
Electromagnetism (PHYS 295): Solutions 7 Spring 2025 v1.1

Solutions:

(1) K and signals
(a) By definition T ′ = KT . Since the frequency is inversely proportional to the period we have

that the observed frequency fo = 1/To = 1/T ′ must be related to the emitted frequency
fe = 1/Te = 1/T via,

fo =
1

K
fe.

(b) Similarly since the wavelength is inversely related to the frequency c = fλ we see that the
redshift

z =
λo − λe

λe
=

cTo − cTe

cTe
= K − 1 =

√
1 + v/c

1− v/c
− 1.

There are other ways to express this such as γ(1 + v)− 1.

(2) Velocity addition revisited: Starting from the product relation

KAC = KABKBC

and squaring we find
1 + vAC

1− vAC
=

1 + vAB

1− vAB

1 + vBC

1− vBC
.

(I am setting c = 1 here to save writing.) Multiplying by the denominators gives

(1 + vAC) (1− vAB) (1− vBC) = (1 + vAB) (1 + vBC) (1− vAC) .

Multiplying this all out and canceling and gathering terms, this reduces to

vAC (1 + vABvBC) = vAB + vBC

which gives the expected

vAC =
vAB + vBC

1 + vABvBC
.

(3) Here’s a “top view” sketch of the situation:

Although I have drawn some separation between the board and ruler, I will assume they are
very close. The eye of the observer is shown. Since we are asked about this frame then this
is the frame we should use to analyze the situation. Here’s a spacetime diagram of the same
scenario
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In the observer’s frame, the board is moving and so contracted to length L/γ. But what does
the observer see? Well, let’s make the assumption that the board is like a spring. If so, the
signal to stop will not reach the trailing end until light can reach it. This is after a time ∆t
and the light will have traveled d = c∆t. We can also express this as

d =
L

γ
− v∆t

as shown in the spacetime diagram. Thus,

d =
L

γ
− v

d

c
and so the distance is d =

L

γ(1 + v/c)
= L

√
1− v/c

1 + v/c
.

This is the nearest-to-wall ruler marking that would be (in theory) visible. At relativistic
speeds, however, the collision of the board with the wall would produce a shower of high
energy particles that would likely obscure the ruler. Ah well.

(4) Sunlight:
(a) By conservation of energy for the process p+D → 3He+ γ the energy of the photon is

Eγ ≃ (1.6724 + 3.3432− 5.0058)× 10−27c2 ≃ 8.82× 10−13 J ≃ 55 MeV,

(b) This lies in the gamma ray part of the spectrum. BTW the wavelength is about 2.26×10−13

m and the frequency is about 1.3× 1021 Hz.
(c) If the earth is bathed with 1350 W/m2 then so is every other portion of a sphere with the

(average) Earth’s orbital radius. This means that the sun produces

P = 4πr2I ≃ 3.82× 1026 W

of power. That’s one bright bulb. (I used a radius of 1.5 × 108 km.) Using E = mc2 to
convert to mass gives about 4.2× 109 kg per second, or 4.2× 106 metric tons per second.

(d) Since

P =
dE

dt
=

dM

dt
c2

leaving the sun, the lifetime τ is determined by

τ = − 1

P

∫ 0

M

dM =
M

P
≃ 4.76× 1020 s ≃ 1.5× 1013 yrs
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which is way too long, partly because the sun will end in another (white dwarf) star, which
about half as massive. Also, the rate changes as the fusion process changes.

(5) (In this solution I mostly set c = 1 so v = β.) If γ equals 1.2 then the speed is

v =
√

1− 1/γ2 ≃ 0.553

when c = 1 or v ≃ 0.553c. In the same “lab” frame when the test charge moves at v, the
electrons move at vo = 0.8 so in the proper frame of the test charge (the “prime frame”),

v′0 =
vo − v

1− vo v
≃ 0.443.

The relative sign can be gleaned from Fig. 5.22(a) where both v and vo point to the right so
in the prime frame the speed is reduced - subtracted.

The charge density in the prime frame is

λ′ = γvvoλo ≃ 0.531λo

from equation (5.24) (and also in class). Hence, the relative charge density is λ′/λo = 0.531.

(6) This is a mass spectrometer
(a) For positive particles to curve that way under the qv × B force, the magnetic field must

point “up” or out of the page.
(b) From mechanics, masses moving on a circular trajectory satisfy

a =
v2

r
and since F = qvB = ma

we have
q

m
=

v

Br
(so far). How to remove the speed? By conservation of energy

1

2
mv2 = q∆V so v =

√
2q∆V/m

So when we square and substitute we have( q

m

)2

=
2q∆V

mB2r2
or

q

m
=

2∆V

B2r2

as expected.
(c) There is a clever way to solve this directly but computing the radii works:

r =

√
2∆V m

qB2

for both isotopes, finding 4.94 m for the 68 and 5.01 for the 70. The difference yields
∆r ≃ 7.2 cm but this asks for the separation or 2∆r ≃ 14.4 cm.

(7) Finding B-fields I: Here’s a sketch of the current carrying wire, the B-field and the loop
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Using the circle of radius of radius d in Ampeŕ’s law,∮
B · ds = µoIencl,

the integral is
∫
Bds = B

∫
ds since the path follows the magnetic field around the wire so

B2πd = µoI.

Solving for the magnetic field gives

B =
µoI

2πd
.

(8) Finding B-fields II: Here’s a sketch of the solenoid, the B-field and the loop

Far from the ends of the solenoid the magnetic field will be constant inside. For the outside
note that we have current coming out of the page at the top and into the page at the bottom.
By the right hand rule and superposition, the magnetic field vanishes (outside).

Using the loop of length ℓ in Ampeŕ’s law,∮
B · ds = µoIencl,

the integral is Bℓ since the path follows the magnetic field inside so

Bℓ = µonI ℓ.

Canceling the factor of ℓ, we have

B = µonI.

(9) Finding B-fields III: : Here’s a sketch of the solenoid, the B-field and the loop

By eth right hand rule, on the top the magnetic field points to the left. Below the sheet it

points to the right. Using the loop of length ℓ in Ampeŕ’s law,∮
B · ds = µoIencl,

the integral is 2Bℓ since the path follows the magnetic field inside so

2Bℓ = µoℓK.

Canceling the factor of ℓ, we have

B =
µoK

2
.


