
Stat Mech (PHYS 370) Guide 11 Solutions Fall 2024 v1.0

Problems:

(1) New bosonic partition function?
(a) For this example we had Z1 = 4 and so

Zb =
ZN
1 − Z1

N !
+ Z1 =

42 − 4

2!
+ 4 =

12

2
+ 4 = 10

which is indeed what we found.
(b) I will grade parts (b) and (c)

(2) This looks like a good Mathematica question. From the file appended at the end of this solution
the distributions are all at least within 1% when x = ϵ− µ ≃ 0.133 eV.

In the atmosphere... Hmmm, there’s a lot in play here. To get an estimate let’s work with
an “average Earth atmosphere” particle. This will have m = m̄air ≃ 28.96 g/mol from our
solution to 1.14 and have the same rotational partition function as N2. For such a gas,

µ = kT ln

(
Nℓ3Q
ZintV

)
= kT ln

(
Pℓ3Q

kTZrot

)
using the ideal gas law. Zrot = KT/2ϵR where ϵR = 2.5 × 10−4 eV (see pg 236 and Quiz II).
On the surface (at 1 atm) at 300 K,

ℓQ =≃ 1.9× 10−11 m.

and
µ ≃ −0.5

Since x = ϵ − µ and the minimum value of ϵ is 0, this is safely above the limit of 0.133 eV
under these conditions.

Now using T = 100 K gives ℓQ =≃ 3.2 × 10−11 m and µ ≃ −0.135 eV so now we would
be getting close to the limit. Interesting! I guess planetary atmospheres might be affected by
quantum statistics on colder planets.

Here’s the notebook file
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(* computing differences of disributions let x =

ϵ - μ. Also recall that at room temperature kT = 1/40 eV *)

In[78]:= Plot[{Exp[-x * 40], (Exp[x * 40] + 1)^(-1), (Exp[x * 40] - 1)^(-1)},
{x, -.05, .2}, PlotRange → {0, 2}]

Out[78]=

-0.05 0.00 0.05 0.10 0.15 0.20

0.5

1.0

1.5

2.0

(* Since the Boltzmann distribution is between the FD
(the lower curve) and the BE (th eupper curve) dsitributions,

then it will be within 1% if they are. So let's look at FD-BE/FD *)

In[82]:= FindRoot[
((Exp[x * 40] - 1)^(-1) - (Exp[x * 40] + 1)^(-1)) / (Exp[x * 40] + 1)^(-1) - .01, {x, 0.1}]

Out[82]=

{x → 0.132583}

(* normalizing with Boltzmann doesn't make a difference ... *)

In[71]:= FindRoot[((Exp[x * 40] - 1)^(-1) - (Exp[x * 40] + 1)^(-1)) / Exp[-x * 40] - .01, {x, 0.2}]
Out[71]=

{x → 0.132459}

In[84]:= Plot[{Exp[-x * 40], (Exp[x * 40] + 1)^(-1), (Exp[x * 40] - 1)^(-1)}, {x, 0.12, .14}]
Out[84]=

0.125 0.130 0.135 0.140

0.004

0.005

0.006

0.007

0.008



In[85]:= (* Yup, all pretty close in this range *)

In[110]:=

(* Now working on the atmosphere part *)

In[105]:=

T = 300
Out[105]=

300

In[87]:= (* quantum length *)

In[106]:=

lQ = N[6.63 * 10^(-34) / Sqrt[2 * Pi * 29 * 1.66 * 10^(-27) * 1.381 * 10^(-23) * T]]
Out[106]=

1.87289 × 10-11

In[89]:= (* in eV *)

In[95]:= mu = 8.62 * 10^(-5) * T * Log[
2 * 2.5 * 10^(-4) * 1.0 * 10^5 / (8.62 * 10^(-5) * T) (1 / (1.381 * 10^(-23) * T) * lQ^3)]

Out[95]=

-0.506931

(* - μ is greater than 0.13 ! *)

In[107]:=

T = 100
Out[107]=

100

In[108]:=

lQ = N[6.63 * 10^(-34) / Sqrt[2 * Pi * 29 * 1.66 * 10^(-27) * 1.381 * 10^(-23) * T]]
Out[108]=

3.24395 × 10-11

In[109]:=

mu = 8.62 * 10^(-5) * T * Log[
2 * 2.5 * 10^(-4) * 1.0 * 10^5 / (8.62 * 10^(-5) * T) (1 / (1.381 * 10^(-23) * T) * lQ^3)]

Out[109]=

-0.135832

(* Oh, that is close! *)

2     7.14_sol.nb
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(3) (4 pts.) Obtaining the mass limit of white dwarf stars assuming constant density. The solution
is more or less as we did in class.
(a) You can find the dependence on G, M , and R through dimensional analysis but since we

found the exact result in class, let’s do this. With constant density,

R3 =
3M

4πρ
,

and so the gravitational potential energy of a constant density sphere is

Ug = −
∫

GM

R
dM = −G

(
4πρ

3

)1/3 ∫ M

0

M2/3dM

= −G

(
4πρ

3

)1/3
3

5
M5/3

= −3

5

GM2

R
=: − β

R
.

You can also use the constant density to eliminate M and integrate with respect to R,
with the same result. I have defined a quantity “β” (Ack! not to be confused with the
inverse temperature).

(b) The relation between N (of electrons) and the mass of the star M is M ≃ 2Nmp. This
factor of 2 depends on the composition of the star. We assume one electron is paired
with 1 neutron and 1 proton, on average, which works well for white dwarf stars that are
mostly carbon. Computing the kinetic energy of the degenerate electron gas,

Uf =
3

5
NϵF =

3h2

40me

(
M

2mp

)(
9M

8π2mpR3

)2/3

=

(
3h2

40me

)(
9

4π2

)2/3(
M

2mp

)5/3
1

R2

=:
α

R2

(1)

where I have defined a constant α.
(c) The total energy Utot = Uf + Ug looks something like this
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We can obtain the equilibrium radius R∗ by differentiation

dU

dR
= 0 =⇒ β

R2
∗
− 2

α

R3
∗
= 0 or R∗ =

2α

β

With the constants inserted this is approximately

R∗ ≃ 0.03
h2

Gmem
5/3
p M1/3

(2)

which decreases with increasing mass.
(d) For a one solar mass star, R∗ ≃ 7200 km. The (constant) density is

ρ∗ =
M

4π
3 R3

∗
≃ 1.3× 109 kg/m

3

which is about a million times larger than the density of water.
(e) With V = 4πR3/3 and N = M/(2mP ) the Fermi energy works out to be

ϵF =

(
h2

8me

)(
3N

πV

)2/3

=

(
h2

8me

)(
9M

8π2mpR3

)2/3

≃ 1.9× 105 eV = 0.19 MeV = ϵ⊙

While the Fermi temperature is TF = ϵF /k ≃ 2.3× 109 K. White dwarf stars are actually
at ∼ 104−105 K so the thermal energy is lower than this and thus we were fine neglecting
this thermal energy in the computation. (!)

(f) Now the delicate part. How did we determine the onset of instability? When the star goes
relativistic! The energy for an (ultra-)relativistic degenerate electron is

E ≃ pc =
hnc

2L

by the quantum p → hn/2L. (You might wonder how it is that we can use the same quan-
tization for momenta - the Schrödinger equation is not relativistic - but the quantization
of momenta is preserved.) Thus the total energy is

Uf rel = ⟨E⟩ = 2

∫ π/2

0

dφ

∫ π/2

0

sin θdθ

∫ nmax

0

n2

(
hnc

2L

)
dn

=
3

4
NϵF =

3

8

(
M

2mp

)4/3(
3

4
3π

2R3

)1/3

=:
αrel

R

(3)

Ah so! Now the energy of the electron gas scales with 1/R - which is the same radial
scaling as the gravitational energy. Without the 1/R2 of the non-relativistic case, the star
cannot be stable and will either expand or contract. To understand when this occurs
we need to see when the electrons are relativistic. This occurs when the average kinetic
energy is about the same as the rest energy,

ϵ = 0.6ϵF ≃ mec
2 ≃ 0.511 MeV.

If we look back at equations (3) and (1), we see that Uf scales with mass to some power

(M4/3 and M5/3, respectively). Thus the electrons become increasingly relativistic with
increasing mass. The average electron energy scales with ϵF so using “∼” to indicate how
the quantity scales with mass,

ϵF ∼
(
N

V

)2/3

∼ M2/3

R2
∗
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where in the second step I have used the linear relation between particle number and mass
and have used V ∼ R3. But from equation (2) the equilibrium radius depends on the
mass of the star through M−1/3. So

ϵF ∼ M2/3

R2
∗

∼ M4/3

and the average energy also scales with mass to the 4/3. With this mass scaling we can
use the ratio of the average energies in the relativistic and solar mass cases to derive up a
mass limit. The system will go relativistic when

ϵrel
ϵ⊙

=
0.511

(0.6)(0.19)
≃ 4.48 =

(
Mrel

M⊙

)4/3

which becomes

Mrel ≃ 3.1M⊙,

or about 5.8 × 1030 kg. Incidentally the actual white dwarf star mass limit - called the
Chandrasekhar mass limit - is about 1.4 solar masses. The difference comes from the
assumption of a constant density and neglecting relativistic effects.
For fun, I have posted a paper on the course website about computing this mass including
possible quantum gravity corrections to special relativity.

(4) These integrals,

In =

∫ ∞

−∞

xnex

(ex + 1)2
dx

are In = 1, 0, π2/3 for n = 0, 1, 2, and 3, respectively. Here’s a clip from a notebook:

You can read more about these integrals in Appendix B.

(5) Modeling the system as a gas:
(a) Starting with the Fermi energy and keeping in mind for the given molar volume N/V =

NA/37 cm3,

ϵF =

(
h2

8m

)(
3N

πV

)2/3

≃ 4.3× 10−4 eV

which yields a Fermi temperature of TF = ϵF /k ≃ 5.0 K.
(b) At low temperatures the heat capacity is given by (7.48),

CV =
πNkT

2TF
≃ (1.0 K−1)NkT,

which has the correct linear dependence but is of by 2.8 relative to the experimental data.
(Not bad for a gas approximation!)

(c) Now using the experimental result to compute the entropy of the liquid

Sl =

∫ T

0

CV

T
dT = 2.8NkT =⇒ S/NK = 2.8T.



7

Meanwhile for a solid at low temperatures, just above T = 0 (S = 0 at T = 0), the entropy
Ss = k lnΩs should be

Ss

Nk
= ln 2,

since 3He has a degeneracy of 2 at low temperatures and so Ωs = 2N . Here’s the sketch
of these two entropies

I’ve added a guess for the solid curve from absolute zero to just above. The temperature
T∗ is determined by the intersection

2.8T∗ = ln 2 =⇒ T∗ =
1

4
which is not far form the experimental value of 0.3 given in figure 5.13.

With the Clausius-Clapeyron relation,

dP

dT
=

Sl − Ss

∆V
this also shows why the phase boundary curve has negative slope below T∗ and positive
slope above T∗, since Sl − Ss is negative below and positive above T∗.


