
Quantum (PHYS 290): Guide 5 solutions Fall 2025 v1.5

Solutions:

(1) First the velocities. The given phase velocity is

vph =

√
kT

ρ
which is

ω

k

by definition. So this means

ω = ω(k) =

√
k3T

ρ
.

The group velocity is then

vg =
∂ω

∂k
=

3

2

√
kT

ρ
=

3

2
vph.

So this means that the group or circular bump moves out with vg = 1.5vph, faster than the
ripples that are superimposed to make the bump. Therefore it would seem that the little ripples
are passed by the bump.

(2) (2 pts.) de Broglie’s relativistic adventure
(a) Since

E2 = p2c2 +m2c4

then using E = ℏω and p = ℏk,

ℏω =
√
(ℏk)2c2 +m2c4 or ω =

√
(kc)2 + (mc2/ℏ)2.

(b) Taking the derivative gives the group velocity

vg =
dω

dk
=

kℏc2√
(ℏkc)2 +m2c4

.

The rest of this part of the problem allows us to check this relation in the relativistic limit.
Pulling out a factor of ℏkc out of the square root,

vg =
kℏc2

ℏkc
√
1 + [mc2/(ℏkc)]2

.

gives for large p (or k)

vg ≃ c

[
1− 1

2

(mc
ℏk

)2
]
.

where I have used the handy relation (1 + x)n ≃ 1 + nx for x < 1.
Townsend gives us de Broglie’s original mass limit so we can check this. He quotes

c− vg
c

= 0.01

when vg = 0.99c. Looking back at the expression of vg in the limit we see that this
expression is tailored to give us the mass term.

c− vg
c

=
1

2

(mc
ℏk

)2

1
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Expressing this in terms of wavelength gives

c− vg
c

=
1

2

(
λmc

h

)2

so that the photon mass is

mγ =

√
0.02h

λc
≃ 1.0× 10−47

as Townsend quotes.
(c) Re-running the numbers for 1 m radio waves and

c− vg
c

< 4× 10−7

gives

mγ < 2× 10−45 kg,

this time with actual data.

(3) Uncertainties! Computing the expectation value of x

⟨x⟩ = ⟨ψ | x | ψ⟩ =
∫
ψ∗(x)xψ(x)dx =

2

L

∫ L

0

x sin2
(πx
L

)
dx =

L

2

and x2 〈
x2

〉
= ⟨ψ | x2 | ψ⟩ = 2

L

∫ L

0

x2 sin2
(πx
L

)
dx =

L2

6

(
2− 3

π2

)
.

I used Mathematica for the integration. The uncertainty in x is

∆x =

√
⟨x2⟩ − ⟨x⟩2 =

L√
2π

(
π2

6
− 1

)1/2

.

As for the momentum, it is a derivative

⟨p⟩ = ⟨ψ | p̂ | ψ⟩ = −iℏ
∫
ψ∗(x)

d

dx
ψ(x)dx =

2

L

∫ L

0

sin
(πx
L

)
cos

(πx
L

)
dx = 0

and
〈
p2
〉

〈
p2
〉
= ⟨ψ | p̂2 | ψ⟩ = −ℏ2

∫
ψ∗(x)

d2

dx2
ψ(x)dx =

2π2ℏ2

L3

∫ L

0

sin2
(πx
L

)
dx =

(
ℏπ
L

)2

.

These results give the uncertainty

∆p =
√
⟨p2⟩ = ℏπ

L
.

Finally, the product is

∆x∆p =
ℏ√
2

(
π2

6
− 1

)1/2

≃ 0.56ℏ ≥ ℏ
2

as expected from the Heisenberg uncertainty relation. From this we see that the n = 1 energy-
eigenstate state is not a minimum uncertainty state.

(4) Sorry! There was some confusion about the statement of this problem in office hours which I
didn’t notice until late in the afternoon. I’ll first give the solution to the problem in the book
and then discuss the confusion.
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(a) If the well suddenly expands to twice the width with only the right wall moving then the
(n = 1) wavefunction,

u1(x) =

√
2

L
sin

(πx
L

)
on 0 < x < L

and 0 outside this interval, can now occupy L < x < 2L, too. We can find the new well’s
ground state wavefunction by substituting 2L for L. The new wavefunction ũ1 is

ũ1(x) =

√
1

L
sin

(πx
2L

)
on 0 < x < 2L.

The original wavefunction u1(x) can be expanded in the basis of the wavefunctions in the
new well,

u1(x) =
∑
n

cnũn(x).

To answer the question of “how much of u1 is in ũ1?” we can compute the inner product
(or “overlap”)

c1 =

∫ 2L

0

u1 ũ1dx =

√
2

L

∫ L

0

sin
(πx
L

)
sin

(πx
2L

)
dx

Note the key point that the original wavefunction vanishes on the right side of the new
well so the upper limit on integration goes from 2L to L. Evaluating the integral in
Mathematica I find

c1 =
4
√
2

3π
.

Squaring this gives about 0.36, the probability of u1 transitioning to the ground state in
the new well.
Similarly for the probability of transition to the first excited state (n = 2)

c2 =

∫ 2L

0

u1 ũ2dx =

√
2

L

∫ L

0

sin
(πx
L

)
sin

(
2πx

2L

)
dx =

1√
2
.

Hence the probability is 1/2. (The n = 3 transition probability is about 0.12 and so on.)
(b) The evolution of the new state is

Ψ(x, t) =
∑
n

cnũn(x)e
iEnt/ℏ,

with the cn’s as above and the En’s are the energies in the new well, En = n2π2ℏ2/8mL2.
Since these evolve at different relative phases Ψ is not a stationary state.

Now the confusion: In office hours we talked about the problem when both walls move
outward by the same amount. This change respects the symmetry of the wavefunction and so
it just transitions to the ground state of the new well. In this case c2 = 0 and the new state is
a stationary state.

Graders please accept either solution.

(5) The asymmetric solutions for a particle in a finite square well are sines. Picking up the work
in class just after the application of the boundary conditions at a/2 - we divided them to find

1

κ
=

Ae−ika/2 +Beika/2

ik
(
Ae−ika/2 −Beika/2

) .
Equivalently see page 115 and equation (4.16).
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(a) With B = −A (the source of the antisymmetry) the above equation gives

ik

κ
=
e−ika/2 − eika/2

e−ika/2 + eika/2
= −i tan(ka/2).

Simplifying this gives

− cot(ka/2) =
κa/2

ka/2
,

where I have added the factors for the next step, the change of variables. This is the
quantization condition. To solve this it is useful to let

ξ = ka/2 =
a

ℏ

√
mE

2
(1)

and

ξo =
a

ℏ

√
mVo
2

.

Then

κ =

√
2m(Vo − E)

ℏ
=

√
ξ2o − ξ2

so the quantization condition becomes

− cot(ka/2) =

√
ξ2o − ξ2

ξ
.

(b) To solve the quantization condition when ξ2o = 25 we can graph the left and right hand
sides. The result is

The intersection points are the solutions. I used the FindRoot function in Mathematica to
find the two solutions

ξ1 ≃ 2.596 and ξ2 ≃ 4.906.

To find the energies we can solve for E in equation 1 giving

En =
2ξ2nℏ2

ma2
.

So,

E1 ≃ 13.5ℏ2

ma2
and E2 ≃ 48.1ℏ2

ma2
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(6) This is a qualitative or semi-quantitative problem. In figure 4.4 there is a trend of increasing
amplitude and extent of the wavefunction in the region x > a/2 which suggests a higher
probability. The probability of finding the particel outside the well is twice the integral of |ψ|2
over the region a/2 < x <∞. So more non-vanishing ψ the greater the probability. That’s the
basic idea.

Can we do a bit better? Townsend asks that we look at the wavefunction in this region. It
is

ψ ∼ e−κnx where κn =

√
2m(Vo − En)

ℏ
so as the energy En increases toward Vo, κ decreases and the decay is more gradual. For the
moment neglecting the normalization, the probability of being outside for state n is proportional
to

Pn ∝ 2

∫ ∞

a/2

e−2κnx =
1

2κn

[
−e−2κnx

]∞
a/2

=
e−κna

2κn
.

Taking a ruler to figure 4.4(a) I find that the E4 ≃ 0.96Vo and E1 ≃ 0.06Vo. Comparing the
probabilities for n = 4 and n = 1 we see

P4

P1
=
e−κ4a

κ4
· κ1
e−κ1a

≃
√

0.94

0.04
e−(κ4−κ1)a ≃ 5e−(κ4−κ1)a

Thus, even neglecting the normalization and the exponential factor it is at least at least five
times more likely to find the n = 4 state outside than the n = 1 state.

The precise solution requires the normalized solutions, which are considerably more involved.

(7) The useful measurements are all for double sided full widths so we’ll need to take this into
account. The wavelength is 662.0 nm and L = 2.15.

0.36 ± 0.03 cm
3.44 ± 0.04 cm

4.2 ± 0.2 cm

11.43 ± 0.05 cm

8.5 ± 0.3 cm

(a) The second order (m = 2) minima are clearly visible. (I’m not so confident in the mea-
surement in the first order shown in green at the top.) So using the ∆y2 = 8.5 ± 0.3 cm
and

a sin θ = 2λ or with small angles
a∆y2
2L

= 2λ

The small angle approximation is probably fine (we can check it in a moment) due to
the long distance L = 2.15 m. I added a factor of 1/2 since ∆y2 is the distance between
second order minima, not measured from the center where θ = 0. The width of the slits
should then be

a =
4Lλ

∆y2
≃ 6.698× 10−5 m.

There’s only uncertainty in ∆y2 and so

δa

a
=
δ∆y2
∆y2

=
0.3

8.5
=⇒ δa ≃ 2× 10−6 m.
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The result is then a = 6.7±2×10−5 m = 67±2µm. (Checking the angle ∆y2/2L ≃ 0.02,
which is small.)

(b) Given the beautiful pattern I’d like a measurement out to a high order in the double
slit interference pattern but it looks like the best we have is the fringes in the central
diffraction max.1 There are 11 bright fringes there. Sine 11 = 2n + 1 the last order is
n = 5. The measurement is ∆x5 = 3.44± 0.04 cm. Similarly to above

d sin θ = 5λ or with small angles
d∆x5
2L

= 5λ

The spacing of the slits should then be

d =
10Lλ

∆x5
≃ 4.14× 10−4 m.

There’s only uncertainty in ∆x5 and so

δd

d
=
δ∆x5
∆x5

=
0.04

3.44
=⇒ δd ≃ 5× 10−6 m.

The result is then d = 4.14± 0.05× 10−4 m = 0.414± 0.005mm.

(8) I started out with a basic y = x2 for 8 points. The script was (up to some formatting issues)

import numpy as np
import matplotlib.pyplot as plt

x=np.zeros(8)
y=np.zeros(8)

for i in range(0,8):
x[i]=i
y[i]=i*i

plt.plot(x,y)
plt.xlabel(”x”)
plt.ylabel(”xˆ2”)
plt.show()

giving the output

1You could use the high order double slit minima measurement but we haven’t emphasized this.
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Scatter plots often make sense so I switched to blue points (the weird ghostly “bo” in the plot
command) and got fancy with the y label. Here’s the revised script

import numpy as np
import matplotlib.pyplot as plt

x=np.zeros(8)
y=np.zeros(8)

for i in range(0,8):
x[i]=i
y[i]=i*i

plt.plot(x,y,”bo”)
plt.xlabel(”x”)
plt.ylabel(”y=xˆ2”)
plt.show()

and the plot

Your solution will likely differ from mine because of different number of points and/or
different function as well as different methods in coding.


