
Stat Mech (PHYS 370) Guide 12 Solutions Fall 2024 v1.0

Problems:

(1) Setting the derivative of the Planck spectrum to 0 gives

3(ex − 1)− xex = 0

where x = ϵβ. This is a transcendental equation which may be solved with mathematica’s
FindRoot command. The result is approximately 2.82.

(2) The wavelength is λ = hc/ϵ which means that

dϵ = −hc

λ2
dλ

So that the energy density becomes

U

V
= 8πhc

∫ ∞

0

1

λ5

1

ehcβ/λ − 1
dλ.

The spectrum is the integrand which looks like
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in terms of a dimensionless wavelength λkT/hc. Clearly the peak is a wee bit above 0.2. Using
FindRoot I find that it is at 0.2014 so

λpeak = (.2014)
hc

kT
=

hc

4.97kT
.

This is not the same as what one would think from the peak energy. This is because the
relationship between energy and wavelength is non-linear.

(3) The Planck curve is “the intensity versus the product of the wavelength and temperature”.
Well, the intensity is proportional to the energy density so the spectrum should be proportional
to

I ∝ u(ϵ) ∝ ϵ3

eβϵ − 1
=

(
hc

λ

)3
1

ehc/(kTλ) − 1

where in the second equality I expressed the energy ϵ in terms of wavelength ϵ = hc/λ. The
exponent contains “the product of the wavelength and temperature”. So we have a Tλ and we
can plot the spectrum vs. x = kTλ/(hc) giving,
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I have rescaled x a couple of times - thus changing T from 1 K (blue) to 10 K (organge) to 100
K (green) - to show that the shape is invariant.

Plotting via the frequency, so now “x = hc/(kTλ)”, as shown in the figure gives

Again, the shape doesn’t change as the temperature changes.

(4) Properties of sunlight
(a) At the sun’s surface we have an energy density of

U

V
=

8π5(kT )4

15(hc)3
≃ 0.855 J/m
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so one cubic meter will contain 0.855 J.
(b) The mathematica notebook is (with a bonus of a extra plot)



In [ ] := (* 7.38 Plotting the spectra at the two temperatures,
the horizonal axis is in eV *)

In [ ] := Plot[{ϵ^3 / (Exp[ϵ / (3000 * 8.62 * 10^(-5))] - 1),
ϵ^3 / (Exp[ϵ / (6000 * 8.62 * 10^(-5))] - 1)},

{ϵ, 0, 5}, AxesLabel → {HoldForm[eV], HoldForm[u (ϵ)]}]

Out[ ]=
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u ϵ

In [ ] := (* 7.43 and now on the visible part ...*)

In [ ] := Plot[ϵ^3 / (Exp[ϵ / (5800 * 8.62 * 10^(-5))] - 1), {ϵ, 0, 5}]
Out[ ]=

1 2 3 4 5
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In [ ] := (* finding the area in the visible *)

In [ ] := NIntegrate[ϵ^3 / (Exp[ϵ / (5800 * 8.62 * 10^(-5))] - 1), {ϵ, 1.77, 3.1}]
Out[ ]=

0.14943

In [ ] := NIntegrate[ϵ^3 / (Exp[ϵ / (5800 * 8.62 * 10^(-5))] - 1), {ϵ, 0, Infinity}]
Out[ ]=

0.405741

In [ ] := N[.149429962601130 / 0.405741]
Out[ ]=

0.368289



In [ ] := (* That's it! About 37% of sunlight is in the visible *)
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(c) As computed in the file, about 37% of the light is in the visible, between 1.8 eV and 3.1
eV.

(5) Black holes!
(a) For the ‘typical’ wavelength I’ll just use the peak wavelength that we just found in 7.39.

λpeak = (0.2014)
hc

kTBH
=

(0.2014)(hc)

k
· 16π

2GM

hc3
≃ 15.9

2GM

c2
.

The last fraction is the Schwarschild radius of the horizon, about 3 km for a solar mass
black hole. So the peak wavelength is about 47 km, about 16 times the radius (!). This
wavelength is what would be measured far from the black hole. Due to gravitational
redshift the wavelength near the black hole would be much shorter.

(b) The power radiating from the black hole is

P = σAT 4 ≃ 9× 10−31 W.

This is really small! The black hole might radiate a low energy photon every few seconds.
(c) The power in radiation can only come from the mass so

d
(
Mc2

)
dt

= −σAT 4 or
dM

dt
= − α

M2

where α = hc6/(30720π2G2). Integrating this separable differential equation∫ 0

Mo

M2dM = −α

∫ t

o

dt =⇒ t =
M3

o

3α

which is the lifetime of a black hole.
(d) For a solar mass black hole the life time works out to be t = 7×1074 s which is almost 1060

times the age of the universe! Solar mass black holes are not going to evaporate anytime
soon.
This long life time is now used to build models of cold dark matter. Maybe the dark
matter component of the universe is composed from black holes that formed in the first
moments after the big bang. They would still be around today.

(e) Working backward from the age of the universe of 13.7 billion years the mass of a primordial
black hole that is evaporating now

Mo = (3αt)(1/3) ≃ 1× 1011 kg

which is tiny as compared to a planet. Radiation from a black hole this size would be

λpeak ≃ 15.9
2GM

c2
≃ 2.4× 10−15 m.

This is really short and corresponds to a hard gamma ray. This is the peak wavelength of
radiation that appears right after the black hole is formed. The radiation just gets more
intense (and diverse) from there.

(6) Phase changes of bubbles:
(a) Ignoring surface tension to start, the Gibbs free energy should be a sum of the two phases,

liquid l and vapor g, so

G = µlNl + µgNg =
4πµlr

3

3vl
+ µgNg

where

Nl =
4πr3

3vl
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For later it is handy to express the Gibbs free energy in terms of the total number of
particles N = Nl +Ng,

G = µgN +
4πr3

3vl
(µl − µg) .

(b) The surface tension contributes to G via σA so the Gibbs free energy is now

G = µgN +
4πr3

3vl
(µl − µg) + 4πr2σ.

(c) For µl > µg we have both positive terms so G just grows with r,

For µl < µg the r3 term now dominates at large r and we get a bit of a bump

So we get an equilibrium in the µl < µg case but it is not stable. That’s ok maybe it runs
away and condensation occurs! I’ll call the equilibrium radius r∗.

(d) Finding r∗,

0 =
dG

dr
=

4πr2

vl
(µl − µg) + 8πrσ =⇒ r∗ =

2vlσ

µg − µl
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Ok, now for the difference in chemical potentials. Equation (5.40) gives us

µg = µo + kT ln(Pg/Po)

where the “o” ’s are some reference state. Let’s use the reference to be the vapor pressure
of the surface liquid (when its flat). In this case the ratio of the pressures is the relative
humidity (RH) and µo = µl. The relative humidity more of less maxes out at 100% or 1
but we’ll consider higher RH’s. Now

µg − µl = kT ln(RH) and r∗ =
2vlσ

kT ln(RH)
.

Great. We are nearing something we can compute. Switching to a per mole basis the
fraction

2vlσ

kT
=

2Vlσ

RT
where Vl is the molar volume of water, about 18 mL. Therefore at 20◦C ,

2Vlσ

RT
=

2 · 18× 10−6m3 · 0.073J/m2

8.31J/K · 293K
≃ 1.08 nm

This sets the scale. The radius is

r∗ ≃ 1.08 nm

ln(RH)

so this diverges for RH = 1 and then rapidly shrinks as the RH increases. So at least with
assumptions of this model, small droplets do not form simply by spontaneous nucleation.
It lokks like we need a center - e.g. dust to make this happen.


