
Quantum (PHYS 290): Solutions 2 Fall 2025 v1.5

Solutions:

(1) Including single slit diffraction in Townsend’s double slit intensity
(a) As we saw in class at an angle θ the wee little phasors from the Huygens’ sources add

up along an arc of a circle (since each phasor differs by a small angle ∆φ1) to give the
contribution from one of the finite-width slits. So we need to just add the arcs to the
figure:

You could add the geometry with the radius R we used in class for each as well

but this is optional.
(b) We need to add up all the single slit Huygens’ source phasors, the first one of which starts

out with a phasor z1 which we could write as z1 = rse
i(kL−ωt), since the screen is L away

from the slit. I will shorten this using kL− ωt = αs. So for a single slit (s),

zs = z1 + z2 + z3 + · · ·+ zN

= rse
iαs + rse

i(αs+∆φs) + rse
i(αs+2∆φs) + . . .

= rse
iαs

(
1 + ei∆φ + ei2∆φ + . . .

)

1In the notation we used in class ∆φ = π∆y sin θ/λ) where ∆y is the distance between adjacent sources.
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(c) (Optional bonus worth +0.1 extra pt) The total final phasor zP is the sum of zs and
another phasor shifted by the phase ϕ, zse

iϕ.

zP = zs + zse
iϕ

= rse
iαs

(
1 + ei∆φ + ei2∆φ + . . .

)
+ rse

iϕeiα
(
1 + ei∆φ + ei2∆φ + . . .

)
= rse

iαs

(
1 + ei∆φ + . . . ei(N−1)∆φ

) (
1 + eiϕ

)
= 2rse

iαseiϕ/2

[
sin N∆φ

2
N∆φ

2

](
e−iϕ/2 + eiϕ/2

2

)
In this last line I did some algebra to re-write in terms of sine and cosine in the expression;
the last factor is cosine. Adding up the angles gives N∆φ/2 = πa sin θ/λ so that

zP = 2rse
iαseiϕ/2

[
sin

(
πa sin θ

λ

)
πa sin θ

λ

]
cos(ϕ/2)

Finding the magnitude squared gives

z∗P zP = 4r2s

[
sin

(
πa sin θ

λ

)
πa sin θ

λ

]2

cos2(ϕ/2). (1)

The double slit phase shift ϕ = 2πd sin θ/λ so this is the same as the intensity we derived
in class (in a much easier way).

(2) The HeNe laser has λ = 633 nm.
(a) The screen is far way so we can use the small angle approximation

sin θ ≃ θ ≃ δ

D
= 1× 10−3.

The bright fringes (maxima) should be spaced so that

d sin θ = nλ or d
δ

D
≃ λ for neighboring maxima.

so

d =
D

δ
λ = 10−3 · 633 nm = 633× 10−6 m = 0.633 mm.

(b) The layer of cellophane adds phase so the whole pattern will shift. For instance the central
maxima would not longer be at θ = 0 but would be shifted to match the additional phase.
Since the cellophane adds

∆φ

2π
= 2.5 =⇒ ∆φ = 5π

the position in the screen must change. The amount is given by this phase,

∆φ =
2πd sin θ

λ
= 5π

or, with the small approximation,

dδ

Dλ
=

5

2
=⇒ δ =

3Dλ

d
= 2.5 cm.

The central maxima would shift 2.5 cm. In the small angle approximation this holds for
the other bright fringes as well.
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(3) The stopping potential means that the electrons don’t make it to the anode and the current
stops. By energy conservation in this case, the total energy of the photon goes into the work
function, to lift the electrons out of the material, and the stopping potential energy eVo

hf = eVo +W =⇒ W = hf − eVo

(a) With the given numbers (sticking to eV helps here)

W =
hc

λ
− eVo = 6.29− 2.08 ≃ 4.21 eV.

(b) The maximum kinetic energy is just the stopping potential energy so

K = eVo =⇒ v =

√
2eVo

me
≃ 8.55× 105 m/s.

Although fast, this speed is well below the speed of light so SR is not needed.
(c) Intensity is number flux (here NA per hour) times energy so

I =
NA

3600s
· hc
λ

≃ 169 W/m
2
.

(4) Since

hf = K +W or K = hf −W

to find h using Millikan’s data we need the slope on the K vs. f plot in figure 1.14. Choosing
points from the plot (0, 5.6× 1014) and (2.35, 11.9× 1014) gives the slope

h =
∆K

∆f
≃ 3.7× 10−15 eV s

which differs the accepted value by about 10%.

(5) Photons with energy Eγ = 0.66165 MeV scattered off the target, loosing energy due to the
recoil of the electrons. The data is given with a linear fit.
(a) With the Compton formula

λ′ = λ+
h

mec
(1− cos θ) and E =

hc

λ

we have
hc

Eγ′
=

hc

Eγ
+

h

mec
(1− cos θ)

Multiplying through by Eγ and dividing by hc gives the result

Eγ

Eγ′
= 1 +

Eγ

mec2
(1− cos θ) .

(b) From this equation we expect that the line should be

1 + bx with b =
Eγ

mec2
=

.0.66165MeV

0.511MeV
≃ 1.29.

The plot fit has b = 1.4. The experimental Compton wavelength is

λC = b
ch

Eγ
≃ 2.6× 10−12 m.

Meanwhile the theoretical value is

λC =
h

mec
≃ 2.43× 10−12 m.
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(c) The agreement between the theoretical and experimental wavelengths is about 8%. From
the plot we can see that the data doesn’t look great. It doesn’t look convincingly linear.
Nor does the fit agree with the initial expected “1”. The obvious next step is to take
more data, particularly at large angle, above π/2. (But since this data run already took
3 weeks, we didn’t.)

(6) A little radiation safety
(a) For instance a 1.5 GHz photon has energy E = hf ≃ 6.2 × 10−6 eV. A single photon of

this energy would not break such a chemical bond.
(b) The situation is different for the photons used in the Compton experiment in problem 5,

∼ 7 × 105 eV. They are thus at an energy of 105 higher than typical bond energies and
could do lots of damage. These photons were certainly dangerous so we took care to avoid
these hot photons.

(7) 36,000 revolutions per inch ... Hmm so that means that the phase rotates 36,000 times over
d = 1 inch. Since,

∆φ

=
kd =

2πd

λ
we have over 2π 36, 0000 radians

36, 0000 · 2π =
2πd

λ
=⇒ λ =

2.54 cm

36000
≃ 7.06× 10−7 m

which is about 700 nm, which is the wavelength of red light.

(8) (2 pts.) Phasors in a thin film
(a) Because light reflects off the top and bottom we have to add two phasors. Let’s suppose

the accumulated phase of the phasor outside the film is α. The phasor for the reflected-
off-the-top path is then

zr = (0.2)(eiπ)(eiα) = −0.2eiα

where the factors are amplitude for reflection (given), phase shift due to reflection, and
accumulated phase. The phasor that goes through the thin film, zt, is has an additional
phase due to its travel through the film. This phase is based on the distance, 2d, and the
wavelength in the material λ′. So the additional phase is ∆φ = k′2d = 4πd/λ′ = 4nπd/λ.
The phasor for the light that is transmitted on the top surface is2

zt = (0.2)(ei∆φ)(eiα) = 0.2ei(α+∆φ)

The total amplitude is the sum of these

z = zr + zt = 0.2eiα
(
−1 + ei∆φ

)
= 0.2eiαei∆φ/2

(
−e−i∆φ/2 + ei∆φ/2

)
This way of writing allows to rewrite the phase in terms of sine; sin θ = (eiθ − e−iθ)/2i.
So

z = (0.4)(iei(α+∆φ/2)) sin(∆φ/2).

Taking the magnitude gives

P = z∗z = 0.16 sin2
(
2nπd

λ

)
which is equivalent to the probability stated in the problem.

2There is a problem. If the amplitude to be reflected is 0.2, then the probability of transmission must be 1−0.04 = 0.96

so the amplitude of transmission is
√
.96 ≃ 0.98. So really Townsend should quote the correct value or say the probability

is approximate.
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(b) Here we want a non-vanishing value of d for when P = 0.16, i.e when sine is one. Thus,

2nπd

λ
=

π

2
=⇒ n =

λ

4d
≃ 1.39

For the wavelength of 706 nm and d = 5/106 ∗ 2.54 cm.
(c) For no reflection we need the two phasors to destructively interfere. This happens when

the sine vanishes or when
2nπd

λ
= π =⇒ d =

λ

2n
= 254 nm.

(9) The rules are the same just what we are adding and multiplying changes. In classical probability
we multiply and add probabilities. In quantum mechanics we multiply and add amplitudes.


