Quantum (PHYS 290): Guide 7 Solutions Fall 2025 v1.0

Solutions

(1) Part I: Solving the quantum bouncing ball!
(a) The gravitational potential energy for a ball bouncing off a floor in Earth’s gravitational
field is “mgh” or

V =mgx for z >0 and V — oo at z =0,

with positive x is “up”.
(b) The TISE is
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Letting
2 E
= az+ b with a® = - and b= —
m=g mg
so that dr = adz. The TISE becomes
1 d*y 2mE  2m?g
Substituting in b gives
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The first and last terms in the square brackets cancel and we have now
1 d*y az
ot @ =0
or 2
d—;; — zu = 0 as desired. (1)
Goal!

(2) (2 pts.) Energies and the wavefunctions for the quantum bouncing ball: T found solutions by
using numerical integration to solve the TISE in the form of equation [I| from large z to z = 0.
At the origin v = 0 due to the infinite potential. Using solver I found F; ~ 2.34, Fo ~ 4.09,
FE3 ~ 5.54, and Fy ~ 6.79. These depend on where I started the integration from; if I didn’t
go far enough out in z the energy eigenvalues were off. The four lowest dimensionless energies
are about 2.34, 4.09, 5.52, and 6.79]1]

In office hours I saw nice solutions that solved the equation once from positive to negative
z. Every crossing at z < 0 corresponds to a solution. This method worked very well.

The unnormalized wavefunctions are shown in the figure on the next page. Plot (a) is the
ground state, (b) is the first excited state, etc. Notice that I had to go to higher z as the
wavefunctions stretched out. I didn’t go to high enough z for ug leading to the difference above
between the computed and exact solutions.

1The exact values are obtained from the zeros of the Airy function, the dimensionless energies b/a when Ai(—b/a) = 0.
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Graders: For full credit solutions must include the correct energies and plots, not sketches.

(3) To explain some of
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we should address wavefunctions and energies.

e The wavefunctions are just what we found in the previous problem - well, up to the n = 3
and n = 4 levels, where it looks like they switched to square well potential.

e At the point where the potential switches, the lower part of the well has a width of 30 pm
and a height of approximately 3.0 peV. Is this mgh? Yes, since

mpgh = 940 MeV/c2 - 9.8 m/s2 -30pum = 3.0 peV, as in the figure.

This gives me hope that the eigenvalues for the n = 1 and n = 2 states should be good
matches.
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e In the last problem we found the dimensionless energies b/a so these should correspond
to the energies in the figure. For the ground state
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which should be 1.4 peV but as I type this up I find 4.8 peV, way off. For the first excited

state
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which should be 2.5 peV.

For full credit this one needs the discussion of the wavefunctions and the two energies levels.
Correct solutions do not need the comments on the potential or transitions between levels

4) On parit
y
(a) To show that the parity operator is hermitian let’s apply the definition for any operator

A
/ o; o) (Ava)) do = [
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(o)) w(a)dr.
Denoting the parity operator II the left hand side is
| o@riv@is = [ o oo

The right hand side is

| (00@) wads = [ (o(-a))" via)da.
Letting y = —x, so that the integral limits swap and dy = —dz, the right hand side
becomes
| ay vt = [ o e-ndy= [ oty u-ndy

which is equal to the left hand side. Thus, II is hermitian.
(b) Letting 4, j = & and p; be the eigenvalues then from above

(oo} oo
| ooriv@ds =p; [ ooy s(e)ds
—00 —o0
and - -
/ ¥i(2)* Tl (x)da = p; / Pi(x) i (x)da.
Subtracting gives
=) [ i) vy(o)ds =0
so the inner product vanishes when the eigenvalues are different; they are orthogonal.

This can be done in Dirac notation. So for cultural interest ...the eigenvalues of the
parity operator are £1. So

M) =+|+)and | ) =—| ).



Letting i, 7 = + and p; be the eigenvalues then these two expressions may be written as
IT| i) = pi | 4).
Now since (i | Pi | j) is equal to both
(il (1)) =pii 1 3)
and . .
([T g) = G| 5) = pali | ),
we have
pi(i|§) =pili|3) = (i —p;) (i ]J) =0
so either we have the same state and eigenvalue in which case ¢ = j and (i | j) = 1 (for
normalized states) or we have different states ¢ # j and (i | j) = 0. Thus, (¢ | j) = J;;.

(5) On derivatives

(a)

To show that the derivative operator is not hermitian let’s apply the definition for any

/ o; ooy (Av)) do = [
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operator A,
(oo}

(Ao(@) (w)da.
On integration by parts the derivative acting on v is

| oo v = o=, - [ By,

If we assume the particle is somewhat localized and so wavefunctions vanish at +oo then

we have
| oter v = [ U

oo dx

/°° d¢(x)*w(x)da:

oo dx
so so the derivative fails to be hermitian.
BUT! if the operator is instead —id/dx then acting to the right and integrating by parts

[ ot (mivt)) ae =i [~ iy

— o0

which is not equal to

which is equal to

| (Figow) v =i [~ v
and so this operator is hermitian. Notice A plays no role on this - it just selects which
units were using.




