
Electromagnetism (PHYS 295): Solutions 9 Spring 2025 v1.0

Solutions:

(1) The reasoning here will be similar to what we did in class: We’ll compute the force in one
frame and then transform back to see what F = q(E+v×B) gives for B in the original frame.
I’ll call the ‘lab frame’ S. It looks like this

I anticipated that the new B will be out of the page - more on this soon. Let’s set c = 1. I
chose to switch to the rest frame of the proton below. So moving right at v we enter the S′

frame which looks like this

The lower proton is at rest in S′. Notice how I included the new velocity from relativistic
velocity addition.

From our work before, we know that the electric field is focused by γ′ in the vertical direction,
where γ′ is the dilation factor for the relativistically added velocity,

γ′ =
1√

1−
(

2v
1+v2

)2

=
1 + v2√

1 + 2v2 + v4 − 4v2

=
1 + v2

1− v2

where I expanded the velocity and collected terms. So the electric field in the S′ frame is

ES′ = γ′ e

4πϵor2
=

e(1 + v2)

4πϵo(1− v2)r2
.

(Just a reminder that since the radii are perpendicular to the velocity, there is no length
contraction, r′ = r.) The force in S′ is then

FS′ = eES′ =
e2(1 + v2)

4πϵo(1− v2)r2
.
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This completes our work in the S′ frame. (There is no force from the magnetic field since in
this frame the lower charge is at rest.)

You can complete the problem but finding the E and B fields in the frame S. But, beware,
we cannot use the Biot-Savart law since that only applies to stationary currents. I’ll instead
use forces as discussed in section 5.8.

Switching back to the lab frame S by moving left by v we have

FS′ = γFS

where γ is the usual 1/
√
1− v2 and

FS = q(ES + v ×BS).

Let’s put in what we know - and the suggestion in the problem that BS = vES . I have
indicated the direction of the B field in the first diagram. This ensures that we have the
expected repulsion via qv ×B. Hence, γFS is

γFS = e
1√

1− v2
(ES + vBS)

= e
1√

1− v2

(
eγ

4πϵor2
+ v2

eγ

4πϵor2

)
= e2

(
1

1− v2

)(
1

4πϵor2

)(
1 + v2

)
=

e2(1 + v2)

4πϵo(1− v2)r2

= FS′ !

as above. It works!

(2) Solution in the text.

(3) Answer in the text. You can also solve this using the transformation of a current carrying wire,
see the argument starting on page 259 and in class notes.

(4) The B-fields produced by the wires are clockwise for A and C and counterclockwise for B.
And, by Amperé’s law they have the form

B =
µoI

2πr
So in the center the contributions of A and C cancel. The B-field is then

Bcenter =
µo2I

2πr
=

√
2µoI

πd
directed diagonally down- and left-ward.

On the bottom right corner all three wires contribute. Wire A has a B field of

BA =
µoI

2πd
to the right.

Wire C has a B field of

BC =
µoI

2πd
upwards.

The vector sum of these two gives a B-field of µoI/
√
2πd up and to the right. But wire B has

a B field of

B=
µo2I

2πr

√
2µoI

π2d
diagonally down- and left-ward.
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So the total sum vanishes.

(5) The rectangular loop derivation we did in class is fine but here is a slightly more general result
here. Let’s consider a loop in the xy plane. The z component of the B-field is not going to
produce torque around the x or y axes. To start let’s look at the z component of the force on
a wee length dℓ of the loop, as drawn in figure 6.41

dFz = I(dℓ×B)z = IdℓBy sin θ = IdxBy

where the last equality is due to the geometry; the angle θ is between the y direction and dℓ
and dℓ sin θ is just dx. The torque on this bit is dτx = yIdxBy. Integrating up we have

τx =

∫
dτx = IBy

∫
ydx = IaBy,

where a =
∫
ydx is the area of the loop. Now, you might be wondering about the other

component τy. Following the same argument as above the torque τy contains the integral∫
xdx, which vanishes so the x component is the only surviving bit, so τ⃗ = IaBy ı̂. Using the

magnetic moment µ⃗

µ⃗×B = −Iak̂× (Bx ı̂+By ȷ̂) = IaBy ı̂

as above, so τ⃗ = µ⃗×B.
The net force of the loop ∮

dF = I

∮
dℓ×B = 0

since
∮
dℓ = 0 due to the loop being a loop.

(6) Superposition! Let’s first calculate the B-field of a wire with uniform current density J and
radius a. Using a cross-sectional Ampèrian loop of radius r inside the wire we have∮

B⃗ · dℓ⃗ = B2πr

while the current enclosed is

Iencl = I
πr2

πa2
. Hence, B⃗ =

µoIr

2πa2
ϕ̂.

On the outside the calculation is similar except the loop contains the full current I,

B⃗ =
µoI

2πr
ϕ̂.

On the boundary when r = a we have

B⃗ =
µoI

2πa
ϕ̂.

Ok to build the configuration show we’ll take a wire with radius b = 4 cm with current flowing
into the page and add a wire with radius a = 2 cm and current flowing out of the page. We
also have to calculate the “I” since we are given the amount of current in the crescent-shaped
wire. Let’s start with the current density for the crescent,

J =
Ic
A

=
900 A

πb2 − πa2
so in the larger wire Ib = πb2J =

900 A

12
· 16 = 1200 A.

and in the smaller radius wire,

Ia = πa2J =
900 A

12
· 4 = 300 A.
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At P , the center of the big wire, the only field is due to the smaller wire, so

B⃗ = −µoI

2πa
ϕ̂ = − µo300

2π0.02 m
ϕ̂ = 30 gauss,

pointing leftwards.

(7) Your superposition alarms should be ringing. We’ll find the field by adding up the contributions
of the semi-circle and the two lines of current. As you can check with the right hand rule, all
contributions add due to the direction of the current flow. The semi-circle gives half of the
B-field along the z-axis of a ring of current evaluated at z = 0. This is

B =
µoIr

2

2(r2 + z2)3/2

∣∣∣∣
z=0

=
µoI

2r
.

Each wire gives half of the field of a long wire so the total is

B =
1

2

µoI

2r
+ 2 · 1

2

µoI

2πr
=

(
1

π
+

1

2

)
µoI

2r
≃ 0.409

µoI

r

(If you want to find these fields directly you can use the Biot-Savart law, but I would not
recommend it.)

(8) Treating the source of earth’s field as a conducting ring of radius b we have

B =
µoIb

2

2(b2 + z2)3/2

at z on the N − S pole axis. Given the assumption that b = R/2 and at the pole z = R then
we find after some algebra

B =
µo

5
√
5R

.

So if B = 0.5 gauss or 5×10−5 T then I ≃ 2.7×109 A, which is a mammoth current. Lighting
strikes have current on the order of 105 A. The earth’s field is more likely produced by a set of
solenoid-like flows between in the solid core and the earth’s mantel. Curiously, I don’t think
that this problem of the origin of planetary magnetic fields is completely understood.

(9) The wire has an oscillating position of x(t) = xo sin(ωt + φ) (since we are eventually only
interested in the maximum, cosine would also be fine). The change in flux is then

d

dt

∫
s

B⃗ · da⃗ = Bℓ
dx

dt
= Bℓxoω cos((ωt+ φ))

with a maximum value of Bℓxoω. With ω = 2πf this gives the maximum emf, E ≃ 0.034 V.

(10) Faraday’s experiment was a difficult one. Ions in the brackish water flow past the bridge and
the qv ×B force drives a current around a loop. But it is difficult to detect. Here’s why:

The force per unit charge (the electric field) is

F⃗

q
= v⃗ × B⃗ = vB directed as shown
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The force that pushes the current is the horizontal component so from the geometry above

⃗Fcircuit

q
= vB cos(90− θ) = vB sin θ.

As stated in the prob;em notes θ = 66.5◦. Between the two ends of the line, ℓ = 960 ft ≃ 293
m apart this produces a voltage of

V = vBℓ sin θ ≃ 20 mV.

which was too small for Faraday’s equipment to measure.


