
Electromagnetism (PHYS 295): Solutions 8 Spring 2025 v1.0

Solutions:

(1) This one is done in the book. Be sure to include all the steps in your solution.

(2) Computations of curl and divergence.
(a) Taking the curl

∇× F =

∣∣∣∣∣∣
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∂
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∂
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x+ y −x+ y −2z
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= ı̂(0) + ȷ̂(0) + k̂(−2) = −2k̂

Meanwhile the divergence is

∇ · F = 1 + 1− 2 = 0.

Since ∇× F ̸= 0 there is no ϕ for F.
(b) Taking the curl

∇×G =
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2y 2x+ 3z 3y
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= ı̂(3− 3) + ȷ̂(0) + k̂(2− 2) = 0.

Meanwhile the divergence is
∇ ·G = 0.

Since ∇×G = 0 there is a ϕ for G such that G = −∇ϕ. Taking the x-component, 2y and
integrating we have, to start, ϕ = −2xy+ f(y, z). Similarly for the y-component 2x+ 3z,
implying ϕ = −2xy − 3xy + g(x, z). So it looks like ϕ = −2xy − 3xy + C. Checking this
shows that indeed G = −∇ϕ.

(c) Taking the curl

∇×H =

∣∣∣∣∣∣
ı̂ ȷ̂ k̂
∂
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x2 − z2 2 2xz

∣∣∣∣∣∣
= ı̂(0) + ȷ̂(−2z − 2z) + k̂(0) = −4ȷ̂.

Meanwhile the divergence is

∇ ·H = 4x.

Since ∇×H ̸= 0 there is no ϕ for H.

(3) (a) Computing the cross product

qv⃗ × B⃗ = q
[(

−0.1̂ı+ 2ȷ̂− 6k̂
)
× 105

]
×

[
0.05ȷ̂+ 0.1k̂

]
= q

(
0.5̂ı+ 0.01ȷ̂− 0.05k̂

)
× 105.

So

F⃗ =
(
80̂ı+ 1.5ȷ̂− 8k̂

)
× 10−16 N.

(b) Solved in text
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(4) Recall that the B-field inside a long solenoid is B = µonI. Outside the solenoid the field
vanishes. With these results we can use superposition to obtain the field in this configuration.
When we consider r > b we are outside both solenoids so B = 0. In between, b < r < a, we are
inside the outer solenoid and outside the inner one so B = µon2I. This field points to the right
(by a right hand rule). Inside, r < a, we’re inside both solenoids so there are contributions from
both. Given the change in the current flow on the inner solenoid, we have B = µo(n2−n1)I in
the rightwards direction. The actual direction of B will depend on the relative size of n2 and
n1.

This can be solved using Amperé’s law arguments as well.

(5) This is a really big γ, γ ∼ 1010!1 The angular size of the pancake (actually more like ‘pan-paper’
- it is thin) is ∆θ ∼ 1/γ. The maximum field, on the z axis perpendicular to the velocity, is

Emax = γ
Q

4πϵo

1

r2

This is from the E-field we derived in class. Setting this to 1 V/m gives a radius of

r =

√
eγ

4πϵo
≃ 3.8 m.

Gracious, that is very far from the proton! The thickness of the pancake at this radius is
r∆θ = r/γ ≃ 3.8 Å. That is thin. The particle is essentially moving at the speed of light and
this field of 1 V/m would last about 1× 10−18 s, a very short interval of time!

(6) A question of many questions! Here’s a quick sketch of the geometry I’ll use

Parallel plate capacitors satisfy

C =
ϵoA

d
=

ϵoab

d
and Q = CV

Breaking it down into the obvious parts...
(a) The electric field strength is

E =
∆V

d
= 1.5× 104 V/m = E⊥

(Alternatively as we saw in class

E =
σ

ϵo
=

Q

ϵoA
=

V

d
)

1By the way these protons (or other nuclei) actually exist and have a number of astrophysical puzzles associated to
them, e.g. How are they accelerated to such high energies? They are observed at cosmic ray observatories like Auger in

South America and LHAASO in China.
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(b) The number of electrons Ne is

Ne =
Q

e
=

ϵoabV

ed
=

ϵoV

e
≃ 1.66× 1010.

(David Morin arranged for the numbers to work out so that ab/d = 1.)
(c) Now we’re asked for what happens when the plate moves east at 0.6c = 3/5c. It is useful

to compute γ for what follows

γ =
1√

1− 9
25

=
5

4
.

Again as we saw in class only b and E are affected in this frame. So

a′ = a = 10 cm

b′ =
b

γ
= 16 cm, due to length contraction

d′ = d = 2 cm

N ′
e = Ne due to charge invariance

E′
⊥ = γE⊥ ≃ 1.88× 104 V/m

(d) If the velocity is directed upward then

a′ = a = 10 cm

b′ = b = 20 cm

d′ =
d

γ
= 1.6 cm, due to length contraction

N ′
e = Ne due to charge invariance

E′
∥ = E∥ = 1.5× 104 V/m

(7) As we saw in class the electric field is directed along the radius. So let’s choose a sphere
centered on the charge. Then E ·da = E da. I’ll use the book’s notation for this “prime” frame
so angles on the sphere are θ′ and φ′. The flux is then∫

E · da =

∫ 2π

0

dφ′
∫ π

0

dθ′
Q

4πϵo r′2
1− v2(

1− v2 sin2 θ′
)3/2 r′2 sin θ′.

I’ve set c = 1. Canceling a factor of r′2, doing the φ integration, and cleaning up gives∫
E · da =

Q(1− v2)

2ϵo

∫ π

0

dθ′
1(

1− v2 sin2 θ′
)3/2 sin θ′.

This integral is in Appendix K. The formula K.15 gives∫
E · da =

Q(1− v2)

2ϵo

[
− cos θ′

(1− v2)
(
1− v2 sin2 θ′

)1/2
]π

0

=
Q

ϵo
,

as expected.
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(8) So much in a picture!
(a) Let’s work from outside to inside. To understand the outside field lines I used a ruler to

trace back the “early” fields lines to the x-axis. These field lines would have intersected
the axis at x = 12 cm, if there had not been acceleration. The density of these lines is not
uniform (!)

They are a bit “pancaked”. To determine how much, I measured the angles as shown.
Since the density of field lines is proportional to the strength of the field we can compare
the field at π/2 with the field at 0 (or π). The expression to use is equation (5.15). Thus,
from the equation,

E′|π/2
E′|0

= γ,

while from the angles

E′|π/2
E′|0

=
∆θ′|π/2
∆θ′|0

≃ 0.454

0.349
= 1.3

where I converted the angular spacing ∆θ′ above to radians. So γ ≃ 1.3. From this

v =
√
1− 1/γ2 ≃ 0.769,

or pretty much 0.8c. If there had been no acceleration the electron would be at 12 cm.
Proceeding inwards, the next feature is those sharp turns or angles in the field lines. They
have an outer radius of about 16 cm and an inner radius of about 14 cm. This is caused
by acceleration. Since the news of the change in field lines can only travel as fast as
c, this acceleration occurred between t1 = r1/c = (14 × 10−2)/3 × 108 ≃ 0.47 ns and
t2 = r2/c = (16 × 10−2)/3 × 108 ≃ 0.53 ns before t = 0. The inside lines are symmetric
and come from the origin. Therefore, the charge is now (at t = 0) at rest.
To summarize, the electron was moving to the right at v = 0.8c. It slowed to rest between
0.53 ns and 0.47 ns before t = 0.
Notice that you can also get an estimate for the speed of the electron from the back-tracing
position at 12 cm divided by the time at the middle of the acceleration at (15 cm)/c or
v = 12c/15 = 0.8c.

(b) Since the electron came to rest at t = −0.47 ns, at t = −0.75 ns the charge was still
moving. Assuming it suddenly came to rest at -0.5 ns (midway between the t1 and t2, it
would have been at x = 0.8c · 0.5 ns = −6 cm at -0.75 ns. (You can obtain the identical
result with more work by assuming a linear deceleration and summing up the distance the
electron traveled when it was at 0.8c and the “1/2at2” distance it traveled as it slowed
down.)

(c) Using equation (5.15) at θ′ = π then

E′ =
e

4πϵo

1− v2

r′2
≃ 1.4× 10−7 V/m
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with r′ = −6 cm and v = 0.8.

(9) (a) By Gauss’s law for a cylindrical surface around the rod, the electric field is by λ/2πϵor.
This is the result in the frame shown in figure 5.30. Boosting to the frame of the particle
gives γλ/2πϵor, since the field is transverse and since r doesn’t change in the transforma-
tion. The force is larger in the particle’s rest frame. (This provides another way to solve
this problem.)

(b) There is now a non-vanishing B-field but the force vanishes since we are in the rest frame
of the particle. The electric field has increased due to length contraction and we obtain
the same result as above, γλ/2πϵor, as we must.

(10) To achieve the required uniformity we need to ask that the superposition of the fields from the
two coils yields a region in which the B-field is approximately constant. Placing one coil at
z = b/2 and one coil at z = −b/2 we have the z component

Bz(z) =
µoIa

2

2(a2 + (z + b/2)2)3/2
+

µoIa
2

2(a2 + (z − b/2)2)3/2

Each one of these fields is most intense in the plane of the ring so the idea is to place the
two rings so that the peak is flattened out, producing a constant field. Taking a Taylor series
around z = 0 and dropping distracting constants yields

Bz(z)−Bz(0) ∝
{
3
5(z + b/2)2 − [a2 + (z + b/2)2]

[a2 + (z + b/2)2]7/2

∣∣∣∣
z=0

+
5(z − b/2)2 − [a2 + (z − b/2)2]

[a2 + (z − b/2)2]7/2

∣∣∣∣
z=0

}
z2

as the first (and all odd orders) derivative vanishes. The two terms in the curly brackets
simplify to

3(b2 − aa)

(a2 + b2/4)7/2
,

which vanishes when b = a. If so then

Bz(0) =

√
2

53
µoI

a

and the first correction term is at fourth order in z. So if you are halfway between the top coil
and the origin, at z = b/4, then your local B-field only differs from the field at the center of the
coils by 1/44 ≃ 0.04%. So if you move closer to the center just a bit you can achieve uniformity
within a part in a thousand - in the z direction. The transverse problem is harder...

(11) To cancel a tilted 0.55 gauss field with a solenoid we just need to add an equal and opposite
field. Seems pretty simple. We enclose the 303 cm3 region inside a long solenoid (so we don’t

have to worry about edge effects) with r ≃ 24 cm (r > a/
√
2 ≃ 11 cm, the dimension along the

diagonal) solenoid tilted by 30o from the vertical. We need a current density (nI) given by

B = µonI = 5.5× 10−5 T, or nI ≃ 44 A/m

So... why those three stars .... ?? Oh blast, this isn’t an infinitely long solenoid! The actual
field is given by equation (6.56).The design specifications call for no more than 10 milligauss of
deviation of 10−2/0.55 ≃ 0.018. Comparing the B-field at the center with the B field 30/2=15
cm away gives

Bz(0)

Bz(15)
=

2 cos θ

cos θ1 + cos θ2
where the angles are shown in the figure. (I defined θ2 differently than in the text. The change
results in the cosine of θ2 changing sign. Physically the results are identical.)
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I set up a spreadsheet to compute the ratio of the fields. With these dimensions I got a 2%
deviation which is larger than the 1.8 % maximum, bummer. After playing around with this I
find that it is easiest to reduce the ratio by increasing the solenoid’s length. With a radius of
23 cm (so the box fits with a little extra room) and a length of 1.25 m gives a deviation of 1
%, which I think should be safe. Here a snapshot:

Returning to the B-field to correct the previous calculation

B = µonI cos θ =⇒ nI ≃ 47 A/m, or over 1.25 m, 61 A-turns

Your numerical answers may differ from these results. This solution only considers the field on
the z axis so a more careful analysis would include the magnetic field off the axis.

The figures on page 301 also are a way in which you can solve this graphically
In practice one could shorten the coil further by adding additional “trim coils” on the ends

of the solenoid to reduce the non-uniformity of the field at the ends. But that problem would
be like a superposition of the last two problems!


