
Quantum (PHYS 290): Solutions 3 Fall 2025 v1.2

Solutions:

(1) Probability amplitudes and probabilities
(a) The amplitude is

z =
1

1 + i
=

1− i

(1− i)(1 + i)
=

1− i

2
.

(It is best to work with x = iy or reiϕ forms.) So the probability

P = |z|2 = z∗z =
(1 + i)

2

(1− i)

2
=

1

2

(b) z = i so
P = |z|2 = z∗z = (−i)(i) = 1

(c) Now

z =
1

1 + i
+ i =

1− i

2
+ i =

1 + i

2
So the probability is

P = |z|2 = z∗z =
(1 + i)

2

(1− i)

2
=

1

2
.

Same as (a)
(d) But

z =
1

1 + i
− i =

1− 3i

2
So the probability is

P = |z|2 = z∗z =
(1 + 3i)

2

(1− 3i)

2
=

10

4
> 1

so this cannot be a probability and z cannot be a probability amplitude.

(2) There is a band of polarized light spanning the sky at a 90 degree angle from the direction of
sunlight - where the sky is ‘bluest’. I found this by looking through and rotating the polarizer
in different parts of the sky.

The light from this part of the sky is polarized perpendicular to the sun’s rays. This starts
to make sense if you recall that light is a transverse wave and if we think of a model of little
oscillators set in motion by the wave. It turns out that the particles oscillating along the line
of sight to do emit radiation (light) towards us.

BTW the details of this scattering are often discussed in Phys 480, Electrodynamics. Ask
for Chapter 11!

(3) Finding amplitudes and probabilities for the Michelson interferometer
(a) Accounting for reflections (2 of them, one off the mirror and one off the beam splitter)

and the accumulated phase over path 1 and distance d1

z1 = eikd1eiπeiπ = eikd1

The second path has one reflection and phasor

z2 = eikd2eiπ = −eikd2

1



2

We asked to express this in terms of the arm lengths. Each path travels up and down the
arms so we have 2l in each distance. Letting the rest of the phase be eiα, I have

z1 = eikd1 = eiαeik2l1 and z2 = −eikd2 = −eiαeik2l2 .

The total amplitude is in the sum

z = z1 + z2 = eiα
(
eik2l1 − eik2l2

)
= eiαeik2l2

(
eik2(l1−l2) − 1

)
= 2ieiαeik(l1+l2) sin(k(l1 − l2))

Hence the probability is sin2(k(l1 − l2)) or

P = sin2
(
2π

λ
(l1 − l2)

)
(b) For a probability of 1,

sin2(k(l1 − l2)) = 1

so

2π(l1 − l2))

λ
= π

(odd integer)

2
=⇒ ∆l = l1 − l2 =

(odd integer)λ

4
.

(c) Choosing the odd integer to be 1 the additional length of λ/6 gives

∆l =
λ

4
+

λ

6
=

5λ

12
so

P = sin2
(
2π

λ
∆l

)
= sin2(5π/6) = 1/4.

This result also holds for other odd integers.

(4) Single slit diffraction via integration: Townsend gives us the amplitudes that we need to inte-
grate over the slit from the top (x = 0) to the bottom (x = a), as shown in below (and Figure
1.44). Here’s the integral

zP =

∫
dzP =

r

a
eikd1

∫ a

0

eik sin θ xdx.

Lots of ways to do this but my favorite is to do a change of variables. Let

u = ik sin θ x so that du = ik sin θ dx.

On the boundary, u = 0 when x = 0, and

u = ika sin θ when x = a.

(1)

Then

zP =
r

a
eikd1

1

ik sin θ

∫ ika sin θ

0

eudu =
r

a
eikd1

1

ik sin θ

(
eika sin θ − 1

)
.

To save some algebra it is handy to re-write this as a sine, pulling out a factor of eika sin θ/2,

zP =
r

a
eikd1

1

ik sin(θ)
eika sin(θ)/2

(
eika sin(θ)/2 − e−ika sin(θ)/2

)
= reikd1eika sin(θ)/2 sin [ka sin(θ)/2]

ka sin(θ)/2

Therefore,

z∗P zP = r2
{
sin [ka sin(θ)/2]

ka sin(θ)/2

}2

as expected.
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The minimum for the single slit pattern occurs when zP = 0. This happens when sin[ka sin(θ)/2] =
0 or when

2π

λ
a
1

2
sin θ =

πa sin θ

λ
= nπ with n = ±1,±2, . . .

The last equality is equivalent to the angular locations of the minima of single slit diffraction
given in equation (1.17).

If ka ≪ 1 and the slit width a is much less that a wavelength the argument of the sine
function is small, that is

sin [ka sin(θ)/2] ≃ ka sin(θ)/2.

This means that

zP ∝ [ka sin(θ)/2]

ka sin(θ)/2
= 1

so in this limit the probability z∗P zP should be flat. We indeed can see this behavior since in
Figure 1.9 the top panel is approximately constant while the bottom panel in varies significantly
over the same angular scale.

BTW a key point about the setup for this problem is that the distance from the top of the
slit to the point P is d1. This means that the accumulated phase of the phasor at the top of
the slit is eikd1 . This basically sets the reference phase for all the other phasors. Just as in the
usual slit case the additional phase due to the change in path length is

∆φ(x) = kx sin θ

where the phase change depends on position x. We can se this in the sketch

The is the relative phase for a source at x. Now we are going to integrate up these sources and
purely on dimensional grounds we must have an inverse factor of length in the wee contribution
dzP . The only dimension of the apparatus in the problem is the slit width is a so

dzP (z) = reikd1
1

a
ei∆φ(x)dx = reikd1

r

a
eikx sin θ

(5) Following the suggestion let’s think about that first minimum. It occurs when the phasors
“wrap around” to add to sum to zero for the first time when moving away from the central
maximum. Keeping in mind that each phasor is related to the previous one by the same angle,
we have

Ok, if we now block the last three slits then these phasors go away. The picture is now
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where I have added the phasors’ lengths and the 5 slit relative phase of 2π/5 = 72◦. The
resultant phasor has length c. Using law of cosines,

c2 = 2r2 − 2r2 cos(3π/5) ≃ 2.6r2 =⇒ c ≃ 1.62 r

Hence relative to r the probability is c2 ≃ 2.6 r2. (Determining the absolute probability looks
problematic so I’ll leave it at that.)

(6) A photon with a wavelength equal to the Compton wavelength λC = h/mec collides with a
free electron at rest:
(a) At π cosine is -1 so the 1− cos θ factor becomes 2. From last week’s solutions

Eγ

Eγ′
= 1 +

Eγ

mec2
(1− cos θ) .

With Eγ = hc/λC = mec
2,

Eγ′ =
Eγ

1 +
Eγ

mec2
(1− cos θ)

≃ Eγ

1 +
2Eγ

mec2

=
1

3
mec

2

(b) The rest of the energy must be in the KE of the electron, 2/3mec
2.

(7) Interference with C60! For this multiple slit interference the slits were 50 nm wide and d =100
nm apart. The “screen” was L =1.25 m away.
(a) The 117 m/s C60’s had a mass of mC60

≃ 1.2× 10−24 kg so the de Broglie wavelength was

λ =
h

p
=

h

mv
≃ 4.7× 10−12 m.

(b) The expected spacing is d sin θ = nλ. The spacing ∆y in the small angle limit is then

∆y =
λL

d
≃ 59µm.

Averaging over 5 fringes, which span about 180 µm, I find that the spacing should be
about 45 µm. The agreement isn’t spectacular but not horrible either.
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(8) Based on the PhET photoelectric simulation.
(a) Electrons are freed! They appear to have a variety of speeds, since they move across the

gap at different rates. But the current is a constant 0.071 A. (All with target material
set to “Sodium”, the lightbulb set to 400 nm, volts to 0 V, and the light intensity set to
50%.)

(b) With the light intensity at 100% the picture looks pretty similar but he current went up
to 0.141 A, i.e. it doubled.

(c) Shorter wavelength process more energetic (fast) electrons. The current also varies with
wavelength. Taking a little data gave this:

No electrons are emitted for wavelengths greater than ∼ 540 nm.
(d) At 450 nm and 100% intensity, the voltage that “just barely stops” the electrons from

reaching the righthand plate is V = −0.45 V. At 350 nm this stopping potential is much
higher (more negative) V = −1.18 V.

(e) I took a little data for the stopping potential vs. frequency. Due to energy conservation
the maximum kinetic energy in units of eV is the stopping potential (KE = eVstop). So I
plotted the data as in Figure 1.14 in Townsend:

https://phet.colorado.edu/en/simulations/photoelectric
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(f) By energy conservation the frequency of the incoming photon f is related to the work
function W and stopping potential eVstop as

hf = KE +W = eVstop +W =⇒ eVstop = hf −W.

So the y-intercept is the (minus) the work function and the slope is Planck’s constant h.
From the above plot it looks good since h ∼ 4.1 × 10−15 eV s and W ∼ 2 (from Figure
1.14).


