
PHYS 370 Guide 1 Solutions Fall 2024 v1.0

Solutions:

(1) Here’s a sketch of the relation:

It is clear that we can we can obtain a linear relation between temperature in Fahrenheit,
T (◦F ), from temperature in Celsius T (◦C). Reading from the sketch,

T (◦F ) = αT (◦C) + b

for some slope α and intercept b. From the sketch, b = 32.
To find α, let’s use the boiling point of water at 100◦C and 212◦F ,

212 = α(100) + 32 =⇒ α =
212− 32

100
= 1.8 =

9

5
.

so

T (◦F ) =
9

5
T (◦C) + 32.

(For fun you could re-run the same argument to obtain

T (◦C) =
5

9
[T (◦F )− 32]

Or you could just invert the first version of course.)
Nice to recover these familiar relations!

(2) Temps in kelvin
(a) I recall 98.6◦F as healthy at rest. Using the above formula and adding 273 gives 5

9 (98.6−
32) + 273 = 310 K.

(b) 373 K
(c) The hottest I recall is 110◦F in Phoenix. This is 5

9 (110− 32) + 273 ≃ 416 K.
(d) Adding another sig fig, 273.15− 268.9 ≃ 4.2 K

(3) In recent years this has been a IR thermometer for me. In principle this is instantaneous due
to the radiation spectrum of objects at any (non-vanishing) temperature. (We’ll see why in
Chapter 7!) Long ago when I used mercury thermometers, the glass and mercury had to reach
equilibrium with my mouth. Seemed to take forever but the relaxation time was probably only
a couple of minutes.
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(4) Two objects at the same temperature, such as a metal slide and powdery snow on a cold
winter morning, feel quite different. Our nervous system is set to record the heat Q not the
temperature T . This is a better idea since excessive heat flow can harm us unless we break
contact. Both heat capacity, conductivity, and quality of contact help determine how “hot” or
“cold” an object feels.

(5) Thermal expansion
(a) For a 1 km steel bridge the difference in length between a cold winter day at -20◦F ≃

−29◦Cand a hot summer day at 100◦F ≃ 38◦Cwould be

∆L = αL∆T ≃ 73 cm.

I’d leave a bit more than that if possible - 80 cm? The errors mentioned in the problem
mean that the engineers were designing the rails and airports for a more limited temper-
ature range - and probably did not round up like I just did. Of course, steel bridges are
not built from 1 km steel beams. Instead they are much shorter, with expansion joints
built in, which we often feel as a bump as we drive over them.

(b) The differing thermal expansion coefficients cause the bimetalic strips to curve somewhat
like this

(6) A mole has ∼ 1023 particles and has a mass of about a gram. The density of air is 1.23 kg/m3.
In a 10 m × 10 m × 1 m = 102 m3 classroom there is about

m ≃ 1.23102 ≃ 100 kg

of air. Thus,

N ≃ 123 · 103 · 1023 ≃ 1028.

Alternatively,

N
PV

kT
=

(105 Pa)(102 m2)

1.38× 10−23 J/K)(293K)
≃ 1027,

roughly the same.

(7) The mass of moles
(a) Water is H2O so that’s about 2+16 = 18 nucleons so a mole is about 18 g. The numbers

are from the periodic table.
(b) As for N2, it is 2× 14 = 28 nucleons so a mole is about 28 g.
(c) Lead is Pb with 207 nucleons so one mole is 207 g.
(d) SiO2 has 28 + 2× 16 = 60 nucleons so one mole is 60 g.
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(8) The average molar mass of air (by volume) is the the sum of the contributions of nitrogen (28
g for 1 mole) , oxygen (32 g), and argon (40 g) (all molar masses)

m̄air = (0.78)(28 g) + (0.21)(32 g) + (0.01)(40 g) ≃ 28.96 g/mol ≃ 2.9× 10−2 kg/mol

BTW, where’s CO2 is ∼400 parts per million or 0.04%.

(9) We started this one in class. Let’s consider a slab of air between heights z and z + dz:

The sketch sets some of the notation and the FBD gives

P (z)A− P (z + dz)A−mg = 0.

For a stationary slab of air with horizontal area A. Usingm = ρV and doing a Taylor expansion
on P (z + dz) gives

P (z)A− P (z)A− ∂P

∂z
dz − ρAdzg = 0 or

∂P

∂z
= −ρg,

after cancelation. The final equation looks nice and simple but not what we want since the
differential equation has pressure on one side and density on the other. This can be fixed since

ρ =
m

V
=

m̄airN

V
=

m̄airP

kT
,

using the ideal gas law. Thus,
∂P

∂z
= −m̄airg

kT
P

This is great: P’s on both sides and since we are assuming T is constant, the factor of the right
hand side is just a constant. So integrating gives∫ P (z)

P (0)

dP

P
= −m̄airg

kT

∫ z

0

dz =⇒ ln

(
P (z)

P (0)

)
= −m̄airg

kT
z.

Or
P (z) = P (0) e−

m̄airg

kT z

as desired. For conditions, P (0) = 1 atm and T = 285 K at sea level, the constant is

m̄airg

RT
≃ 1.2× 10−4 m−1 ≃ (8300 m)

−1
.

Density follows the same exponential fall-off since, as I noted above,

ρ =
m̄air

kT
P,

so the density and pressure are directly proportional and so

ρ(z) = ρ(0) e−
m̄airg

kT z.

Using this model the given sites have pressures of

Hamilton: P ≃ 0.97 atm ≃ 9.7× 104 Pa

Mt. Marcy: P ≃ 0.82 atm ≃ 8.2× 104 Pa

Schilthorn: P ≃ 0.70 atm ≃ 7× 104 Pa
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(10) It is helpful to sketch the chemical form of this. As described in the problem the four hydrogens
sit on the vertices of a tetrahedron and the carbon sits in the middle. Here’s a sketch:

It all looks fairly floppy so here’s what I would expect in terms of degrees of freedom: translation
contributes 3 and rotation of the whole thing contributes 3. Schroeder tells us that each
vibrational mode contributes 2 degrees of freedom. So vibrationally the degrees of freedom
have 2× 4 = 8-ish for each of those bonds if there is enough energy to excite these degrees of
freedom so f = 3 + 3 + 8 would be 14.

Alternatively, if the molecule looks completely floppy then each atom can move indepen-
dently and we could just say that it has degrees of freedom equal to f = 3N = 15 for N = 5
atoms.

The actual numerical answer is not important at this point, the reasoning is. Of course
there is a correct answer. It is 15.


