Introduction to Mathematica for GR

April 2020

Syntax

For the purposes of this story there are five things you need to know about mathematica:
(1) The commands and functions start with Capital letters e.g. Sin
(2) The arguments of functions are denoted with square brackets e.g. $\operatorname{Sin}[x]$ and inside these options have curly brackets
(3) To ask mathematica to compute press enter or shift return
(9) Help is found in Wolfram Documentation under the "Help" menu - it is excellent
(5) It is in command line format so you can refer to earlier entries later.
(with apologies to Mo Willems.)

Scope

Incorporating symbolic manipulation, a coding environment, and numerical routines, software like mathematica is extremely powerful.

For example:

- You can compute and manipulate tensors!!
- You can plot
- You can integrate analytically and numerically
- You can plot data and combine plots using Show
- You define functions - use underscore to define dependent variables differentiate, and manipulate functions
- You can solve differential equations analytically and numerically

Working with the software

- Plot $\sin (x)$ from 0 to 3π with $\operatorname{Plot}[\operatorname{Sin}[x],\{x, 0,3 P i\}]$
- Define this plot to be g 1 with $\mathrm{g} 1=\operatorname{Plot}[\operatorname{Sin}[\mathrm{x}],\{\mathrm{x}, 0,3 \mathrm{Pi}\}]$.
- Define the plot of $\cos (x)$ from 0 to 3π to be $g 2$. Now type Show $[\mathrm{g} 1, \mathrm{~g} 2$] - it combines the plots!
- Go to the Help menu and select "Wolfram Documentation". In the new window search for integrate. Working from the examples at the bottom of the information page integrate

$$
\frac{x^{3}}{\left(e^{x}-1\right)} \text { from } 0 \text { to } \infty
$$

- In the Insert menu find "Inline free form..." and select it. Now you have Wolfram Alpha. Try typing in english "plot $\sin (x)$..."
- See what else you can do with alpha.
- Download the robertson-walker $\mathrm{k}=0$ mathematica notebook, text file, or html from the course website
- Try running the lines to the matrix form. Verify that the metric looks correct in matrix form.
- If so evaluate the rest by evaluating the whole notebook or pressing enter for the remaining lines. Verify that $G_{t t}$ and $G_{r r}$ are correct.

Solving diff equ'ns I

Mathematica has a differential equation solver allowing us to solve differential equations analytically and numerically.

- For analytic solutions we can use DSolve. Try solving this differential equation from a recent problem set

$$
\frac{d T}{d t}=-\alpha T+\beta
$$

by entering
DSolve $\left[y^{\prime}[\mathrm{t}]==-\alpha^{*} \mathrm{y}[\mathrm{t}]+\beta, \mathrm{y}[\mathrm{t}], \mathrm{t}\right]$
Note the notation for derivative and how we ask for the solution $y(t)$ in terms of t.

- I have found DSolve (and the numerical version NDSolve) to be the most persnickety of mathematica commands. Work from examples and be patient.

GR II - general metrics

- Download the einstein notebook (or text file)
- Enter in the components for 'our metric' with spherical symmetry. Don't forget to enter $\Phi[r]$ so mathematica knows this is a function of the r coordinate. Verify that it looks correct in matrix form.
- Ask it to compute the Christoffels. Are they correct?
- If so evaluate the rest by evaluating the whole notebook or pressing enter for the remaining lines. Verify that $G_{t t}$ and $G_{r r}$ are correct.

