Quantum (PHYS 290): Guide 5 solutions Fall 2025 v1.5

Solutions:

(1) First the velocities. The given phase velocity is

kT
Uph = 7 which is %

by definition. So this means

The group velocity is then
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So this means that the group or circular bump moves out with vy = 1.5vpy, faster than the
ripples that are superimposed to make the bump. Therefore it would seem that the little ripples
are passed by the bump.

(2) (2 pts.) de Broglie’s relativistic adventure
(a) Since
E? = p? + m2c!
then using F = hw and p = hk,
k)2c2 + m2ct or w = /(kc)? + (mc2/h)2.
(b) Taking the derivative gives the group velocity

dw khc?

= dk (hkc)? +m2ct
The rest of this part of the problem allows us to check this relation in the relativistic limit.
Pulling out a factor of Akc out of the square root,
khc?
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where I have used the handy relation (1 4+ z)™ ~ 1+ na for z < 1.

Townsend gives us de Broglie’s original mass limit so we can check this. He quotes

gives for large p (or k)
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c
when vy, = 0.99¢c. Looking back at the expression of v, in the limit we see that this

expression is tailored to give us the mass term.
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Expressing this in terms of wavelength gives
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so that the photon mass is

~1.0x107%

as Townsend quotes.
(¢) Re-running the numbers for 1 m radio waves and

c—
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gives
my, < 2 x 107 kg,
this time with actual data.

(3) Uncertainties! Computing the expectation value of x

()= |z |¢)= /w Yxp(x —/ z sin? dx g
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I used Mathematica for the integration. The uncertainty in x is

Az = /(2?) — (z)? = é (”62 - 1)1/2.

and z2

As for the momentum, it is a derivative

p)=@|p|Y)= —ih/1/1*(:c) %w(m)dx = E/OL sin (%x) cos (%) dz =0
and (p?)

(%) = (& | $ | 9) = —I? / V() % (2o = 25 /OLsz (7)== (hLW)

These results give the uncertainty

Finally, the product is

ho(xr \'? h
ArzAp=—|—-1 ~ 0.56h > —
"= ( 6 > =2
as expected from the Heisenberg uncertainty relation. From this we see that the n = 1 energy-
eigenstate state is not a minimum uncertainty state.

(4) Sorry! There was some confusion about the statement of this problem in office hours which I
didn’t notice until late in the afternoon. I'll first give the solution to the problem in the book
and then discuss the confusion.
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(a) If the well suddenly expands to twice the width with only the right wall moving then the
(n = 1) wavefunction,

2
ul(z)zwzsin(ﬂ—;> on0<z<L

and 0 outside this interval, can now occupy L < = < 2L, too. We can find the new well’s
ground state wavefunction by substituting 2L for L. The new wavefunction 4, is

1
Uy(x) = \/Zsin<%) on0<x<2L.

The original wavefunction u, (x) can be expanded in the basis of the wavefunctions in the
new well,

ur(x) = Z Cnlin ().

To answer the question of “how much of u; is in @;7” we can compute the inner product
(or “overlap”)

c1 = /:L uy Urdx = \f/OL sin (%) sin (%) dx

Note the key point that the original wavefunction vanishes on the right side of the new
well so the upper limit on integration goes from 2L to L. Evaluating the integral in
Mathematica I find

e
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Squaring this gives about 0.36, the probability of u; transitioning to the ground state in

the new well.

Similarly for the probability of transition to the first excited state (n = 2)

/2L - \/§/LS, (mz) . <27rx> J 1
Co = Uy U2 = —— m { — m | ——— xr = —=.
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Hence the probability is 1/2. (The n = 3 transition probability is about 0.12 and so on.)
(b) The evolution of the new state is

U, t) = chﬂn(z)eiE"t/h,
n
with the ¢,’s as above and the E,,’s are the energies in the new well, E,, = n?72h?/8mL?.
Since these evolve at different relative phases U is not a stationary state.

Now the confusion: In office hours we talked about the problem when both walls move
outward by the same amount. This change respects the symmetry of the wavefunction and so
it just transitions to the ground state of the new well. In this case co = 0 and the new state is
a stationary state.

Graders please accept either solution.

The asymmetric solutions for a particle in a finite square well are sines. Picking up the work
in class just after the application of the boundary conditions at a/2 - we divided them to find

1 Aefika/Z + Beik‘a/2

x ik (Ae—ika/2 — Beika/2)

Equivalently see page 115 and equation (4.16).



(a)

With B = —A (the source of the antisymmetry) the above equation gives

ik e—ika/Q _ eika/2

K - e—ika/2 § cika/2 = —itan(ka/2).
Simplifying this gives
Ka/2
cot(ka/2) Faj2

where I have added the factors for the next step, the change of variables. This is the
quantization condition. To solve this it is useful to let

£=haf2= /"2 1)

a [mV,
C=EV

and

Then

K= —Qm(‘h/o _E) = \/W

so the quantization condition becomes

—cot(ka/2) = ”535_52

To solve the quantization condition when 2 = 25 we can graph the left and right hand
sides. The result is

0 i 2 s ‘ 5 6

The intersection points are the solutions. I used the FindRoot function in Mathematica to
find the two solutions

& ~2.596 and & ~ 4.906.

To find the energies we can solve for E in equation [I] giving

262 12
E, = &n R
ma
So,
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This is a qualitative or semi-quantitative problem. In figure 4.4 there is a trend of increasing
amplitude and extent of the wavefunction in the region = > a/2 which suggests a higher
probability. The probability of finding the particel outside the well is twice the integral of |i|?
over the region a/2 < x < oco. So more non-vanishing ¢ the greater the probability. That’s the
basic idea.

Can we do a bit better? Townsend asks that we look at the wavefunction in this region. It
is

2m(V, — Ey,)

h

so as the energy F, increases toward V,, x decreases and the decay is more gradual. For the
moment neglecting the normalization, the probability of being outside for state n is proportional
to

Y ~ e """ where K, =

e~ fna
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Taking a ruler to figure 4.4(a) I find that the E4 ~ 0.96V, and E; ~ 0.06V,. Comparing the
probabilities for n = 4 and n = 1 we see

& — 671€4a ) K1 ~ %67()@17%1)0{ ~ 567(#&47'{1)&
Py ke e~ T\ 0.04

Thus, even neglecting the normalization and the exponential factor it is at least at least five
times more likely to find the n = 4 state outside than the n = 1 state.
The precise solution requires the normalized solutions, which are considerably more involved.

The useful measurements are all for double sided full widths so we’ll need to take this into
account. The wavelength is 662.0 nm and L = 2.15.

— > 42+02cm
——————————————> 3444 0.04cm
| «— 0.36+0.03

11.43 £ 0.05cm

! |
8.5+ 0.3cm

(a) The second order (m = 2) minima are clearly visible. (I'm not so confident in the mea-
surement in the first order shown in green at the top.) So using the Ays = 8.5+ 0.3 cm
and

Ays

2L

The small angle approximation is probably fine (we can check it in a moment) due to

the long distance L = 2.15 m. I added a factor of 1/2 since Ays is the distance between

second order minima, not measured from the center where § = 0. The width of the slits
should then be

=2\

asinf = 2\ or with small angles a4

4L\ _5
a=——>~6.698 x 107° m.
Ay

There’s only uncertainty in Ay, and so

da  dAy, 0.3 _6
— = = — da~2x1 .
u s 35 — da x 107° m




The result is then a = 6.74£2x 1075 m = 6742 um. (Checking the angle Ay, /2L ~ 0.02,
which is small.)

(b) Given the beautiful pattern I'd like a measurement out to a high order in the double
slit interference pattern but it looks like the best we have is the fringes in the central
diffraction maxE| There are 11 bright fringes there. Sine 11 = 2n + 1 the last order is
n = 5. The measurement is Azs = 3.44 + 0.04 cm. Similarly to above

dALE{)

dsinf = 5\ or with small angles =5\

The spacing of the slits should then be

~ 10LA
= A

d

~ 414 x 107* m.

There’s only uncertainty in Azs and so

o0d  6Azs  0.04

— = = = dd~5x10"%m.
d = Az, 344 x m

The result is then d = 4.14 £ 0.05 x 107* m = 0.414 + 0.005 mm.

(8) I started out with a basic y = 22 for 8 points. The script was (up to some formatting issues)

import numpy as np
import matplotlib.pyplot as plt

x=np.zeros(8)
y=np.zeros(8)

for i in range(0,8):
x[i]=i
yli]=i*i

plt.plot(x,y)
plt.xlabel(" x"
plt.ylabel("x"2")
plt.show()

giving the output

you could use the high order double slit minima measurement but we haven’t emphasized this.
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Scatter plots often make sense so I switched to blue points (the weird ghostly "bo” in the plot
command) and got fancy with the y label. Here’s the revised script

import numpy as np
import matplotlib.pyplot as plt

x=np.zeros(8)
y=np.zeros(8)

for i in range(0,8):

x[i]=i

yli]=i*i
plt.plot(x,y," bo™)
plt.xlabel ("x")
plt.ylabel("y=x"2")
plt.show()

and the plot

40
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Your solution will likely differ from mine because of different number of points and/or
different function as well as different methods in coding.



