
Stat Mech (PHYS 370) Guide 13 Fall 2024 v2.0

Classes of problems for the final exam: The final will be cumulative but there will be an
emphasis on material from Chapters 6 and 7.

• Thermodynamics
– Macro vs. microscopic descriptions and quantities including entropy
– Fundamental understanding of temperature
– Equipartition theorem
– The 3 laws
– Examples including ideal gas law, BOE calculation of climate change, black holes,
– Thermodynamic potentials

• Methods of stat mech: Energy - partition function - average energy - heat capacity - compare
to data

• Counting
• Results of quantum statistics:

– Distributions: Fermi-Dirac, Boltzmann, Bose-Einstein
– Degenerate Fermi gas at T = 0 and above (Sommerfeld expansion)
– White dwarfs and neutron stars
– Blackbody radiation
– Debye model

• Phase transitions
• Mathematical methods: manipulating sums, fancy integration, Stirling’s approximation, use of
mathematica to compute partition functions, etc.

• Black Holes as an example of these methods

Problems: Possible final questions:

(1) Heating water and doing work You heat 1.2 kg of water in an electrical kettle for hot
chocolate at the physics holiday party from 19◦C to 99◦C at atmospheric pressure. Find:
(a) The change in the energy of the water.
(b) The change in entropy of the water.
(c) The rough factor Ω99◦C/Ω19◦C by which the multiplicity of et water has increased. Express

your result as ea number.
(d) The maximum mechanical work that could be achieved by using the water during heating

process to run a engine that runs with a cold reservoir at 19◦C .

(2) Temperature of Sun Sunlight arrives on the top of Earth’s atmosphere at an intensity of
about 1360 W/m2. Find the temperature of the Sun. The radius of the Sun is about 6.96×105

km and the average Earth-Sun distance is about 1.5× 108 km.

(3) Heat engines
(a) Sketch a heat engine and label W , Qh, Qc.
(b) Only using the first law of thermodynamics explain why perfect heat engines, with effi-

ciencies of 1, might exist.
(c) Explain why perfect heat engines do not exist using the second law of thermodynamics.
(d) One familiar heat engine uses a gas comprised of a mixture of air and vaporized fuel.

(i) Here’s the cycle, at least approximately,
1
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At point 1 in the sketch of the cycle a (compressed) volume V1 of this mixture is
ignited yielding rapid increase in pressure and the system arrives at state 2. The gas
expands adiabatically from 2 to 3, to volume V3, typically by pushing on a piston.
The hot gas is exhausted from 3 to 4. New fuel is added and the new mixture is
compressed adiabatically back to state 1. Heat is added during the combustion.
Let’s call it QB , which replaces the traditional “QH” of heat engine fame. In what
part of the cycle is work done? In what part of the cycle does the heat QC leave
the system?

(ii) Using the equipartition theorem and ideal gas law, find QB and QC in terms of
pressures and volumes.

(iii) Express the efficiency in terms of V1, V3, and γ, the adiabatic exponent.
(iv) Find the maximum efficiency for air and compression ratio 0f 8. Discuss how to

increase efficiency of combustion engines.

(4) Radiating physicists In the physics carol “Energy” we sing, “There is still a light that shines
from me, Thermal radiation, Energy”. (Think Beetles if you haven’t heard this one before.)
(a) Estimate the power of radiation coming from you in empty space, neglecting insulation

such as sweaters. Humans are not very reflective and essential not at all reflective in the
infra-red so our emissivity is essentially equal to 1.

(b) In everyday non-physically active conditions we actually radiate at about 70 W. What
accounts for the discrepancy between this power and the result you just found?

(c) You invite 12 physics majors over on a cool fall evening when the outside temperature is
45◦F ≃ 7.2◦C . Assume you have an efficient home with a surface area of 4340 ft2 ≃ 403
m2, an average whole-house R-value of 4.0 m2K/ W (≃ 23 in US units), and an initial
interior temperature of 68◦F ≃ 20◦C . Can you heat the house with your guests? Assume
that the only relevant heat loss is through conduction.

(d) If you only heat your house with guests when the outside temperature is -5◦C , what is
the equilibrium interior temperature in ◦C ?

(5) Harmonic oscillators Consider a collection of a large number N of identical, non-interacting
quantum oscillators, each one of which has an energy spectrum of

En = ℏω
(
n+

1

2

)
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where n = 0, 1, 2, . . . .
(a) Find the partition function for a single oscillator.
(b) Find the log of the partition function for N indistinguishable oscillators. Let’s assume

that the density is such that we don’t need to worry about quantum statistics.
(c) Find the average energy for the system.
(d) Find the heat capacity C for the system. Plot C/Nk vs. kT/ϵ, where ϵ = ℏω.
(e) Find the heat capacity in the limit of high, ϵ/kT ≪ 1, and low, ϵ/kT ≫ 1 temperatures.
(f) Explain why the high temperature result is correct.
(g) Explain why the low temperature result is incorrect.

(6) An old metaphor In his ‘first-half biography’ of Einstein, Einstein in Love, Dennis Overbye
writes, “The first law of thermodynamics stated that energy was neither created nor destroyed:
You couldn’t win. The second law said you couldn’t even break even. (There was, in time, a
third law that said in effect that you couldn’t get out of the game.)”1 Is this correct? Why or
why not? Refer to more precise formulations in your discussion.

(7) Changes in “atmospheric rivers” Recent rainfall events in the West, like this one from
2023, have had a higher amount of moisture.

NASA Earth Observatory images by Lauren Dauphin, using GEOS-5 data

One reason is derived from the Clausius-Clapeyron relation. As we saw, the slope of the phase
boundary between gas a liquid phases was given by the Clausius-Clapeyron relation

dP

dT
=

QL

T∆V
,

where QL is the total latent heat and ∆V = Vg − Vl, the difference in volumes between the
phases. For water the latent heat of vaporization is QL = 42 kJ/mol at 1 atm.
(a) Under what conditions is the change in volume for one mole approximated as

∆V ≃ RT

P
?

Show this and derive the new relation for the slope,

dP

dT
=

QLP

RT 2
,

for one mole.

1This turn of phrase as been used for some time so it is not original with Overbye.
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(b) Integrate the relation to obtain a relation for the pressure P . This shows how the satu-
ration vapor pressure, the maximum pressure of vapor before it condenses, changes with
temperature.

(c) Explain why “warm air can hold more water vapor”2

(d) Show that “every extra degree Celsius of warming, air can hold [6]% more water. It would
seem to suggest that with 2◦C of global warming, the world could expect [12]% more
moisture in the air.” [D. Adam]

(e) Of course, it is not so simple and depends on whether there enough water to evaporate and
whether rain drops form. When a weather forms over an ocean the effect can be strong,
such as in the “atmospheric river” that arrived in the West not long ago.

(8) An oscillator oops! In our last week we saw that Einstein made a mistake - the heat capacity
of materials such as gold do not follow the C ∝ e−βϵ prediction of the model. We can fix this!

All matter is “floppy”. We can think about the bonds between atoms as a bit like springs so
perhaps it is not surprising that the oscillations in the structure of the material - the standing
waves - are just like the modes we studied before, although instead of the waves traveling at
the speed of light, they travel at the speed of sound in the material. In addition, on the atomic
scale materials have some discrete lattice structure so that the wavelengths cannot become
arbitrarily short, λ > ℓ where ℓ is the spacing between atoms.
(a) Show that in a simple box of length L the expected energies are

E(s) =
hs cs
2L

,

where cs is the material’s speed of sound and s is an integer. We’ll express this energy
as hfi where the frequency fi = sics/2L. The maximum such frequency is achieved when
the wavelength is on the order of the lattice spacing in the material.

(b) For N oscillators in three dimensions, the partition function can be written as a product
of sums over the occupation numbers of the different oscillators

Z =

∞∑
n1=0

· · ·
∞∑

n3N=0

e−βh
∑3N

i=1 fini .

Show that the log of the partition function can be written as

lnZ = −
3N∑
i=1

ln
(
1− e−βhfi

)
.

In the next parts we’ll think through this sum over oscillators i.
(c) In three dimensions assume that the material is in a cube of volume V = L3, explain (or

show) that the form of the frequency in three dimensions is

fi =
cs
2L

si where si =
√
s2xi

+ s2yi
+ s2zi

is the magnitude or ‘radius’ of the harmonic number in 3D. Clearly

fmax =
cs
2L

smax

is the highest frequency possible. (smax is fixed by the latticing spacing, smax = L/ℓ.) In
addition the (minimum) spacing between frequencies is

∆fi =
cs
2L

∆si =
cs
2L

2D. Adam, PNAS 120 (2023) e2304077120.
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since the minimum spacing between modes is ∆si = 1. By summing over all the allowed
modes use these expressions to show that

4

3

πf3
maxV

c3s
= N or f3

max =
3Nc3s
4πV

.

(d) If the number of particles is very large the frequencies will be close to each other and we
should be able to replace the sum in part (b) with an integral over f in the 1/8 of a sphere
in (sx, sy, sz) space so that (after a bit of work that you don’t need to do)

lnZ = −12πV

c3s

∫ fmax

0

f2 ln
(
1− e−βhf

)
df.

Find the energy U for this partition function. Your result will be in terms of an integral.
(e) Let x = βhf and change variables in the integral. Find the energy U for cold temperatures

when you can send xmax → ∞. You’ll find the integral∫ ∞

o

x3

ex − 1
dx =

π4

15

helpful.
(f) Find the heat capacity for this corrected model and compare it to the data for gold in this

plot of (molar heat capacity)/T vs. T 2.3

The speed of sound in gold is 3240 m/s and the volume of 1 mole of gold is 1.0×10−5 m3.
(g) Find and explain the non-vanishing y-intercept in the above plot.

(9) Quantum counting Consider a system of two identical particles that occupy two possible
energy levels

En = nϵ with n = 0, 1

3From Corak et. al., Phys. Rev. 98 (1955) 1699
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For each of the following (i) enumerate the possible configurations for a system in equilibrium
at T , (ii) determine the partition function, and (iii) the energy:

• The particles are spin-1/2 fermions.
• The particles are spin-0 bosons.
• The particles are distinguishable particles satisfying Boltzmann statistics.
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1. Handy Relations

NA = 6.02× 1023

k = 1.38× 10−23 J/K = 8.62× 10−5 eV/K

R = 8.32× J/(mol K)

h = 6.63× 10−34 J s = 4.14× 10−15 eV s

G = 6.67× 10−11 m3

kg s2

T (in K) = T (in ◦C ) + 273

1 atm = 1.01 bar = 1.01× 105 Pa

kTroom ≈ 1

40
eV

c = 4.186J/g K for water

kT =
1

β

σ =
2π5k4

15h3c2
≃ 5.67× 10−8 W

m2K4(
N

n

)
=

N !

n! (N − n)!

Ω(N, q) =

(
q +N − 1

q

)
for Einstein solid

N ! ≈ NNe−N
√
2πN

f(x) = f(0) +
df

dx

∣∣∣∣
x=0

x+
1

2

d2f

dx2

∣∣∣∣
x=0

x2 +
1

6

d3f

dx3

∣∣∣∣
x=0

x3 + . . .

1 + x+ x2 + x3 + . . . =
1

1− x

1 + x+ x2 + · · ·+ xN =
1− xN+1

1− x
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f(x) =
1√
2πσ2

e−(x−a)2/(2σ2)

cosh(x) =
ex + e−x

2
; sinh(x) =

ex − e−x

2
PV = NkT

W = −
∫

PdV

V γP = constant and V T f/2 = constant’ along adiabatics (Q = 0) processes γ =
f + 2

f

Uthermal = N f
1

2
kT

e =
benefit

cost
≤ 1− Tc

Th
for heat engines

COP =
benefit

cost
≤ Tc

Th − Tc
for heat pumps

∆U = Q+W

CV =

(
∂U

∂T

)
V

Q = cm∆T, and Q = mL

dQ

dt
= −ktA

∆T

∆x
= −A

R
∆T

H = U + PV

F = U − TS = −kT lnZ

G = U + PV − TS = Nµ

S = k lnΩ

∆S =
dQ

T
; ∆S =

∫
CV

T
dT

1

T
=

(
∂S

∂U

)
N,V

P = T

(
∂S

∂V

)
N,U

µ = −T

(
∂S

∂N

)
V,U

dP

dT
=

L

T∆V
dU = TdS − PdV + µdN

Z =
∑
s

e−βE(s)

Z =
∑
s

e−β(E(s)−µN(s))

P (s) =
e−βE(s)

Z

U = −∂ lnZ

∂β
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U

V
=

8π5(kT )4

15(hc)3

u(ϵ) =
8π

(hc)3
ϵ3

eβϵ − 1

P = eσAT 4

ϵpeak = 2.82kT, λpeak = 0.201
hc

kT

ϵF =
h2

8m

(
3N

πV

)2/3

and TF =
ϵF
k

TD =
hcs
2k

(
6N

πV

)1/3

RS =
2GM

c2

SBH =
kc3AH

4Gh
with ABH = 4πR2

S =
16πG2

c4
M2

TBH =
hc3

16π2kG

1

M
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