This week we have a little Christoffel computing, work with geodesics on a sphere, and more on accelerating observers. It looks like we are on track to assemble Einstein's equation before break. After break we will study the main current applications: Gravitational waves, black holes, and cosmology.

Reading:

- Schutz Chapter 6 sections 3-7

Problems:

All numbered problems are from Schutz.
(1) When we discussed the example of parallel transport on a sphere I just stated that great circles were geodesics.
(a) Show that the geodesic equations for a sphere of radius a are

$$
\begin{align*}
\frac{d U^{\theta}}{d \lambda} & =\cos \theta \sin \theta\left(U^{\varphi}\right)^{2} \tag{1}\\
\frac{d U^{\varphi}}{d \lambda} & =-2 \cot \theta U^{\varphi} U^{\theta}
\end{align*}
$$

(b) Noting that $U^{i}=d x^{i} / d \lambda$ express the geodesic equations in terms of the coordinates $x^{i}(\lambda)$.
(c) Show that on the equator, $\theta=\pi / 2$ and $\varphi=a \lambda+b$ satisfy the geodesic equation. Explain how we can choose $\varphi=\lambda$, without loss of generality.
(d) Explain why this solution at the equator applies to every great circle.
(2) "Oops!" What is wrong with the following equation?

$$
\frac{d p^{\mu}}{d \tau}=q F^{\mu \nu} U^{\beta}
$$

Using the metric how might you correct the typo?
(3) Compute the Christoffel symbols $\Gamma_{t t}^{t}$ and $\Gamma_{t t}^{i}$ for the metric shown in equation (7.8) assuming that the function $\phi=\phi(t, x, y, z)$ is a function of all the coordinates.
(4) 5.21 The last of the "Rindler spacetime set" of $2.19,2.21$, and 5.21.

