_s
- -1(5-3)
| jm) ~ Qgr)\s&) . 2 92 C/g"l\se\a
Angular momentum operators also take a diagrammatic

form. As all spin networks are built from spipstates, it is

worth exploring this territory first. Spig-operators have a =h|jm).
representation in terms of the Pauli matrices

. The definition of the quantities ands was used in the last
17 1 o) %27\i o) 9% o -1/ This same procedure works for the other angular momen-

tum operators as well. Th@, operator is constructed from

with the Pauli matrixo; . When acting on one line the operathr
matrix “flips the spin” and leaves a factor

§ -l

The reader is encouraged to try the same procedurayfor
1 1> _ 1‘1 1> The raising and lowering operators are constructed with

5=

g

NS

fori=1,2,3. One has

03

2022/ 2|22 these diagrams as in the usual algebra. For the raising opera-

2
tor J,=J,+iJ, one has
which is expressed diagrammatically as I

rt+s

Jiljm) ~ ks 7Ny

In a similar way one can compute

Or, since Pauli matrices are traceless,

g -0
. from which one can compute the normalization of these op-
and using Eq(8) one ha¥’ erators: Taking the inner product witjm| gives the usual

normalization for the raising operator
64 14

A similar relation holds for the statds— 3). The basic ac-

tion of the spin operators can be described as a “hand” . .
which acts on the state by “grasping” a lifé The result, Note that since ands are non-negative and no larger than

after using the diagrammatic algebra, is either a multiple of). the usual condition om, —j<m=j, is automatically

the same state, as fof;, or a new state. If the operator acts Satisfied. _ _

on more than one line, a higher dimensional representation, 11nough a bit more involved, the same procedure goes

then the total action is the sum of the graspings on eacthrough for thel? operator. It is built from the sum of prod-

edge?i ucts of operator§?=J3+J37+JZ. Acting once with the ap-
The J, operator can be constructed out of tig¢ matrix.  propriate Pauli operators, one finds

33, [jmy=#%(r +1)s|jm),

Jilimy=%s(r+1)[jmy=%(j—m)(j+m+1)|jm).
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|
A rts
T S a: r 18
J|jm) ~ A= 3 r{l\m +§r+1*s +h2 3 r1/1\5+1 —5r+fl\:

22@{;8&' |

Acting once again, some happy cancellation occurs and thgpective on the theorem. It can help those who feel lost in the

result is mire of irreducible tensor operators, reduced matrix ele-
521242 ments, and Clebsch—Gordon coefficients. A general operator
32|jm): >3 +rs+r+sl|jm), T!, grasping a line in thg, representation (i lines) to give
a j, representation is expressed as
which equals the familiay(j +1). Actually, there is a pretty m,
identity which gives another route to this result. The Pauli s .
matrices satisfy '"zfjf{l ~ (jama | Tp, | j1ma).
138 B D B D i
§Z”iA0iC = A>'2'<C (1D Just from this diagram and the properties of the trivalent
=1 vertex, it is already clear that
so the product is a 2-line. Similarly, thi¥ operator may be lii—ial<i<ii*ia.

expressed as a 2-line. As will be shown in Sec. V this sim-L.k ise it is also th h
plifies the above calculation considerably. Ikewise It Is also the case that

m2: m1+ m.
IV. A BIT OF GROUP THEORY These results are the useful “selection rules” that are often
iven as a corollary to the Wigner—Eckart theorem. Notice
simple 6 and € matrices in terms of diagrams, are closely . at the gpera}lfﬁ_r expreSS|tonﬂ|15 ?_?lagrﬁtmbwnh th(_ablthr;ee legs
related to the familiar angular momentum representation of 11, andja. ThiS Suggests that it might bé possibie to ex-

quantum mechanics. This section makes a brief excursioR'®SS 15“8 fqp_erator as a multiple of the basic trivalent
into group theory to exhibit two results which take a clearVe"ex.” Defining

As we have seen, spin networks, inspired by expressin

diagrammatic form, Schur’s lemma and the Wigner—Eckart ) m

theorem. A= TN
Readers with experience with some group theory may Lé\\é = ." m‘x’\-\\\‘. )

have noticed that spin network edges are closely related to N/ “:@ /,\'«x

the irreducible representations of @) The key difference
is that, on account of the sign conventions chosen in Se@ne can combine the two lower legs together with ).
Il A, the usual symmetrization of representations is replaceg\pplying Schur’s lemma, one finds

by the antisymmetrization of Ed6). In fact, each edge of

the spin network is an irreducible representation. The tags on . .

the edges can identify how these are generated—through the zfz\ it A 3
spatial dependence of a phase, for instance. (’ N = Z 9—3;— =W jjﬁ)j )
Since this diagrammatic algebra is designed to handle the 5<.->%;  c=|j—j| (27,241, ¢) 2, ~
combinations of irreducible representations, all the familiar ) (12

results of representation theory have a diagrammatic formwhere
For instance, Schur’s lemma states that any matnixhich

commutes with two(inequivalent irreducible representa- _ 1 ‘
tionsDy andDé of dimensionsa+1 andb+1 is either zero w= (24,241, 252) <
or a multiple of the identity matrix
, 0 if a#b This relation expresses the operator in terms of a multiple of
TDg=DgT for all geG=T=),  _ the trivalent vertex. It also gives a computable expression of
_ _ o the multiplicative factor. Comparing the first and last terms
Diagrammatically, this is represented as with the usual form of the theoreffl,
4 ( @ <j2m2|T£T1|j1ml>:<j2||T£n||jl><jmj1ml|j2m2>a
@ =A% &, where X = ) one can immediately see that the reduced matrix element
b / Aa (j2l|ThIli1) is the w of Eqg. (12). In this manner, any invari-

ant tensor may be represented as a labeled, trivalent graph.
The constant of proportionality is given bywhich, being a ]
closed diagram, is equivalent to a number. V. QUANTUM GEOMETRY: AREA OPERATOR

The Wigner—Eckart theorem also takes a nice form in the In this final example of the spin network diagrammatic
diagrammatic language, providing an intuitive and fresh peralgebra, the spectrum of the area operator of quantum gravity
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is derived. Before beginning, | ought to remark that the hard
work of defining what is meant by the quantum area operator
is not done here. The presentation instead concentrates on
the calculation of the spectrum.

There are many approaches to constructing a quantum
theory of gravity. The plethora of ideas arises in part from
the lack of experimental guidance and in part from the com-
pletely ne.W setting of ggn.eral Ifelatl.VIty fo.r the techniques Ofisolated edgee intersects the surface transversely. The norfna$ also
quantization. One promising direction arises out Of_an effor'%hown.(b) One vertex of a spin network lies in the surface. All the nontan-
to construct a background-independent theory which meefgent edges contribute to the area. Note that the network can be knotted.
the requirements of quantum mechanics. This field may be
called “loop quantum gravity” or “spin-net gravity.?! The
key idea in this approach is to lay aside the perturbative
methods usually employed and, instead, directly quantize the
Hamiltonian theory. Recently this field has bloomed. ThereThe 7 is proportional to a Pauli matrixy=(i/2)o. The «
is now a mathematically rigorous understanding of the kinefactor is a sign: It is positive when the orientations on the
matics of the theory and a number @f principle, testable  edge and surface are the same, negative when the edge is
predictions of quantum geometry. One of the intriguing re-oriented oppositely from the surface, and vanishes when the
sults of this study of quantum geometry is the discrete naturgdge is tangent to the surface. TReoperator acts like the

of space. A i
In general relativity the degrees of freedom are encoded iﬁmgular momentum operatdr. Since thek operator van

the metric on space—time. However, it is quite useful to us%Shes unless it grasps an edge, the operator only acts where

new variables to quantize the thedfinstead of a metric, in hg”s]pln networlf< |rr]1tersects the surface.l lated first. Calli
the canonical approach the variables are an “electric field,” e square of the area operator Is caicu ated first. Calling
which is the “square root” of the spatial metric, and a vectorthe square of the integrand of E@.3) O, the two-handed
potential. The electric fieldE is not only vector but also Operator at one intersection Is

takes 22 matrix values in an “internal” space. This elec-
tric field is closely related to the coordinate transformation
from curved to flat coordinate& triad. The canonically
conjugateA, usually taken to be the configuration variable, is
similar to the electric vector potential but is more appropri-
ately called a “matrix potential” forA also is matrix valued.

It determines the effects of geometry on spiparticles as . . . -
they are moved through spateStates of loop quantum where the sum is over e(?geAs at Athe lntersectlon. Herd,
gravity are functions of the potential. A convenient basis is denotes the vector operatb+ J,+J,+ J, acting on the edge

built from kets|s) labeled by spin networks. In this appli- e, . ThisO is almostd?, but for the sign factorg, . The area
cation of spin networks, they have special tags or weights o@perator is the sum over contributions from all parts of the

the edges of the graph. Every straadf the gravitational : . A
spin network has the “phase” associated witi%itAn ori- spin net\_Nork whlph t_hread through the surface. In term® of
Qyer all intersections,

entation along every edge helps to determine these phases
weights. The states of quantum geometry are encoded in the
knottedness and connectivity of the spin networks. G
In classical gravity the area of a surfaBés the integral A A
‘cal gravity - integ Ads)= 7032 O1s),

AS: f d2X \/6,
S

(b))

Fig. 1. Two types of intersections of a spin network with a surfé@eOne

©|S>:_826 Kik3d1-yls), (14
(AN}

including the dimensional constants.
in which g is the determinant of the metric on the surfate.  As a first step, one can calculate the action of the operator
The calculation simplifies if the surface is specified by O on an edge labeled byn as depicted in Fig. @). In this
=0 in an adapted coordinate system. Expressed in terms @hse, the hands act on the same edge so the sign«$ 1,
E, the area of a surfac& only depends on the-vector =1 and the angle operator squared becomes proportional to

componertt’ J2! In the calculation one may make use of the Pauli matrix

identity of Eq.(11),
Ag= f d?x+E,-E,. (13
S

Oc | s) = =J% | s)
The dot product is in the “internal” space. It is the same
product between Pauli matrices as appears in(Ef). In the = _p2 Qi (2’;%“ (s —
spin network basisg is the momentum operator. Ag 2 4 s—e)).

— —ifh(d/dx) in quantum mechanics, the electric field

. . The edge is shown in the diagram so it is removed spin
analogously becomes a “hand,

network s giving the statg(s—e)). Now the diagram may
be reduced using the recoupling identities. The bubble may
E - —ihk [T2— . be extracted with Eq(18),
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. ,n? 4 APPENDIX: LOOPS, THETAS, TETS, AND ALL
Oc | 5) = =R = &3 [(s~e) THAT
B n? 8(n, f%l This appendix contains the basic definitions and formulas
= —h? o A / (s —e)) of diagrammatic recoupling theory usmg the conventions of
Kauffman and Lin&—a book written in the context of the
- 12 n_ n+2 B more general Temperley—Lieb algebra.
2 2n The functiond(m,n,l) is given by
B 2n(n+2) m n, l a+b+c) (a+b+C+ 1)'a'b'c'
= =113 69 (a+d)!(b+c)l(a+c)!
in which Eq.(17) was also used in the second line. Putting (16)
this result into the area operator, one learns that the area
coming from all the transverse edge$'is where a=(l+m—n)/2, b=(m+n—1)/2 and c=(n+I
- (n 2 —m)/2. An evaluation which is useful in calculating the
A5|s>= _32 — >_|Pz /J|(1|+1 |s). spectrum of the area operator 4¢n,n,2), for whicha=1,
C™ 7 (9 b=n-1, andc=1,
15
. . (n+2)I(n—=1)!
The units#, ¢, and G are collected into the Planck length o(n,n2)=(-1)"H—
lp=\G#/c®~10%*m. The result is also reexpressed in (2n!)
terms of the more familiar angular momentum variabjes n+2)(n+1
=n/2. =(—1)<”+1>—( 2):1 ). 17

The full spectrum of the area operator is found by consid- _ _ . .
ering all the intersections of the spin network with the sur- A “bubble” diagram is proportional to a single edge,

face S including vertices which lie on the surface as in Fig. b n |
1(b). Summing over all contributioR® A~ =5 l(_l) 6(a,b,n) ! _ (18
2 R T VI

A _ 5 Ty id.:d it 1/2
Asls) 2 2\,: [2iviv+ D+ 25t D =ivliv+ DIs), The basic recoupling identity relates the different ways in
) o . . . ) which three angular momenta, sayb, andc, can couple to

in which Jv(Jv) is the total spin with a positivénegativé  form a fourth oned. The two possible recouplings are re-
sign k andj! is the total spin of edges tangent to the surfacdated by

at the vertexv.

This result is utterly remarkable in that the calculation ST a b i >
predicts that space is discrete. Measurements of area can { »'—<,) = Z \3
only take these quantized values. As is the case in many - lambi<i<(a+b) | ¢ d ’
guantum systems there is a “jump” from the lowest possible T
nonzero value. This “area quanta” i¥3/2)l3. In an analo- (19

gous fashion, as for an electron in a hydrogen atom, surfaceshere on the right-hand side is th¢ $ymbol defined below.
make a quantum jump between states in the spectrum of tHeis closely related to th&etsymbol. This is defined 5%
area operator.

a b e

TN
/N = (A =Tet
VI. SUMMARY %\L} kﬂ)” cd f

This introduction to spin networks diagrammatics offers a
view of the diversity of this structure. Touching on knot

theory, group theory, and quantum gravity this review givesy; “ ¢ - N Z (s +1)!

a glimpse of the applications. These techniques also offer c d f m<s<S (s —a)! ], (b5 — s)!
new perspective on familiar angular momentum represente

tions of undergraduate quantum mechanics. As shown wit I1. . b5 — ai!

the area operator in Sec. V, it is these same techniques whic Ly (20)

. . N . = T el 1
are a focus of frontier research in the Hamiltonian quantiza- alblcldle! f1

tion of the gravitational field. in which
a,=3(a+d+e), by;=3b+d+e+f),
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_yab | ab :
*_Q" =X A where A7 is I

. SN —K:—I‘r{ ,sothat_ﬁ]_ +—§ +o=n—t,

b 2402 —c2)/2
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