
Quantum (PHYS 290): Guide 6 Solutions Fall 2025 v1.0

Solutions:

(1) Labeling the figures (i), (ii), (iii), and (iv) from top left, clockwise. (i) Acceptable. Looks like
a decreasing potential with E > V (x). (ii) Assuming trend continues ψ diverges so it is not an
acceptable wavefunction. (iii) Not acceptable. It is not even a function! (iv) This is acceptable
and in fact we have seen this in the finite square well.

(2) Things to be sure to include: (1) The wavefunction must vanish at the left and right hand
sides, where the potential goes to ∞. (2) The wavefunction will wiggle when E > V . (3) The
ground state should have “one” bump in a well. (4) Each level adds a bump. (5) Inside the
barrier the TISE is

d2ψ

dx2
− κ2ψ = 0

so the wavefunction curves down when ψ > 0 and up when ψ < 0. My sketch looks like

(3) There is a finite well below V2 so for 0 < E < V2 the levels are discrete. For V2 < E < V3 the
particle is not bounded so the allowed energies are continuous. We need boundary conditions
on two sides to have discrete levels. There are no states for E < 0 .

(4) We need wavefunctions that vanish at the origin. Looking at figure 4.13 we can spot the
wavefunctions that do this and pass through the horizontal at x = 0. They are ψ1, ψ3, ψ5, . . . -
the n is odd ones. This also looks good in the sense of counting bumps or maxima: ψ1 has one
in the new well, ψ3 has two, etc. The three lowest energies are

E1 =
3ℏω
2
, E3 =

7ℏω
2

, and E5 =
11ℏω
2

.

I have kept the original labels, although one reasonably could number them other ways. Here’s
a sketch of the states
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(5) (2 pts.) For t ̸= 0 we multiply by the correct phases for each stationary state - the phase
eiEn t/ℏ.
(a) Using En = ℏω(n+ 1/2) the time-dependent wavefunction of this superposition of n = 0

and n = 1 states is then

Ψ(x, t) =

√
3

2
ψ0(x)e

−iωt/2 +
1− i

2
√
2
ψ1(x)e

−i3ωt/2.

(b) This wavefunction is a sum of normalized stationary states so the coefficients above should
be the probability amplitudes. Let’s check that they sum to one:∣∣∣∣∣

√
3

2

∣∣∣∣∣
2

+

∣∣∣∣1− i

2
√
2

∣∣∣∣2 =
3

4
+

(1− i)(1 + i)

8
=

3

4
+

1

4
= 1

so, yes, this is a normalized state. This state is an example of a general superposition over
energy eigenstates

Ψ(x, t) =
∑
n

ψn(x)e
i(n+1/2)ωt.

The probability of measuring the ground state energy, ℏω/2 is the square of the amplitude
c0

|c0|2 =

∣∣∣∣∣
√
3

2

∣∣∣∣∣
2

=
3

4
.

The probability of measuring the n = 1 state energy, 3ℏω/2 is

|c1|2 =

∣∣∣∣1− i

2
√
2

∣∣∣∣2 =
1

4
.

The probability of measuring the n = 2 state energy, 5ℏω/2 is 0 since it is not part of the
superposition. These probabilities do not vary in time. For example one way to show this
is to find the time dependent amplitude

⟨1 | Ψ⟩ = 1− i

2
√
2
ei3ωt/2 = c1e

i3ωt/2

The probability is the magnitude of this amplitude

|⟨1 | Ψ⟩|2 = |c1|2 =
1

4
,

as above. Notice the phase doesn’t affect the result.
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(c) The expectation value of energy is

⟨E⟩ =
∑
n

EnPn = Eo|c0|2 + E1|c1|2 = ℏω
(
1

2
· 3
4
+

3

2
· 1
4

)
=

3

4
ℏω.

The uncertainty in energy is

⟨∆E⟩ =
〈
E2

〉
− ⟨E⟩2

so we need to compute
〈
E2

〉
,〈

E2
〉
=

∑
n

E2
nPn = E2

o |c0|2 + E2
1 |c1|2 = (ℏω)2

(
1

4
· 3
4
+

9

4
· 1
4

)
=

3

4
(ℏω)2.

Hence,

⟨∆E⟩2 =
3

4
(ℏω)2 −

(
3

4
ℏω

)2

=
3

16
(ℏω)2 =⇒ ⟨∆E⟩ =

√
3

4
ℏω.

(6) Time dependence for a particle in a box.
(a) Comparing the given wavefunction Ψ and the energy eigenstates of the particle in a box

ψn(x) we see that

Ψ(x) = c1ψ1(x) + c2ψ2(x) where c1 =
1 + i

2
and c1 =

1√
2

on the interval 0 < x < L. So the time dependent form has the appropriate phases for
each energy:

Ψ(x, t) = c1ψ1 e
−iE1t/ℏ + c2ψ2 e

−iE1t/ℏ = c1ψ1 e
−iπ2ℏt/2mL2

+ c2ψ2 e
−i2π2ℏt/mL2

(b) This energy is E1. From above the probability amplitude is

c1(t) =
1 + i

2
e−iE1t/ℏ.

At any time the probability is

|c1(t)|2 =
(1 + i)(1− i)

4
=

1

2
,

since the time dependence is just an overall phase.
(c) The expectation value is

⟨E⟩ =
∑
n

|cn|2En = |c1|2E1 + |c2|2E2 =
1

2

(
π2ℏ2

2mL2
+

4π2ℏ2

2mL2

)
=

5π2ℏ2

4mL2
.

the average of the two energies.
(d) Hmm, ⟨x⟩ is

⟨x⟩ =
∫ L

0

Ψ∗(x, t)xΨ(x, t)dx =

∫ L

0

(
c1ψ1 e

−iE1t/ℏ + c2ψ2 e
−iE1t/ℏ

)∗
x
(
c1ψ1 e

−iE1t/ℏ + c2ψ2 e
−iE1t/ℏ

)
dx,

which has cross terms containing exponentials with ∆E = E1 − E2, so it does look time
dependent.
I wonder why John didn’t ask us to find the dependence? In fact it is a bit of work and
something like

⟨x⟩ = L

[
1

2
− 8

√
2

(3π)2
(cos(∆Et/ℏ) + sin(∆Et/ℏ))

]
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(7) The TISE is

− ℏ2

2m

d2ψ

dx2
+ V (x)Ψ = Eψ,

(a) Let’s first divide by ℏ2

2m which gives

−d
2ψ

dx2
+

2mV (x)

ℏ2
ψ =

2mE

ℏ2
ψ.

Letting x = ya gives

dx = a dy so that
d

dx
=
dy

dx

d

dy
=

1

a

d

dy
and

d2

dx2
=

1

a2
d2

dx2

Start from the usual form of the time independent Schrödinger equation for a particle of
mass m and energy E in a finite depth potential well of width a. See section 4.1 for the
potential. Make the substitution x = ya, where y is dimensionless position, and show that
the equation above can be rewritten as

− 1

a2
d2ψ

dy2
+

2mV (x)

ℏ2
ψ =

2mE

ℏ2
ψ.

Once we multiply through by a2 and replace V (x) with the depth of the potential well Vo
we have the result

−d
2u

dy2
+Wu = ϵu (1)

where

W =
2ma2Vo

ℏ2
and ϵ =

2ma2E

ℏ2
.

(b) Working in SI units W is

[W ] =
kg m2 J

J2 s2
=

kg m2

J s2
= 1.

So it is dimensionless. The calculation for ϵ is identical.


