
Stat Mech (PHYS 370) Guide 10 Solutions Fall 2024 v2.0

Problems:

(1) For the relativistic case: When the momentum is high we have

E =
√
(pc)2 +m2c4 = (pc)

√
1 +

m2c2

p2
≃ pc+

1

2

m2c3

p

where I have used the beginning of the binominal theorem, (1 + x)n ≃ 1 + nx, which works
well when x is small. In this case if mc/p < 1 then the approximation works well.

(2) The probability of occupation is given by the Fermi-Dirac distribution so with kT ≃ 1/40 eV
at room temperature we have
(a) At this difference,

Pa = n̄FD =
1

eβ(ϵ−µ) + 1
=

1

e−40 + 1
≃ 1

(b) At this difference,

Pb =
1

eβ(ϵ−µ) + 1
=

1

e−.4 + 1
≃ 0.6

(c) Well, this is 1/2 as we saw in class:

n̄FD(µ = ϵ) =
1

e0 + 1
=

1

2

(d) At this difference,

Pd =
1

eβ(ϵ−µ) + 1
=

1

e0.4 + 1
≃ 0.4

(e) At this difference,

Pe =
1

eβ(ϵ−µ) + 1
=

1

e40 + 1
≃ 0

These differences carry us through the transition from occupied states to unoccupied states.

(3) (3 pts.) A numerical computation of µ(T ).
(a) The dot diagrams. Some of these are easy - the ones on the left sides below. The others

can be very tricky. The idea is that you want to partition the total number of energy
units among the stack of fermion states. For instance the states on the far left raise the
topmost fermion q units while the one on the far right raise the top q fermions one unit.
Here they are1

1Thanks to Patricia for the diagram!
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There are many empty states above these and many full states below these. The 6th
column in q = 5 is a typo. There are only 7 of these states. There are typos in the q = 6
case too. Here’s another version of q = 6

(b) For q = 6 we count the rows in the diagram, and order them in ascending order, to obtain
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where I added the empty and full states that I asked for in the problem set. The plot with
the fit looks like this
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(c) The chemical potential is determined by n = 1/2, which occurs in the plot at about 9.5 or
9.5ϵ, including the energy scaling. From the fit the inverse dimless temperature is 0.456 so
kT = 2.19ϵ. (Mathematica will also give you uncertainties but let’s save that for another
day.)

(d) So the entropy is k lnΩ so we can easily make the plot by taking the logs of the multiplicities
in parts (a) and (b),
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Hmm, pretty linear! The difference between ln(11) and ln(7) is 0.452. Inverting this gives
2.21 so kT = 2.21ϵ which agrees with the previous result to two sig figs.

(4) Conduction electrons in copper. First, to find the volume of one mole from the molar mass
and the density I found

V1 =
63.5 g

8.93 g/cm
3 ≃ 7.11× 10−6 m3.

For an Avagadro’s number of electrons with mass me = 9.11× 10−31 kg, the Fermi energy is

ϵF =

(
h2

8me

)(
3N

πV

)2/3

≃ 1.1× 10−18 J ≃ 7.05 eV.

The Fermi temperature is just ϵF /k or

TF ≃ 8.2× 104 K

That’s high! Certainly room temperature is approximately “0” compared to the Fermi tem-
perature; in light of the last problem certainly TF ≫ T . The electron gas is degenerate.
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From the text on page 275 the degeneracy pressure is

P =
2

5

N

V
ϵF ≃ 3.8× 1010 Pa = 3.8× 105 atm

while the bulk modulus is

B =
10

9

U

V
=

5

3
P ≃ 6.4× 1010 Pa = 6.4× 105 atm.

This is about half of the quoted bulk modulus of 1.2× 1011 Pa !


