
Electromagnetism (PHYS 295): Solutions 6 Spring 2025 v1.0

Solutions:

(1) Solution in text

(2) Solution in text

(3) Starting an engine:
(a) From the diagram and choices of the current directions, I3 = I1+I2, the junction condition.

For loops I used outside loop, obtaining

−I1RC − I3RS − I1RC − I1R1 + E1 = 0 or 12.5 − 0.025I1 − 0.15I3 = 0

From the lower loop one has the equation

−I3RS − I2R2 + E2 = 0 or 10.1 − 0.15I3 − 0.10I2 = 0

(b) Multiplying the first equation by 0.025 and the second by 0.10 and adding gives

0.2525 + 1.25 − 0.0025(I1 + I2) − 0.01875I3 = 0.

Using the junction condition gives I3 = 71 A .
(c) I3 = 71 A > 60 A, so “yes!” it will turn over.

(4) Light bulbs
(a) If bulb 1 is twice as bright as bulb 2 then it is consuming twice the power so P1P = 2P2P .

(The “P” is for parallel.) The two bulbs are in parallel and so have the same potential
drop,

E = I1R1 = I2R2 so
I1
I2

=
R2

R1
.

Since power goes as P = I2R, the relative brightness means that

I21R1 = 2I22R2 =⇒ I21
I22

= 2
R2

R1
.

Using the above relation we have

I21
I22

=
R2

2

R2
1

= 2
R2

R1
or R2 = 2R1.

Bulb 2 has twice the resistance of bulb 1. Note that the currents in this case the currents
satisfy

I1
I2

=
R2

R1
= 2 =⇒ I2 =

I1
2

which will be useful in part (b).
(b) Now the resistors are in series so

Requiv = R1 + R2 = 3R1.

Since E = IRequiv = 3IR1, the current passing through each bulb is I = E/3R1. The
powers are

P1S = I2R1 =
E

9R1
and P2S = I2R2 =

ER2

9R1
=

2

9

E
R1

.

1
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Now bulb 2 is twice as bright. To compare to the parallel case, I’ll use the relation
I1 = E/R1. The power through bulb 1 in parallel is

P1P = I21R1 =
E2

R1
= 9P1S

The parallel case is nine times brighter than series case. As for bulb 2,

P2P = I22R2 =
I21
4
R2 =

E2

2R1
=

9

2
P2S

So bulb 2 in the parallel configuration is 9/2 times brighter than the series case.

(5) Volcanoes! It is useful to have the factor γ. With v = 4/5 c then

γ =
1√

1 − v2/c2
=

1√
1 − 16

25

=
5

3
.

(a) Moving object shrink so the distance between the mountains in the spacecraft’s frame is

LS =
500 km

γ
= 300 km.

I have labeled this “LS” in the sketch in part (5c).
(b) There are a number of ways you could solve for this time delay. I’ll give two solutions.

First, from the diagram in part (5c) we can see that

D = v∆T + LS

where LS is the distance between the mountains in the spacecraft frame and D is the
distance between the eruptions in the spacecraft’s frame. The slip in simultaneity gives

∆T =
vD

c2
or D =

c2∆T

v
.

Equating these two expressions for D and collecting terms gives(
c2

v

)(
1 − v2

c2

)
∆T = LS .

Recognizing γ and solving for ∆T gives

∆T =
vγ2LS

c2
.

So, denoting the distance between the mountains in their own frame with LM ,

∆T =
vγLM

c2
=

4
5c

5
3500 km

c2
=

2

9
× 10−2 s ≃ 2.2 ms.

A second way to solve this is to use Lorentz transformations.

∆t = γ
(
0 + v∆x′/c2

)
=

γv∆x′

c2
,

which is the same as above since ∆x′ = LM .
(c) Here’s a sketch in the spacecraft’s frame
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(6) (2 pts.) The super-fast WorldStar train
(a) I found it helpful to draw these “snapshot” diagrams with the analogous spacetime dia-

grams, which I include at the end. In Sophie’s reference frame the WorldStar train passes
by, say moving to the right. Here’s the moment when the light fronts reach Sophie.

Key elements include light fronts arriving at Sophie and Theodore and the char marks on
the ground displaced to the rear since the light took some time to arrive while the trains
moved.
Here’s the situation shortly after the lighting strikes.

Notice how the light fronts are equidistant from Sophie but are of different distances from
the char marks. This occurs because the events are not simultaneous in Sophie’s frame.

Here’s the spacetime diagram of the events in Sophie’s frame
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(b) Here’s the spacetime diagram of the events in Theodore’s frame

(c) In Sophie’s frame the rear of the train in struck by lighting first. The front is struck next.
Finally the flashes of light (or light fronts) are seen by Sophie.

(d) In Theodore’s frame the light strikes both ends of the train simultaneously and then
Theodore sees the flashes of light, which is also the same event when Sophie sees the
flashes.

(7) The earth has a radius of about 6400 km. So light, or a radio signal, traveling around the
Earth would take πr/c ≃ π(6400 km)/3 × 108 ≃ 0.067 s. (Even if it passed through the earth
somehow, light would take d/c ≃ 0.04 s to make the trip.) Thus, if the signal is light-like
it could not take less time than this. So there is reason to be skeptical about the ‘less than
one-hundredth of a second’ claim since a signal could not reach the mind reader in that amount
of time.

(8) The ‘ladder in barn’ situation with the speed of the runner at 0.866c and both proper lengths
are 5 m.
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(a) We’ll need γ so

γ =
1√

1 − (0.866)2
≃ 2

Use length contraction to obtain L′ =  L/γ = 5/2 = 2.5 m for the length of the ladder in
the barn’s frame. Likewise, the length of the barn in the ladder’s frame is 5/2 = 2.5 m

(b) If the runner arranges to come to a stop when the front of the ladder reaches the back of
the barn in the proper frame of the runner then the ladder does not fit in the barn. When
the ladder starts to slow down only one half of its length is in the barn. As it slows the
barn expands and, in the end, both the ladder and barn have the same length.

(c) It may be easiest to see in a spacetime diagram. In the barn’s frame,

The dashed lines show the ladder during its deceleration. The history in the barns frame
is: The front of the ladder arrives and then the rear the ladder nears the front of the barn
as the ladder slows. As it comes to rest both barn and ladder have the same length.


