In this fifth problem set is devoted to practice with 4 -vectors, 1 -forms, and metrics.

## Reading:

Schuta Chapter 3 section 7-9 Schutz Chapter 5 sections 2-4 (Feel free to read section 5.4 but we will not dwell on non-coordinate bases.)

## Problems: Solutions due by noon on Friday, February 23

All numbered problems are from Schutz.
(1) Suppose you have three reference frames, $\mathcal{S}, \mathcal{S}^{\prime}$, and $\mathcal{S}$ ". They all share a common " $x$ " axis. The primed reference frame moves at $v$ along the $x$-axis in the frame $\mathcal{S}$ as shown in this spatial view:


The double-primed reference frame $\mathcal{S} "$ moves at $u$ along the $x^{\prime}$-axis in the frame $\mathcal{S}^{\prime}$ :


And, of course, the double-primed reference frame $\mathcal{S}$ " moves at some speed along the $x$-axis in the frame $\mathcal{S}$ :


Let's call this speed $w$ as shown. Here's a view in spacetrime


What is $w$ in terms of $v$ and $u ?$
(a) Although other ways exist, you can find the answer this way. Let's denote the coordinates of the $\mathcal{S}^{\prime}$ origin in the frame $\mathcal{S}$ to be $\left.x\right|_{\mathcal{S}^{\prime}}$. Let's assume they all synchronize their clocks as they pass. Thus,

$$
v=\frac{\left.x\right|_{\mathcal{S}^{\prime}}}{t}
$$

and

$$
w=\frac{\left.x\right|_{\mathcal{S}^{\prime \prime}}}{t}
$$

By using the inverse Lorentz transformation from $\mathcal{S}^{\prime}$ to $\mathcal{S}$ (why inverse?) derive the relation between the three speeds.
(b) What is $w$ when $v=u=0.75$ ?
(c) What is the maximum value for $w$ ?
(d) Check that the result reduces to the Galilean $w=v+u$ for relatively small speeds.

This is a key result of special relativity.
(2) A particle of type " $A$ " crashes into a particle of type " $B$ " (at rest in this frame) producing a shower of particles of type " $C$ ", $C_{1}, C_{2}, \ldots$ Show that the threshold energy of this process is

$$
E_{A}=\frac{M^{2}-m_{A}^{2}-m_{B}^{2}}{2 m_{B}}
$$

where $M=m_{1}+m_{2}+\ldots$ is the sum of the masses of the particles of type " $C$ ". At threshold, the particles of type " $C$ " go ... absolutely nowhere; they are at rest (which makes sense for a threshold, right?).
(3) 3.4 parts (b) and (c)
(4) 3.18 In part (a) only lower the index for vectors $A, B$, and $C$. In part (b) raise the index for $p, q$ and $r$ only.
(5) 3.30 parts (f) - (j) Practice with 4-vectors and derivatives. (We did the first half of this problem last week.)
(6) Consider the 2 D spacetime metric with coordinates $(t, r)$,

$$
d s^{2}=-\left(1-\frac{1}{\sqrt{r^{2}+a^{2}}}\right) d t^{2}+\left(1-\frac{1}{\sqrt{r^{2}+a^{2}}}\right)^{-1} d r^{2}
$$

where $a$ is a constant.
(a) Write the metric as a $2 \times 2$ array in these coordinates.
(b) Find and write the inverse metric as a $2 \times 2$ array in these coordinates.
(c) Compute the non-vanishing Christoffel symbols by hand. Please show your work.

