
Quantum (PHYS 290): Solutions 4 Fall 2025 v1.0

Solutions:

(1) From the de Broglie wavelength we can find the speed via

v =
p

m
=

h

λmHe
≃ 970 m/s,

with the given wavelength and the mass of He, mHe = 6.63× 10−27 kg.

(2) He interference with uncertainties: For full credit solutions must have uncertainty in y.
(a) As above,

v =
p

m
=

h

λmHe
≃ 1780 ≃ 1800 m/s,

(b) The spacing between fringes, y, in double slit interference at small angles θ ≃ y/L gives

d sin θ ≃ y d

L
= λ =⇒ y =

λL

d
≃ 4.48 µm.

The uncertainty is

δy =
Lλ

d2
δd = y

δd

d
≃ 0.3 µm

so the final result is
y = 4.5± 0.3 µm

which is in excellent agreement with the stated result.

(3) The minima for single slit diffraction occur at

a sin θ = mλ.

The distance, let’s call it ya, to the first minima (m = ±1) is

ya =
λL

a
using the small angle approximation. This relation is very similar to the last problem but this
one is for the position of the first minimum of the finite width diffraction pattern. The question
asks for the total distance between the minima or 2ya ≃ 170µm, which looks roughly correct
if the diffraction minimum are on the far left and right (in the noisy bits just before the data
drops to 0) in figure 2.4(b).

Using both d sin θ = nλ and the small angle approximation, the interference fringes are
located at about

yd =
λL

d
≃ 11 µm

apart. Dividing the width by the spacing 2ya/yd = 16. However, the diffraction minima cancel
the bright fringes on either side so that means only the nmax = 7 (7th order) fringes are visible.
Since the central maximum is n = 0 this means that the total number is 2nmax+1 = 15 fringes.

The parameters in this problem are discussed in section 2.1. I gleaned a = 1µm, d = 8µm,
and L = 195 m for this He experiment.

[Oddly in the diagram I count 9 fringes between these minima. Nine fringes amount to a
total distance on the observing plane of about 100 µm. The agreement is not great (100 vs
170).]
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(4) The Planck length ℓP : I use square brackets for “dimensions of” and L for length T for time
and M for mass. You can also so this in SI units for instance. For full credit the solution must
derive the (unique) relation for ℓP .
(a) The speed of light has dimensions

[c] =
L

T
.

From Newton’s law of gravity,

F = −GmM
r2

or, dimensionally,
ML

T 2
=

[G]M2

L2
,

we can find the dimensions of Newton’s gravitational constant,

[G] =
L3

MT 2
.

From Einstein’s energy relation

E = ℏω,

we can find the dimensions of ℏ,

[ℏ] =
ML2

T
.

With these dimensions we can find the equation for length. [This is essential part of the
derivation.] Raising each constant to some power I find

L = [G]a[ℏ]bcd gives L =

(
L3

MT 2

)a (
ML2

T

)b (
L

T

)d

.

This equation will give the formula for the Planck length. For instance looking at mass
M , we see that a = b, for time 2a+ b+ d = 0 and for length 1 = 3a+2b+ d. Solving this
set of equations gives a = b = 1/2 and d = −3/2 so

ℓP =

√
Gℏ
c3
.

(b) This works out to about 1.6× 10−35 m. Tiny!
(c) For a 0.05 kg tennis ball the speed is

v =
h

mℓP
≃ 820 m/s.

(5) The phasor work for a three slit pattern. Here’s the set-up
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I’ll call the phasor from source 1, at the top,

z1 = reikx

where x is the distance from source 1 to the distant point P . The path from source 2 is d sin θ
longer so

z2 = rei(kx+kd sin θ) = rei(kx+ϕ),

in the last step using the definition of ϕ in the problem. The last slit has a phasor

z3 = rei(kx+2kd sin θ) = rei(kx+2ϕ).

Each of these contribute to the total phasor at P , zP

zP = reikx
(
1 + eiϕ + ei2ϕ

)
.

The algebra is faster if we note

zP = reikxeiϕ
(
e−iϕ + 1 + eiϕ

)
= rei(kx+ϕ) (1 + 2 cos(ϕ)) .

The magnitude squared is then

P = |zP |2 = r2
[
1 + 4 cos(ϕ) + 4 cos2(ϕ)

]
.

Alternatively, the magnitude squared is

z∗P zP = r2
(
1 + e−iϕ + e−i2ϕ

) (
1 + eiϕ + ei2ϕ

)
.

Expanding the many terms and gathering them gives

z∗P zP = r2
(
3 + 2eiϕ + 2e−iϕ + ei2ϕ + e−i2ϕ

)
= r2 [3 + 4 cos(ϕ) + 2 cos(2ϕ)]

which, using the double angle formula cos 2ϕ = 2 cos2 ϕ− 1, gives the desired result.

(6) If Ψ(x, t) = c1ψ1(x, t) + c2ψ2(x, t), where ψi are solutions to the Schrödinger equation, then
with the derivative is

∂2Ψ

∂x2
= c1

∂2ψ1

∂x2
+ c2

∂2ψ2

∂x2
.

Similarly,
∂Ψ

∂t
= c1

∂ψ1

∂t
+ c2

∂ψ2

∂t
.

So Schrödinger equation with Ψ,

− ℏ2

2m

∂2Ψ

∂x2
+ VΨ = iℏ

∂Ψ

∂t
,

becomes

−c1
ℏ2

2m

∂2ψ1

∂x2
− c2

ℏ2

2m

∂2ψ2

∂x2
+ V (c1ψ1 + C2ψ2) = iℏ

(
c1
∂ψ1

∂t
+ c2

∂ψ2

∂t

)
But this is just c1 times

− ℏ2

2m

∂2ψ1

∂x2
+ V ψ1 = iℏ

∂ψ1

∂t
,

plus c2 times

− ℏ2

2m

∂2ψ2

∂x2
+ V ψ2 = iℏ

∂ψ2

∂t
.

But both these are satisfied so Ψ is also a solution.
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(7) Thinking about the probability density |ψ|2 of ψ in the plot shows that the highest probability
density is around x = −1 since the |ψ|2 is a relatively large 1 there. There is a chance to
measure the particle around 2 but this probability density is much lower, at roughly 0.04. The
particle won’t be found around 0, less than -2, and greater than 4 because ψ = 0 in these
regions. The particle is more likely to be found in position x < 0 than x > 0 since that
probability - the area under the |ψ|2 curve - there is larger.

(8) ‘Adding’ in the time dependence is just multiplying by the phase for that energy. Here,

Ψ(x, t) =

√
2

3
ψ1e

−iE1t/ℏ +

√
1

3
ψ2e

−iE2t/ℏ.

(In class we used “u” instead of “ψ”.)The probability of measuring E1 is the amplitude squared
of the first wavefunction or 2/3.

The energy expectation value is

⟨E⟩ =
∑

EiP (i) =
2

3
E1 +

1

3
E2

=

(
ℏ2π2

2mL2

)(
2

3
· 1 + 1

3
· 22

)
=

ℏ2π2

mL2

Measure these? There are lots of ways... Drop the potential to zero and measure the speed
the particle travels. Measure transitions between states by sending in and receiving light in the
form E = ℏω. Couple this to another system to make a superposition of states of two particles
and make measurements on the entangled particle....

(9) The probability that a particle will be found in the interval 0 ≤ x ≤ L/4 when it is in the
n = 2 state is

P (0 ≤ x ≤ L/4) =

∫ L/4

0

u22(x)dx =
2

L

∫ L/4

0

sin2
(
2πx

L

)
dx =

2

L
· L
8
=

1

4

I used the handy relation that the integral over sine squared is 1/2 the length of the interval.
This is not too surprising since u2 is a delocalized energy eigenstate; it has equal probability

to be found anywhere in the well.

(10) (Optional extra 1 pt.: Seth will grade these)


