
Electromagnetism (PHYS 295): Solutions 11 Spring 2025 v1.0

Solutions:

(1) To check these solutions we need to check the wave equation and a couple of Maxwell’s equa-
tions, all of Maxwell’s equations in vacuum, or the identities we derived in class. Here I’ll do
the first
(a) Taking the Laplacian of the electric field E = Eo cos(kz − ωt)x̂

∇2E = −k2E while
∂2E

∂t2
= −ω2E

so we have a solution to the wave equation

∇2E =
1

c2
∂2E

∂t2

if

k2 =
ω2

c2
or

ω

k
= c,

which holds for these waves. (A similar calculation works for the B-filed.)

Taking the divergence ∇ ·E of the wave solution gives

∇ ·E = −kẑ · Eo sin(kz + ωt)x̂ = 0

since ẑ · x̂ = 0. So Gauss’ law in vacuum holds. (The “no magnetic monopoles” law
∇ ·B = 0 works similarly.)

Both Maxwell’s equation (∇ × B = (1/c2)∂E/∂t) and Faraday’s equation (∇ × E =
−∂B/∂t) require k = ω/c. For instance computing

∇×B = −kẑ× Eo

c
sin(kz + ωt)ŷ = kx̂

Eo

c
sin(kz + ωt)

since −ẑ× ŷ = x̂. Meanwhile,

1

c2
∂E

∂t
= − ω

c2
Eo sin(kx+ ωt)x̂

so that Maxwell’s equation gives

k
Eo

c
sin(kz + ωt) =

ω

c2
Eo sin(kz + ωt)

or

k =
ω

c
, as above.

Faraday’s equation has the same result.

(b) Since k̂ points in the same direction as the Poynting vector (and the direction of propa-
gation)

S =
E×B

µo
= |S|ẑ and so k̂ = x̂.

(c) Here’s a rough sketch:
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(d) It’s in the direction of E and so x̂.

(2) The left-moving 108 Hz wave travels in the −ı̂ direction so

k = −2π

λ
ı̂ = −2πf

c
ı̂ ≃ −2.09 m−1 ı̂.

while ω = c/k ≃ 6.28 × 1010 s−1. Since E × B is parallel to k this structures the directions.
We don’t have a phase of the wave... I chose E in the ȷ̂ direction so B points in the negative
z-direction. Assembling these results we have

E = Eoȷ̂ cos(kx+ ωt). and B = −Bok̂ cos(kx+ ωt)

where ω and k are given above. The last bit is the amplitude of the B-field - it is Eo/c as we
saw in class, on Friday :( So, finally

E = Eoȷ̂ cos(kx+ ωt). and B = −Eo

c
k̂ cos(kx+ ωt).

Your correct answer might differ from this: You could choose another direction of the electric
field, i.e. −ȷ̂. You could choose sine instead.

(3) Light’s momentum
(a) We already found the average energy density carried by plane, monochromatic waves

⟨S⟩ = 1

2
cϵoE

2
o .

Since the expressions are multiples of the Poynting vector, we can just use that here for
the momentum density,

⟨P⟩ = ⟨S⟩
c2

=
1

2c
ϵoE

2
o ,

still proportional to the amplitude squared.
(b) For the solar sail we need,

F =
∆p

∆t
=

1

2
mg

so with the total change in momentum from the reflected light

∆p = 2 ⟨P⟩Ac∆t,

where A is the area of the sail. With S = 1360 W/m
2
we have

∆p

∆t
= 2

⟨S⟩
c

A =⇒ A =
mgc

4 ⟨S⟩
≃ 1.2× 109 m2 ≃ 1.2× 103 km2

Yikes! That’s a large sail. Well, I did ask for a large acceleration... Maybe not the best
choice for propulsion.
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(4) The area is A = πR2 so the intensity (and magnitude of the Poynting vector) is

S =
P

A
≃ 7.8× 10−8W/m

2

Since S = Ē2/377Ω, the ‘rms’ value of the electric field is

Ē ≃ 0.002 V/m.

Or, directly,

Ē =

√
377 · P
πR2

≃ 0.0022 V/m.

(5) Solution in text.

(6) This microwave cavity has a capacitor at the top and an inductor around the cylinder to make
the LC circuit. The magnetic field wraps around the inner cylinder. Since this is an LC circuit
we know that the natural angular frequency is ωo =

√
1/LC. The inductance is

L =
µoh

2π
ln

b

a

from equation (7.62) while the capacitance is the usual ϵoA/s = ϵoπa
2/s for parallel plate

capacitors. Cool. Putting these two things together gives the result

ωo =
c

a

√
2s

h ln(b/a)

where c2 = 1/µoϵo, as we know. Here are a couple of sketches of the fields and current.

A clever little thing.


