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OBSERVABLE CONSEQUENCES
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Abstract� This is an extended set of lecture notes of a talk at Swarthmore
College in March ����� The Hamiltonian approach to quantum gravity is
reviewed with a focus on some conceptual issues� spin network diagrammatics�
and two possible arenas for observationof quantumgravitational phenomenon�

�� Introduction

Today I wish to tell you about a promising attempt to combine two developments
in twentieth century physics� general relativity and quantum theory� Progress on
this problem has been simmering along on a back burner since the �����s� eclipsed
in part due to the remoteness of its expected range of applicability� Here I hope to
motivate why one would undertake such a study� present some of the results in this
study� and explain ways in which the quantum e�ects of gravitation could manifest
themselves in observable ways�

Both theories are great departures from classical physics� In general relativity�
space and time combined to give the single� dynamical entity of spacetime� Simple
statements as� �Two particles are a distance r apart at time t�	 become meaningless�
Such concepts as local energy density of the gravitational 
eld elude de
nition� In
quantum theory we loose the notion of assigning de
nite values to observables� Also
in quantum theory physical quantities may no longer commute� xp� is no longer
equal to pxp� This vast new freedom means that there are many quantum theories
for every classical one� when quantizing one is faced with many choices� Classical
theories have no need for a well�de
ned quantum limit� They may be oblivious to
it� Thus when �going the wrong way�	 from a classical theory to quantum one� it
as if one is climbing a tree in the dark� going from trunk to twig� trying to 
nd the
branch with an Easter egg  the correct physical theory� At each choice one doesn�t
know a priori which turn will lead to the correct space�

The approach I�ll talk about here is be a conservative one� �Take general rela�
tivity and quantize it�	 But it is also a radical approach� Since there is no way to
de
ne distance without the metric one needs a background�independent quantiza�
tion  entirely new for quantum theory� The strategy is familiar� 
rst study the
kinematics� then turn to the dynamics� The present status of this quantization is
that the kinematics is largely formulated� though there is much to understand� but
the dynamics remains controversial� There is a good review in Ref� ����� though it
assumes a fair amount of background�

In what regime might this theory be valid� To put it dramatically� every good
theory carries the seed of its own destruction� To put it more accurately� from
every good theory one can derive its range of validity� As an example� let�s do a
calculation which Laplace performed two hundred years ago� It is something we
might use to 
ll up the margins of our mechanics textbooks� In the chapter on
gravitation� Is there a situation in which even light doesn�t have enough speed to
escape a potential well� More precisely� if we had a test mass moving very near
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the speed of light� is there a system from which it cannot escape� In general� to

nd escape velocity we need to 
nd the kinetic energy needed to climb out of the
gravitational potential

mv�esc
�r

�
GmM

r

If our test mass can not escape  vesc � c  then the escape velocity equation can
be used to give a distance RS

�

RS �
�GM

c�
���

which is now called� not the Laplace radius� but the Schwarschild radius after
the person who found the spherically symmetric solution to Einstein�s equations�
This calculation is not �a seed of destruction	 for Newtonian theory  we found a
reasonable answer  but rather gives a justi
ably special radius �when c is 
nite��

To 
nd the expected scale of the theory of quantum gravity we can perform a
very simple calculation� Something new ought to happen when a massive particle�s
Compton wavelength and Schwarschild radius of Eq� ��� become equal� i�e� when

h

mc
�

�Gm

c�

or� at the Planck scale

mp �

r
hc

G
� ���� GeV � ���J

In fact it was Planck of Planck�s constant who 
rst wrote down this relation and
the distance scale

lp �

r
G�

c�
� �����m

 a distance scale far below anything that we could expect to directly access with
experiments� In terms of modern accelerators which operate at ��� GeV this is
unobservable� There are �� orders of magnitude between the Planck scale and the
scales tested by present day accelerators� In fact� using accelerators to test quantum
gravity would be like using soccer matches to 
nd the mass of the top quark�

If not here on Earth� perhaps astronomical observations could provide a realm
of quantum gravity� Perhaps the 
rst objects to come to mind are black holes� But
these are object from which �nothing can escape�	 This makes directly observing
them di�cult� However there is strong� indirect evidence that the universe is pop�
ulated with these beasts� Perhaps the best is from a set of observations of galactic
nuclei� The 
rst observations were with radio data of water masers in NGC ����
����� Using radiation from matter orbiting a central� supermassive object they were
able to measure the Doppler shift in radiation from the orbit and thus were able to

nd the velocity� With the radius of the orbit they were able to 
nd the mass of
the nucleus� ��� ���� solar masses� The most likely candidate is a black hole�

In the remainder of this talk will be to describe quantum gravity phenomenon�
one related to black holes� the other arising from the microstructure of spacetime�
To do this I will 
rst need to describe the scenery� The 
rst section will be on
properties of black holes� The second will be on quantum gravity itself� by way
of a new way of looking at the familiar angular momentum operators of quantum

�This calculation ought to be treated with some care� For instance� it does not imply that
light released from a massive object would climb to a height equal to the Schwarschild radius and
then fall back towards the surface� This calculation merely gives a result which� when placed in
the context of general relativity� yields radius of the horizon�
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mechanics� In the 
nal section I return to black holes and possible experimental
observations�

�� Black Holes and Thermodynamics

In the early seventies there was a �urry of new results about black holes� These
were often given in mathematically rigorous terms and are collectively known as
�Black Hole Mechanics�	 I will summarize these for neutral� time�independent�
�the technical term is �stationary	� non�rotating black holes �though all this goes
through for black holes with charge and angular momentum��

Let me 
rst give a brief summary of the geometry� Schwarschild black holes have
many wild and wonderful properties but I will concentrate on just a few� The metric
 used to measure the length and duration between events  on the spacetime is

ds� � �
�
�� �GM

c�r

�
dt� �

�
�� �GM

c�r

���
dr� � r�d�� � r� sin� � d��

Two aspects of this metric call our attention� Something 
shy happens at r � �
and at r � �GM

c� � It turns out that only at r � � is there a nasty singularity� The

�apparent singularity	 at r � �GM
c�

is an artifact of the coordinates� However� as
we see from Laplace�s calculation this radius is nevertheless important� It identi
es
the horizon beyond which light �and thus� classically� everything� cannot escape�
A nice way to think about horizons is to identify them with the boundary between
the region in which light rays climb out of a gravitational well and the region in
which light rays fall into the singularity at r � �� While an observer will not notice
anything unusual while passing through the horizon� It was only realized relatively
recently that it may not be the central singularity which is as important as the fact
that such objects come with horizons� The horizon has an area

AH � ��R�
S �

���G�

c	
M����

On this horizon there is a quantity � called �surface gravity	 which is likened �but
somewhat misleadingly�� to little g of Newtonian gravity� It is the force that a
distant observer would exert on a unit test mass to hold it at the horizon�

Law Thermodynamics Black Holes

� T is constant throughout body in
thermal equilibrium

� is constant over the horizon

� dU � TdS when dW � � dM � �

�� dAH

� dS � � for any process dAH � � for any process

� T � � is not attainable by phys�
ical a process �S � � as T � �	

� � � is not attainable by a phys�
ical process

�G � c � � � k � � in this table ��

Note that there is a mapping between the two�

U �M�

T � �

��
� and

S � AH��

���



	 SETH A� MAJOR

does the trick�
Bekenstein 
rst made an analogy between thermodynamics and black hole me�

chanics by 
nding that� when black hole entropy was related to area� then a
�generalized second law of thermodynamics	 held� De
ning the total entropy as
ST � SBH � SE with SE being the entropy of the environment and

SBH �
�

�
k
AH
l�p

�k is the Boltzmann constant� for the entropy of the black hole the total entropy
never decreases� �ST � �� This was based on classical analysis� However� Beken�
stein did not complete the analogy in the sense that he did not identify the tem�
perature of a black hole� Classically the black hole is a perfect absorber so one
would expect that the temperature is zero� However� this suggestion of Bekenstein
e�ectively required that there was a non�zero temperature�

The temperature was found by an incredulous Hawking who� while attempting
to show that the generalized second law was ill�founded� managed to 
nd that in
the semiclassical regime black holes do emit a thermal distribution of particles� He
found that the temperature of a stationary black hole was related to the surface
gravity� �� ����

TH �
�c�

��Gk
� �

�c�

��Gk

�

�M
� ����

�
MJ

M

�
with � �

�

�M
����

Black holes �in vacuum� are not black� They radiate a black body spectrum at tem�
perature TH � This completed the analogy� For each of the laws of thermodynamics�
there is a corresponding law of black hole mechanics�

But there is a candidate theory of quantum spacetime� What does it say about
the nature of the radiation from black holes� To answer this I must introduce a fun�
new tool� spin networks� which also gives you a new way of looking at a �hopefully�
familiar object  the angular momentum states of quantum mechanics�

�� Angular momentum representation�Diagrammatics

This is a matter of expressing the familiar results of angular momentum states
in terms of diagrams� lines� loops� and operators� I begin with a �topological	
diagrammatic algebra�

���� Line� bend and loop� The Kronecker �BA is the � � � identity matrix in
component notation� Thus� �

�BA
�
�

�
� �
� �

�
and ��� � ��� � � while ��� � ��� � �� The Latin capital indices� A and B in this
expression� may take one of two values � or ��

The diagrammatics begins by associating the Kronecker � to a line

�BA � �

The position of the indices on � determines the location of the labels on the ends
of the line� Applying the de
nitions one has

� � and � ��

If a line is the identity then it is reasonable to associate a curve to a matrix with
two upper �or lower� indices� Here� there is some choice in de
nition� A particularly
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nice one i�e� one with useful and fun properties is the antisymmetric matrix �AB

��AB� �
�
�AB

�
�

�
� �
�� �

�
�

But with an extra i tossed in�

��AB �� i�AB � �

Similarly�

��AB �� i�AB � �

After a bit of experimentation with these identi
cations� one discovers some 
ne
features� The manipulations are equivalent to continuous deformations of lines in
a plane ����� Since �CA�CD�

DE�BE � �AD�
DB � ��BA � we have

� �

Exercise �� Show that

�

using a product of ��s�

On account of the relation �CA�
D
B ��CD � ���AB one has �The indices C and D are

added to the diagram for clarity��

� �
 not what one would expect for smooth deformations of lines in a plane� This
problem can be cured by associating a minus sign to each crossing� Thus by asso�
ciating an i to every � and a sign to every crossing� the diagrams behave as lines in
the plane ����� The more precise name of this concept is known as planar isotopy�
Structures which can be moved about in this way are called topological� This as�
sociation of curves to ��s and ���s allows one to perform algebraic calculations by
moving lines in a plane�

A number of properties follow from the above de
nitions� The value of a simple
closed loop takes a negative value�

� ������

since ��AB ��AB � ��AB �AB � ��� A closed line is a number� This turns out to be
a generic result in that a spin network which has no open lines is equivalent to a
number�

A surprisingly rich structure emerges when crossings� are considered� For in�
stance the identity� often called the �spinor identity�	 links a pair of epsilons to
products of deltas

�AC �
BD � �BA �DC � �DA �BC �

Exercise �� Using the de�nitions of the �� matrices show that� diagrammatically�
this becomes

� � � �����

�This led Penrose to dub these �negative dimensional tensors� 	�
�� In general relativity� the
dimension of a space is given by the trace of the metric� g��g��� hence the name�
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Note the sign changes� e�g� ��DA �BC becomes � � This diagrammatic relation
of Eq� �� is known as �skein relations� or the �binor identity�� The utility of
this relation becomes evident when one realizes that the equation may be applied
anywhere within a larger diagram�

The result of these associations is a topological structure in which algebraic
manipulations of ��s� ��s� and other �� � matrices are encoded in manipulations of
open or closed lines�

Exercise �� Show that the diagrammatics introduced in this section satisfy the
Reidemeister Moves �see the appendix� and thus are topologically invariant�

���� Diagrams for angular momentum states� This method expresses states
such as j jmi and operators such as �J� in terms of diagrams� The notations are
related as

j �� �
�i � uA � �A� � and

j �� � �
� i � dA � �A� � �

These objects are like vectors� only a bit more simple� The vector index A takes
values � or � only� �Secretly� the �u	 for �up	 tell us that the index A only takes
the value �� Likewise �d	 tells us the index is ��� The inner product is given by
linking upper and lower indices� for instance

h�
�

�
� j �� �

�i � � ��

This new diagram means that two of the diagrams are tied together with a
Kroneker delta� uAuB�BA � For higher representations ����

j j mi ��j r si � Nrs uAuB � � �uC� �z �
r

dDdE � � �dF �� �z �
s

� �

in which

Nrs �

�
�

r� s� �r� s��

����
� j � r�s

� � and m � r�s
� ����

The parentheses in Eq� � � around the indices indicate symmetrization� e�g� uAdB� �
uAdB � uBdA� The normalization Nrs ensures that the states are orthonormal in
the usual inner product for j jmi�

Multiple strands require multiple copies� The simplest example is for two lines

�
�

�

�
�

�
����

For more than two lines the idea is the same� One sums over permutations of the
lines� adding a sign for each crossing� The general de
nition is

��
�

n�

X
��Sn

����j�j����

in which a 	 represents one permutation of the n lines and j	j is the minimum
number of crossings for this permutation� The boxed 	 in the diagram represents
the action of the permutation on the lines� It can be drawn by writing � � � � � n�
then permutation just above it� and connecting the same elements by lines�
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In this de
nition� the label n superimposed on the edge record the number of
�strands	 in the edge� Edge are usually labeled this way� though I will leave simple
��lines unlabeled� Two other notations are used for this are

� � �

The antisymmetrizers have a couple of lovely properties� retracing and projection�
The antisymmetrizers are �irreducible�	 or vanish when a pair of lines is retraced

� ������

which follows from the antisymmetry� Using this and the binor identity of Eq� ���
one may show that the antisymmetrizers are �projectors	 �the combination of two
is equal to one�

� �

Exercise �� Show this for a 	
line� i�e multiply �vertical composition� two copies
of the right hand side of Eq� ��� and simplify using the skein relations �Eq� ���� to
show that only one copy remains�

Making the simplest closed diagram out of these lines gives the loop value often
denoted as !n

� !n � ����n�n� ���

The factor n�� expresses the number of the �multiplicity	or the number of possible
�A�values	 on the edge� Each line in the edge carries an index� which takes two
possible values� For an edge with a strands the sum of the indices A�B�C� ��� is
�� �� �� ���� a� So that the sum takes a � � possible values� One can show using the
recursion relations for !n

� that the loop value is equal to the multiplicity� But this
is a longer argument� As we will see in the number of possible combinations is the
dimension of the representation�

Exercise �� Show that the 	
loop has value �� !� � �� using the relations for the
basic loop value �Eq� ��� and the expansion of the 	
line using the skein relation

� � �
� �����

These lines may be further joined into networks by making use of vertices� The
trivalent vertex is de
ned as

�� �

The dashed circle is a magni
cation of the dot in the diagram on the left� Such
dashed curves indicate spin network structure at a point� The �internal	 labels
i� j� k are positive integers determined by the external labels a� b� c via

i � �a� c� b���� j � �b� c � a���� and k � �a� b � c����

As in quantum mechanics� the external labels must satisfy the triangle inequalities

a� b � c� b� c � a� a� c � b

and the sum a � b � c is an even integer� These relations can be seen by drawing
the strands through the vertex�

�The loop value satis�es � � ��� � ��� and n�� � ����n�� �n �
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A useful representation of angular momentum states is in terms of the trivalent
vertex� Using the notation for many strands all labeled with � and similarly
for d one has

j j mi � �

Note that the index on the open line �which I have not included� is a set of r � s
indices� r of which are � and s of which are �� This is another way of writing the
single index m�

Angular momentum operators also take a diagrammatic form� As all spin net�
works are built from spin��� states� it is worth exploring this territory 
rst� Spin���
operators have a representation in terms of the Pauli matrices

	� �

�
� �
� �

�
� 	� �

�
� �i
i �

�
� 	� �

�
� �
� ��

�
with

�Si �
�

�
	i

for i � �� �� �� Using the notation j �i for j �
�
�
�
i one has

	�
�
j �i � �

� j �i�

which is expressed diagrammatically as

� �
� �

Or� since Pauli matrices are traceless�

� ��

and using Eq ���� one has

� �
� �

A similar relation holds for the states j �i� The basic action of the spin operators
can be described as a �hand	 which acts on the state by �grasping	 a line �����
The result� after using the diagrammatic algebra� is either a multiple of the same
state� as for 	�� or a new state� If the operator acts on more than one line� a higher
dimensional representation� then the total action is the sum of the graspings on
each edge�	

Exercise 	� �NB� A bit more than an exercise�� This form of the Pauli matrices
also provide the needed foundation for the basic operations in quantum computing�
This is also the basis for a diagrammatic programming language� Try constructing
the NOT and Controlled NOT gates�

�This may be shown by noticing that

� � so that � � � � � � n �

as may be derived using Eqs� �
� and �����



TOWARDS QUANTUM GRAVITY� DISCRETE GEOMETRY � OBSERVABLE CONSEQUENCES�

The �Jz operator can be constructed out of the 	� matrix� The total angular
momentum z�component is the sum of individual measurements on each of the
sub�systems� the operator is �Jz � �

P�j��
i�� �� ���� ���� �i� ���� � where the sum is

over the possible positions of the Pauli matrix� In diagrams� the action of the �Jz
operator becomes

�Jz j j mi �

� r � s

� �

	 r
�
� s

�



� �m j j mi�

The de
nition of the quantities r and s was used in the last line�
This same procedure works for the other angular momentum operators as well�

The �Jx operator is constructed from the Pauli matrix 	�� When acting on one line
the operator �Jx matrix ��ips the spin	 and leaves a factor

� �
�
� �

Exercise 
� Try the same procedure for �Jy�

The raising and lowering operators are constructed with these diagrams as in
the usual algebra� For the raising operator �J� � �J� � i �J� one has

�J� j j mi � �s �

In a similar way one can compute

�J� �J� j j mi � �
��r � ��s j j mi

from which one can compute the normalization of these operators� Taking the inner
product with hj m j gives the usual normalization for the raising operator

�J� j j mi � �

p
s�r � �� j j mi � �

p
�j �m��j �m � �� j j mi�

Note that since r and s are non�negative and no larger than �j� the usual condition
on m� �j � m � j� is automatically satis
ed�

Though a bit more involved� the same procedure goes through for the �J� opera�

tor� It is built from the sum of products of operators �J� � �Jx
�
� �Jy

�
� �Jz

�
� Acting

once with the appropriate Pauli operators� one 
nds

�J� j j mi � �
�	�
�

�
�r
�

�
s

�

�
��� �

�	�
�

�
�ir
�

� is

�

�
��

� �
�	�
�

�r � s�

�
�



�� SETH A� MAJOR

Acting once again� some happy cancellation occurs and the result is

�J� j j mi � �
�

�

�
r� � s�

�
� rs� r � s

�
j j mi

which equals the familiar j�j � ��� Actually� there is a pretty identity which gives
another route to this result� The Pauli matrices satisfy the magical relation

�

�

�X
i��

	BiA 	
D
iC �

�

�

�
�BA �DC � �AC �BD

� 	����

so the product is a ��line� Similarly� the �J� operator may be expressed as a ��line�
As will be shown in Section ��� this simpli
es the above calculation considerably�

�� A quantum description of geometry

Now we have all the tools in place to describe quantum geometry� a diagrammatic
algebra and the familiar �J operators of angular momentum� A state of quantum
gravity is given by a graph � a set of vertices and edges connecting them� To every
edge of the graph we associate an angular momentum state and so a spin j� Finally�
at the vertices  just as we do in spin�orbit coupling  the angular momenta of the
incident edges are summed together� These three quantities� a graph� edge labels�
and vertex labels de
ne a �spin network�	� These spin networks are �good quantum
numbers	 for the states� At an instant of time� quantum three dimensional space
is represented by these graphs and labels� The edges may be all knoted together�
The dynamics provides a way to chnage this �knotyness�	 As Shakespeare wrote
in Twelfth Night �O time� thou must untangle this� not I� It is too hard a knot for
me t�untie	 �Viola��

I have not derived that spin networks form a basis� but rather stated the result�
You might be �rightly� skeptical� So I must o�er some motivation for this� We might
expect that a quantum description of continuous geometry ought to be discrete �pun
intended���� But one can see how this comes out of the quantization�

In general relativity the degrees of freedom are encoded in the metric on space�
time� However� it is quite useful to use di�erent variables to quantize the theory
���� Instead of a metric� in the Hamiltonian approach the variables are an �electric

eld�	 which is the �square root	 of the spatial metric� and a vector potential� The
electric 
eld E is not only vector but also takes ��� matrix values in an �internal	
space� This electric 
eld is closely related to the coordinate transformation from
curved to �at coordinates �a triad�� The canonically conjugate A� usually taken to
be the con
guration variable� is similar to the vector potential in electromagnetism
but is more appropriately called a �matrix potential	 for A also is matrix valued� It
determines the e�ects of geometry on spin��� particles as they travel about space��

�See Refs� ��� and ���� for more on the new variables�� States of loop quantum
gravity are functions of the potential A� A convenient basis is built from kets j si
labeled by spin networks s� In this application of spin networks� they have special
tags or weights on the edges of the graph� Every strand e of the gravitational spin
network has the �phase	

R
e
A 
 dl associated to it� An orientation along every edge

�These objects were �rst invented by Roger Penrose to construct a discrete model of space
	�
��

�In a continuous space� in every interval there is an in�nite number of points� Suppose that
we are trying to specify the gravitational �eld in a region� If the theory associates � degrees of
freedom per point� as general relativity does� and if this information requires some energy to store
then the region would collapse into a black hole� This is a gravitational ultra�violet catastrophe�
One solution to this is to remove the assumption of a continuous space�

�For those readers familiar with general relativity the potential determines the parallel trans�
port of spin� �

�
particles�
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helps to determine these phases or weights� The states of quantum geometry are
encoded in the knottedness and connectivity of the spin networks�


On this kinematical state space we have operators which measure the geometry�
such as area� In calculus we calculate an area by integrating over a region RZ

R

d�x

Hiding in this integral is a strong assumption  that the space is �at� For better
or for worse� the region might contain some curvature� In this case the calculation
is the same but there is a further dependence on the coordinates via the metric�
Thus� the area of a surface is the integral

AS �

Z
S

d�x
p
g�

in which g is the determinant of the metric on the surface� The �avor of this sort
of thing is already familiar in �at space integrals in spherical coordinates�

A �

Z
r� sin���d�d��

In the �A�E� variables the calculation is more simple when the surface is speci
ed
by z � � in an adapted coordinate system� Expressed in terms of E� the area of a
surface S only depends on the z�vector component �� �� ���� ���

AS �

Z
S

d�x
p
Ez 
Ez�����

The dot product is in the �internal	 space� It is the same product between Pauli
matrices as appears in Eq� ����� In the spin network basis E is the momentum
operator� As p��i� d

dx
in quantum mechanics� the electric 
eld becomes a hand�

E � �i�
 � The � is proportional to a Pauli matrix� � � i
�	 and the 
 is

a sign factor� It is positive when the orientations on the edge and surface are the
same� negative when the edge is oriented oppositely from the surface� and vanishes
when the edges is tangent to the surface� It turns out that the E operator is like
the angular momentum operator �J � �E � 
 �J � Since the E operator vanishes unless
it grasps an edge� the operator only acts where the spin network intersects the
surface�

The square of the area operator is calculated 
rst� Calling the square of the
integrand of Eq� ���� �O� the two�handed operator at one intersection is

�O j si � �
X
eI �eJ


I 
J �JI 
 �JJ j si����

where the sum is over edges eI at the intersection� Here� �JI denotes the vector
operator �J � �Jx � �Jy � �Jz acting on the edge eI � This �O is almost �J� but for the
sign factors 
I �

In the quantum theory� the integral of the area of a surface Eq� ���� is partitioned
into small bits of area  as in the de
nition of integrals in calculus  which have
only one intersection with the spin network state� The area operator then is the
sum over contributions from all parts of the spin network which thread through the
surface� In terms of �O acting at all intersections i

�AS j si �� G

�c�

X
i

�Oi
��� j si�����

	In more detail� every edge has a holonomy or path ordered exponential �i�e� P exp
R
e
dt �e�t� �

A�e�t��� associated to it� See� for example� Ref� 	���
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�a�� �b��

Figure �� Two types of intersections of a spin network with a
surface �a�� One isolated edge e intersects the surface transversely�
The normal �n is also shown� �b�� One vertex of a spin network lies
in the surface� All the non�tangent edges contribute to the area�
Note that the network can be knotted�

One can calculate the action of the operator �O on an edge e labeled by n as
depicted in Figure ��a��� In this case� the hands act on the same edge so the sign

is �� 
�I � �� and the operator becomes �J�� The calculation makes use of the Pauli
matrix identity of Eq� ����

�Oe j si � � �J� j si

� ��� n
�

�
j �s � e�i�

The edge is shown in the the diagram so it is removed spin network s giving the
state j �s � e�i� Now the diagram may be reduced using the diagram identities�
The bubble may be extracted with Eq� ����

�Oe j si � ��� n
�

�
j �s � e�i

� ��� n
�

�

��n� n� ��

!n
j �s � e�i

� ��� n
�

�

�
�n � �

�n

�
j si

� �
� n�n� ��

�
j si�

in which Eq� ���� was also used in the second line� Putting this result into the area
operator� one learns that the area coming from all the transverse edges is �� �

�AS j si � G�

c�

X
i

r
ni�ni � ��

�
j si

� l�p
X
i

p
ji�ji � �� j si�

�� �

The units �� c� and G are collected into the Planck length lp �
q

G�
c� � ����� m�

The result is also re�expressed in terms of the more familiar angular momentum
variables j � n

� �
The full spectrum of the area operator is found by considering all the intersections

of the spin network with the surface S including vertices which lie on the surface
as in Figure ��b��� The edges incident to a vertex on the surface are divided into
three categories� those which are above the surface ju� below the surface jd� and
tangent to the surface jt� Summing over all contributions ���

�AS j si � l�P
�

X
v

�
�juv �j

u
v � �� � �jdv �j

d
v � �� � jtv�j

t
v � ��

���� j si�
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This result is utterly remarkable in that the calculation predicts that space is dis�
crete� Measurements of area can only take these quantized values� As is the case in
many quantum systems there is a �gap	 from zero to the lowest possible non�zero
value� This area gap is

!A� �

p
�

�
l�p�����

In an analogous fashion� as for an electron in a hydrogen atom� surfaces make a
quantum jump between states in the spectrum of the area operator� there is a
quanta of area�

Now we can return to the question of black hole radiation�

���� Spectra of black hole radiation� Suppose that the most likely con
guration
for a black hole is one with many� many �� ����� edges intersecting the boundary
each carrying the simplest representation j � ���� To reduce the area of the
horizon� a black hole must loose an edge intersecting the horizon � pop� The area
of the horizon makes a quantum jump and radiates like an atom� This smallest
transition determines the fundamental frequency of a black hole ����

From Eq� ��� we have that� for a Schwarschild black hole�

M� �
c	

���G�
AH

so that the change in mass is

!M �
c	

���G�

�

M
!AH�

Using the change in area !A� of Eq� ����� the fundamental frequency �� is

�� �

p
�

���

c�

G

�

M
� �� � ���

�
MJ

M

�
Hz

For example� if the black hole has an e�ective mass of one solar mass then �� is on
the order of kHz  stellar mass black holes emit radio waves �����

To 
nd whether this frequency is small in scale relative to the body body spec�
trum� one can 
nd the maximum of the spectrum� The maximum is located at
���kT � � so the frequency of the maximum is

�max � �kTH
�

�
�c�

��GM
� �����

The maximumof the Planck distribution is just �� times the fundamental frequency�
This is radically di�erent than the Hawking spectrum� Though both spectra would

t in the same envelope� there would only be about �� visible lines for all black
holes� independent on the mass�

These results are for the spectrum of a spherically symmetric black hole� One
could expect that the spectrum of real black holes would be signi
cantly modi
ed
by transitions between various angular momentum states� As in atomic physics�
these transitions� emission or absorption of gravitons or photons� give 
ne structure�
However� as long as these transitions between discrete angular momentum states
are small compared to the irreducible mass squared� the blurring of the black hole
emission lines is small compared to the fundamental wavelength ���� ����

There is an unfortunate aspect of these larger black holes� The power radiated�
as it scales as T 	H � is fantastically small� So it is not likely that this e�ect could be
observed� This calculation is too simple in another regard as well� The assumption

that !A �
p
�
	 l�p may not be true� In fact� the level spacing of the spectrum

decreases with increasing spin� In these cases� the semiclassical Hawking spectrum
is reproduced ����
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���� Traces of discrete structure� A discrete structure such as spin networks
could yield observable a�ects� One possibility is through a small modi
cation of
Maxwell�s equations� As in optical media such as crown or �int glass� a quantum
gravitational medium would respond di�erently to the propagation of particles at
di�erent wavelengths or energies� This would be a very small e�ect but over vast
distances� the result could be measurable�

Let�s look at how this would work for photons ���� For a theory at a scale EQG�
the e�ect would be realized by a modi
cation of the speed of light

v�E� � c

�
� � 

E

EQG
� �

�
E

EQG

��
� � � �

�

so that photons with di�erent energies E would travel at di�erent speeds� In optics
we normally encode this change as the index of refraction n� vmedium � c

n � For
v�E��

n �
�

� �  E
EQG

�

If a bundle of photons were released simultaneously over a wide range of energy�
the photons would arrive at their destination� say a distance L from the source� at
di�erent times� The 
rst order delay can be found to be

!t � 
L

c

!E

EQG
�����

Though the e�ect � E
EQG

� is tiny� if the distances are astronomical then the e�ect

could be observed� It was suggested last year ���� that the current ��ray observations
already place limits on the scale of this e�ect up to EQG � ���� GeV�

How could this be done� The idea is that it the signal has a 
ne enough time
structure� a detailed time�series analysis comparing signals in di�erent energy bands
might reveal coincidences on a time scale of !t � ����� If the sources are at
L � ���� l�yr� and since the energy resolution of the BATSE detector on the
Compton Observatory is !E � ��� keV� then Eq� ���� constrains the energy scale
EQG of quantum gravity dispersive e�ects� In principle� one could do much better�
Gamma ray sources have photons in the ��� � ��� MeV range �with some possibility
of photons in the Tev range� with time scale features on the order of ���� s� There
is also a possibility of polarization e�ects such a birefringence as well ����

How could we distinguish this from regular dispersive e�ects� The key property
of this dispersion is that� unlike normal dispersion�

dnQG
d�

� ��

the index of refraction decreases as the wavelength decreases�
This being a cumulative e�ect� signals traveling over a vast distance would de�

velop traces of the underlying discrete structure�

Exercise �� �NB� A bit more than an exercise�� For a realistic spin network model
of �at space� �nd the dispersion relation for massless particle propagation�

�� Conclusions

This talk on quantum gravity o�ers a view of issues surrounding the formulation
of such a theory� a glimpse of the structure of spin network geometry� and two
avenues for experimental observations�

But I do not want to leave you without a note of caution� which also may
tickle your imagination� This comment relates to the thermodynamical relations
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I mentioned before which was that general relativity plus some quantum theory
reproduced thermodynamics�

Let me quote from a statistical mechanics text� �The thermodynamic laws� then�
are introduced only as phenomenological statements that conveniently summarize
macroscopic experience� ��� we introduce thermodynamic laws� which may be
regarded as mathematical axioms de
ning a mathematical model� It is possible
to deduce rigorous consequences of these axioms� but it is important to remember
that this model may not rigorously correspond to the physical world�	 ����

In the 
rst section of the talk I brie�y reviewed how general relativity plus
quantum theory gives thermodynamics� Does this not suggests that� �General
relativity is the phenomenology of geometry	 �� Does Einstein�s work �conveniently
summarize macroscopic experience	�

Exercise �� �NB� A bit more than an exercise�� What is the statistical mechanics
of spacetime geometry�

We may have to come up with a far more radical theory than either general
relativity or quantum theory� When Dirac 
rst tried to 
nd a �special� relativistic
equation for the electron he asked for an equation that simultaneously satis
ed the
principles of special relativity and quantum mechanics� he found a new �internal	
degree of freedom� This is the fully�quantum �spin	 of particles� Spin has profound
consequences from stellar evolution to high school chemistry �with the formation
of life in between��� Our world would not be recognizable without this quantum
phenomenon� So just as when Dirac� faced with the seemingly incompatible re�
quirements of special relativity and quantum theory pushed hard� played a clever
trick� and discovered spin� there is no reason to expect that quantum gravity will
lead to physical phenomenon less profound� At least� I hope to leave you with our
eyes open to this possibility�

Appendix A� Loops� Thetas� Tets and all that

This appendix contains the basic de
nitions and formulae of diagrammatic recou�
pling theory using the conventions of Kau�man and Lins ����� a book written in the
context of the more general Temperley�Lieb algebra� It also includes a description
of the Reidemeister Moves of knot theory�

A��� Reidemeister Moves� It is remarkable that a knot in three dimensional
space can be continuously deformed into another knot� if and only if� the planar
projection of the knots can be transformed into each other via a sequence of four
moves called the �Reidemeister moves	 ����� Though I discuss only two dimen�
sional diagrams here� the Reidemeister moves are shown in their full generality  as
projections of knots in three dimensional space� While in two dimensions one has
only an intersection� � when two lines cross� in three dimensions one has the
�over crossing�	 and the �undercross�	 � as well as the intersection �

There are four moves�

� Move � In the plane of projection� one can make smooth deformations of
the curve

� �

� Move I� As these moves are designed for one dimensional objects� a curl may
be undone

� �
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This move does not work on garden�variety string� The string becomes twisted
�or untwisted�� �In fact� this is the way yarn is made��

� Move II� The overlaps of distinct curves are not knotted

� �

� Move III� One can perform planar deformations under �or over� a diagram

� �

With a 
nite sequence of these moves the projection of a knot may be transformed
into the projection of any other knot which is topologically equivalent to the origi�
nal� If two knots may be expressed as the other with a sequence of these moves then
the knots are called �isotopic�	 Planar isotopy is generated by all four moves with
the signi
cant caveat that there are no crossings � only intersections � Pla�
nar isotopy may be summarized as the manipulations one would expect for elastic�
non�sticky strings on a table top  if they are in
nitely thin�

Move I on real strings introduces a twist in the string� This move is violated by
any line which has some spatial extent in the transverse direction such as ribbons�
Happily� there are diagrammatic spin networks for these �ribbons	 as well ����� �����

A��� Diagrammatic Formulae� The function ��m�n� l� is given by

��m�n� l� � � ����a�b�c� �a� b� c� ���a�b�c�

�a � b���b� c���a� c��
����

where a � �l�m� n���� b � �m� n� l���� and c � �n� l �m���� An evaluation
which is useful in calculating the spectrum of the area operator is ��n� n� ��� for
which a � �� b � n� �� and c � ��

��n� n� �� � ����n��� �n � ��� �n� ���

��n���
� ����n��� �n� ���n� ��

�n
�����

A �bubble	 diagram is proportional to a single edge�

� �nl
����n��a� b� n�

�n� ��
�����

Exercise �� Check the identity Eq� �		� by closing up the lines and applying the
de�nitions of the loop value and ��

The basic recoupling identity relates the di�erent ways in which three angular
momenta� say a� b� and c� can couple to form a fourth one� d� The two possible
recouplings are related by

b

a

c

d
i’ �

X
ja�bj�i�a�b�

�
a b i
c d i�

�
a d

b c

i����

where on the right hand side is the �j�symbol de
ned below� It is closely related
to the Tet symbol� This is de
ned by ����

a

 b c

d
 f 

e �

a

b c e

f d � Tet

�
a b e
c d f

�

Tet

�
a b e
c d f

�
� N

X
m�s�S

����s �s � ���Q
i �s � ai��

Q
j �bj � s��

N �

Q
i�j �bj � ai��

a�b�c�d�e�f �

����
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in which

a� �
�
��a � d� e� b� �

�
��b � d� e � f�

a� �
�
��b� c� e� b� �

�
��a � c� e� f�

a� �
�
��a � b� f� b� �

�
��a � b� c� d�

a	 �
�
��c � d� f� m � maxfaig M � minfbjg

The �j�symbol is then de
ned as

�
a b i
c d j

�
��

Tet

�
a b i
c d j

�
!i

��a� d� i� ��b� c� i�
�

These satisfy a number of properties including the orthogonal identityX
l

�
a b l
c d j

� �
d a i
b c l

�
� �ji

and the Biedenharn�Elliot or Pentagon identity

X
l

�
d i l
e m c

��
a b f
e l i

��
a f k
d d l

�
�

�
a b k
c d i

��
k b f
e m c

�
�

Two lines may be joined via

�
X
c

!c

��a� b� c�
�����

One also has occasion to use the coe�cient of the ���move	

 ab 

c

� �abc
a

c b
where �abc is

�abc � �����a��b��c�����
����
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