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Resonance in Circuits 
 
Purpose:  

• To map out the analogy between mechanical and electronic resonant systems 
• To discover how relative phase depends on driving frequency 
• To gain experience setting up circuits  

 
Apparatus: Oscilloscope, function generator, 10 nF capacitor, 10 mH inductor, 220W resistor, 
BNC cables, banana cables 

 
Introduction: 
As you recall we change the driving frequency of a damped, driven, harmonic oscillator the 
amplitude of motion and the relative phase between the driving force and the motion change.  As 
you saw in Lab 4, the amplitude reaches a peak at the resonant amplitude.  In this lab we explore 
the relative phase in an electronic analog of the damped, driven, harmonic oscillator. 
 
LRC Circuit Introduction: 
An LRC (or RLC or LCR) circuit is made of three electrical components, an inductor (“L”), a 
capacitor (“C”), and a resistor (“R”).  Don’t worry about the electric and magnetic properties of 
these components.  We can use the following (exact) analogy with a mechanical system: 
 

Mechanical  Electrical  

x displacement q charge 

dx/dt velocity I=dq/dt current 

m mass L inductance 

b damping R resistance 

k spring constant 1/C 1 over capacitance 

F0 
amplitude of force 𝑉𝑜 amplitude of voltage 

 
 
 
The inductor, capacitor, and resistor are connected one after the other - in “series” as shown by 
the diagram above. The order of the components doesn’t matter. As you can see from the above 
table, LRC circuits are resonant systems; there is a special resonant frequency (𝜔$) such that the 
amplitude of oscillation reaches a maximum and the relative phase reaches 𝜋 2⁄ . Assuming as we 
would for the mechanical system that the driver (the voltage of the generator) has a fixed 
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amplitude Vo that is independent of the generator's frequency f = w/2p, then the amplitude of the 
charge that sloshes back and forth in the circuit is 

𝑞(𝜔) =
𝑉,/𝐿

/0𝜔1 − 1
𝐿𝐶5

1
+ (𝜔𝑅)1

 

   
This should look a bit familiar.  The amplitude of a damped driven oscillator is given by  

𝐴 =
𝐹, 𝑚⁄

;(𝜔1 − 𝜔,1)1 + 4𝜔1𝛽1
 

 
The relative phase is 
 

𝜙 = arctan D
2𝛽𝜔

𝜔E1 − 𝜔1F 

where  

𝛽 =
𝑏
2𝑚

=
𝑅
2𝐿

 
 
In many practical situations, the resistance R is not only in a resistor but also "hidden" in the 
inductor and other components.  In our case, the resistor has a value of 220	Ω. 
 
Prelab: Read this lab 
 Develop a playful mind 
 
Mass on a Spring: 
In Lab 4 on resonance, we explored the motion of a mass on a spring with magnetic damping 
while it was driven by a speaker.  As the driving frequency approached the resonant frequency we 
noticed that the small driving amplitude of the speaker resulted in large amplitude motion of the 
mass. 
 
An electric circuit shows the same behavior as a mass on a spring. However, instead of using 
position, velocity and acceleration to describe the motion, we use charge, current, and voltage.  In 
circuits, the analogous physical parameter to position is charge.  In the lab, we monitor the 
voltage across the capacitor which is related to the charge via  Δ𝑉M = 𝑞/𝐶. 
 
Building a LC Circuit to find the resonant frequency: 
Before building the LRC circuit, we must first find the natural frequency of the circuit.  While it 
is possible to calculate the resonant frequency of the circuit using 𝜔0 = 1/√𝐿𝐶, this will likely 
yield an incorrect result.  Unfortunately, the value of the inductance has an uncertainty of around 
10%, and the uncertainty of the capacitance can be as large as 30%!  Instead, we are going to 
determine our natural frequency experimentally similar to how we determined it for our mass on 
a spring system.  
 
When we were looking at the mass on a spring system, we found the natural frequency by 
removing the magnetic damping, starting the mass moving with a large amplitude, and watching 
the motion with a motion detector.  Then we fit the resulting sine wave to determine the natural 
frequency of the system.  For the LRC circuit, we will do something similar, removing the 
resistor to reduce damping. We will start the charge moving by hitting the circuit with a square 
wave, and track the motion with an oscilloscope.   



Physics 195  Spring 2019 

3 

 
Let’s start by building the circuit: 
1. Connect the 10 mH inductor, and the 10 nF capacitor together such that the circuit makes one 
continuous path through all of the elements one after the other.  Then these components are 
connected “in series” as in the diagram below. The dots represent connection points and the lines 
between them are wires.  In future diagrams the dots will be left out. 
 

 
 
2. Now connect the function generator in such a way that the black clip connects to the capacitor 
and the red clip connects to the inductor.  This will drive this circuit with the square wave 
voltage, so be sure to select the square wave setting.  
 

 
 
3. We use the oscilloscope to measure both the voltage from the function generator as well as the 
voltage from the circuit.  Connect one channel of the oscilloscope directly to the function 
generator to measure the input voltage (Vin).  Then connect the next channel of the oscilloscope to 
both sides of the capacitor to measure the voltage out from the circuit (Vout).  Make sure to connect 
the red and black of the leads as described by the diagram below.  
 

 
 

4. When you think your circuit is ready, turn on all of the devices and begin looking for the 
signals on the oscilloscope.  Start by changing the frequency of the square wave pulse to around 
10 Hz, and triggering on the signal generator’s rising square wave.  Once you have found the 
square wave from the signal generator, examine the signal across the capacitor.  You will likely 
need to zoom in on the signal to see the oscillations of the circuit after the big pulse.  Moving to 
the measure function should allow the oscilloscope to measure the frequency of the resulting 
wave giving you the natural frequency of the circuit.  Write the natural frequency down in 
standard form! 
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Building the LRC Circuit and Exploring Relative Phase: 
Now we will examine an LRC series circuit and the phase relationship. Much like when we 
explored the resonance curve for the mass on a spring, we will be using a damped, driven system.  
In this case, instead of driving with a speaker, we will be driving the system from a sine wave 
produced by the signal generator.  Instead of magnetic damping we will be using the resistor to 
produce damping in the system.   
 
1. Create the following LRC circuit:  
 

 
 
2.  When your circuit is ready, look for the signals on the oscilloscope.  You can start by finding 
and triggering on the signal generator’s sine wave. 
 
3. Once you have found the sine wave from the signal generator, set the driving frequency of the 
signal generator near the natural frequency of the circuit.  As you approach resonance, you should 
start to see a signal from voltage across the capacitor.  If you do not, find your instructor for help.   
 
4. Explore the frequencies around the resonant frequency of your system.  Watch the amplitude 
and phase of the voltage across the capacitor changes as you change the frequency.  You are 
observing the resonance of your LRC circuit.  Neat! You’ve built your very own electric resonant 
system!  
 
5. In an LRC circuit, we expect that on resonance, the phase of the current (which is proportional 
to Vin) should be in phase with the voltage across the resistor, 90∘ behind the voltage across the 
inductor, and 90∘ ahead of the voltage across the capacitor (Vout).  Let’s put this to the test! 
 
6. Devise a method to determine the phase difference between the voltage from the signal 
generator and the voltage across the capacitor. 
 
7. Take data on the phase around the resonant frequency.  In your favorite spreadsheet, build a 
plot of your phase angle vs. driving frequency that will allow for more data to be added later.   
 
8. Propagate error in your measurements and add vertical error bars to data on your graph.  
 
9. Using the equation for phase and known values, create a theoretical curve over your data.  
Enter this so you can change the value for the resistance R and the graph will update the 
theoretical curve. Start by making a column of dummy values for frequency and finding the phase 
based on those frequencies.  You should have a smooth theoretical line over your data if done 
correctly. 
 
10. Add experimental data to fill in gaps and see if experimental data and theoretical prediction 
agree well.  
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11. Adjust the resistance value for a better fit.  What is the change you had to make to the 
resistance of the circuit?  Why do you think this is necessary? What is your uncertainty value?  
 
12. Print out one copy of this graph for your lab notebook and one copy to turn in for the postlab.  
 


