
PHYS 370 Guide 2 Solutions Fall 2024 v1.0

Solutions:

(1) To find the rms speed of the nasty sounding gas we can use the molar masses M of the gases
of the two isotopes;

vrms =

√
3kT

m

√
3RT

M
.

For U-235,

M235 ≃ 235 + 6 · 19 ≃ 349g, and for U-238 M238 = 352 g.

So the speed at room temperature is about vrms ≃ 146 m/s. These masses are not all that
different. The ratio of speeds is √

352

349
≃ 1.0043

Yikes! This is close. But, surprisingly, it is a frequently used technique!
To separate these isotopes using a centrifuge we could fill it will UF6 gas (containing a

mixture of U-235 and U-238). Once the gas is spinning (fast!) we could draw out the gas
from the center of the centrifuge. This gas will be the less-dense UF6 with a (slightly) higher
percentage of U-235. We could then send this gas onto another centrifuge, and another , and
another ... until the gas is more refined. Clearly, this is a large industrial operation.

(2) For an “ideal diatomic” molecule there are 3 translational degrees of freedom and 2 rotational
degrees of freedom (recall the quantum reduction), giving f = 5. (If you chose a classical model
with degrees of freedom of f = 3 + 3 = 6 for translations and rotations, no worries but now
you know for the future!)
(a) For process A there is no change in volume so there is no work done. Hence by the first

law, ∆U = Q. By the ideal gas law we know that

P1V1 = NkT1 and P2V1 = NkT2.

Solving for the change in temperature

∆TA = T2 − T1 =

(
V1

Nk

)
(P2 − P1) .

Now, from the equipartition theorem the change in energy for this process is

∆UA =
5

2
Nk∆TA =

5

2
V1 (P2 − P1) .

Since WA = 0 we have

∆UA = QA =
5

2
V1 (P2 − P1) .

In summary,

For process A ∆UA =
5

2
V1 (P2 − P1) , QA =

5

2
V1 (P2 − P1) , and WA = 0.

For process B the pressure stays the same but volume changes so we have some work as
well as Q. The work is

WB −−P∆V = −P2 (V2 − V1) .
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I’ll call the temperature on the upper right to be T3. So P2V2 = NkT3. Then

∆U =
5

2
kN (T3 − T2) =

5

2
P2 (V2 − V1) .

Hence,

Q = ∆U −W =
7

2
P2 (V2 − V1) .

In summary,

For B ∆UB =
5

2
P2 (V2 − V1) , QB =

7

2
P2 (V2 − V1) , and WB = −P2 (V2 − V1) .

The others processes are similar giving,

for C ∆UC = −5

2
P2 (V2 − V1) , QC = −5

2
P2 (V2 − V1) , and WC = 0.

and

for D ∆UD = −5

2
P1 (V2 − V1) , QD = −7

2
P1 (V2 − V1) , and WD = P1 (V2 − V1) .

(If you had f = 6 then the numerical prefactors are different, e.g. 5/2 → 3.)
(b) Process A is a no-work process in which the pressure increases. Then by the ideal gas law

the temperature increases; heat must flow in, sasy by heating it with a burner. Process
B is an expansion at constant pressure; a piston would move out. Work is done. The
temperature and energy increase. So heat flows into the system to maintain a constant
pressure. For process C, only the pressure changes so no work is done. Pressure decreases
and so does the temperature. The energy decreases so heat flows out of the system,
perhaps by holding it against a block of ice. Process D is a constant pressure process
again. The system contracts; work is done. Heat flows out again and temperature drops
to the original value.

(c) The net quantities are obtained by adding them up.

∆U = 0, Q = (P2 − P1) (V2 − V1) , and W = − (P2 − P1) (V2 − V1) .

Does this make sense? Well, after one cycle we are back to the same state as before so
the change in energy must vanish and it does! The other two must sum to zero, and they
do. Finally, the net work is negative so the system of gas does work on its surroundings.
This sign makes sense since the pressure when the gas is expanding (P2) is larger than the
pressure when the gas is contracting (P1). The energy to support this work comes from
the heat and so W = −Q as expected. Heat is converted to work in this cyclic process.

(3) The rising bubbles enjoy different processes: Bubble A rises so that no heat flows (Q = 0)
- “A for adiabatic”. Bubble B rises so that the temperature inside does not change; it is an
isothermal process.

Let’s assume the ideal gas law for both bubbles,

PV = NkT or V =
Nk

P
T.

Since the bubbles are identical N and the initial T are the same. As they rise P = P (z) is also
the same. Hence, the volume is controlled only by the temperature. For the adiabatic bubble
A, Q = 0 and

W = −
∫

PdV < 0 due to the expansion.

So since ∆U = W and U ∝ T then the energy and temperature in bubble A must fall.
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For bubble B the temperature is constant so the change in volume is controlled only by
the behavior of P only. Bubble B then has a higher temperature and a higher volume (the
pressures in the two bubbles are the same at any given depth).

Alternatively, you can reach the same conclusion using the results from class:

PV = const for isothermal processes, and PV γ = const. for adiabatic processes

so that

∆V = −V ∆P

γP

for adiabatic processes and

∆V = −V ∆P

P
for isothermal processes. Since γ > 1 the change in volume for bubble A will be smaller.

(4) Decreasing T and convection in the atmosphere. You could start off with ∆U = W = −P∆V
and proceed from there but I will draw on our work in class.
(a) As we saw just before I defined γ,

V T f/2 = const.

for an adiabatic process. With the ideal gas law we can re-express V in terms of T and P
in this expression, giving

1

P
T f/2+1 = const.

Differentiating this gives

−dP

P 2
T f/2+1 +

(
f

2
+ 1

)
1

P
T f/2dT = 0

Or,
dT

dP
=

2

f + 2

T

P

as desired.
(b) From the above result for dT/dz

dT =
2

f + 2

T

P
dP

which is the change in temperature under an adiabatic change to the pressure. If this
change occurs over a vertical distance dz and if forces are balanced - setting the critical
value for the onset of convection - then we can use the result from 1.16

dT =
2

f + 2

T

P

dP

dz
dz

or

dT

dz
= − 2

f + 2

�T

�P

m̄airg

k�T
�P = −2

m̄airg

k(f + 2)
= −2

M̄airg

R(f + 2)
≃ 9.8 K/km.

I have used f = 5 and M̄air = 29 g/mol. This “dry adiabatic lapse rate” works out to be
about 5.4◦F /1000 ft.

(5) Just like what we might do in an intro physics lab. Heat flows from the metal to the water in
the styrofoam cup.
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(a) Since water has c = 4.2 J/◦Cwe have

Q = mc∆T = (250 g)(4.2 J/◦Cg)(4 ◦C) = 4.2 kJ.

(b) We assume that the system is isolated so all this heat flows from the metal, Q = 4.2 kJ.
(c) Since the metal went from 100 ◦Cto 24 ◦Cthen

C =
Q

∆T
=

4.2 kJ

76 ◦C
≃ 55 J/◦C

(d) Dividing by the mass, the specific heat is c ≃ 0.55 J/ g ◦C.

(6) Partials
(a) Since y = x/z, w = xy = x2/z. Also, w = y2z.
(b) Now using w = xy(

∂w

∂x

)
y

= y =
x

z
while using w = x2/z the partial derivative

(
∂w

∂x

)
z

=
2x

z

So these are not equal.
(c) Completing the set:(

∂w

∂y

)
x

= x = yz and

(
∂w

∂y

)
z

= 2yz

and (
∂w

∂z

)
x

= −x2

z2
and

(
∂w

∂z

)
y

= y2 =
x2

z2
.

So again these are not equivalent.

(7) A spring snow melt Fermi problem. Your estimates are likely to be a bit different than mine
but we should have results at the same order of magnitude. Schoeder sets this up so that we
looking at melting a 1 m3 block of ice. This has a mass of about 917 kg. Since the latent heat
of ice is 333 J/g this requires about 3× 108 J to melt. Let’s assume that the air temperature
is just above freezing. If the sun shines about 8 hours a day then we have

0.1 · 10
3 J

s
· 3600 s

hour
· 8 hours ≃ 2.9× 106 J

of energy heating the 1 m2 face of the block per day. I’ve taken 10% since the problem states
that 90% is reflected. Dividing these two one gets about 100 days or about 15 weeks.

(8) Combustion and enthalpies all for the burning of natural gas,

CH4 + 2O2 → CO2 + 2H2O

(a) The book gives enthalpies of formation on pages 404-5, that is

C + 2H2 → CH4 , to be ∆Hf = −74.81 kJ (for a mole).

Breaking up the methane then gives = 74.81 kJ.
(b) The change in enthalpy to form one mole of CO2 is -393.51 kJ. Similarly the change in

enthalpy to form two moles of H2O is -483.64 kJ. (The total is about -877 kJ.)
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(c) We can compute the enthalpy in two steps, first break up the reactants, CH4 → C+2H2,
and then form the products

C + 2H2 +
3

2
O2 → CO2 + 2H2O

so that
∆H = 74.81− 393.51− 483.64 ≃ −802 kJ

per mole of methane. Even though the reaction doesn’t follow these steps, since the
products and reactants are the same, the net change in enthalpy is the same.

(d) In a constant-pressure reaction when no other work is done, the decrease in enthalpy is
all heat; Q = 802 kJ.

(e) In this constant pressure process the reaction starts with three moles of gas and ends with
three moles of gas. So there is essentially no change in volume. With no change in volume
the change in energy is the change in enthalpy, ∆U = −802 kJ.
On the other hand if the water ends in a liquid state then the situation changes. The
enthalpy of formation of (two moles of) liquid water is now -571.66 kJ, more than before.
The net change is enthalpy is now ∆H = −890 kJ. But in addition we end up with only
one mole of gas. From the ideal gas law

∆V =
RT

P
∆n = −2RT

P
and

∆U = ∆H − P∆V = ∆H + 2RT = −890 + 5 ≃ −885 kJ

at 298 K. This means that the heat given off is a bit larger than the energy lost by the
system. This is due to the compression of the system by the atmosphere.

(f) To produce this reaction we need a mole of methane (16 g) and two moles of oxygen (64
g) for a total of 80 g. If the sun were comprised of these molecules in this ratio then it
would have 2 × 1030/0.08 = 2.5 × 1031 moles of methane. This would produce about 2.5
×1031 × 8 × 105 ≃ 2 × 1037 J of heat. At a rate of 4 × 1026 W, the sun would only last
5× 1010 ≃ 1600 yrs! Methane combustion is certainly not the reaction that fuels the sun!

(g) For every mole of methane we obtain a mole of CO2. We need the volume of a mole

V =
RT

P
≃ 0.025 m3 ≃ 0.88 ft3

under standard conditions. We also need the molar mass of CO2 - it is 12 g for C and 32
g for O2 for a total of 44 g. Hence,

mCO2
= 24× 106 ft3 · 1 mol CO2

0.88 ft3
· 44g

1 mol CO2
≃ 1.2× 106 kg = 1.2 Mton CO2

(9) A start on modeling heat flow in homes, here just conduction through still air. For 3.5” of still
air with thermal conductivity 0.026 W/mK we have

R =
∆x

kt
≃ 3.4 m2 K/W

The units in the US are 5.67 times larger so this air insulation would have an R-value of 19.
(If you’d like to know the US unit is ◦F ft2 hr/Btu.). This is much bigger than the R-values
mentioned in the text. The difference is due to convection: the batting in the insulation
prevents some convection but not all.

(10) Using the Fourier heat conduction law we can compute the energy loss through walls, roof (or
ceiling), windows, and floor.
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(a) The heat flow or loss rates are

dQ

dt
= −A

R
∆T

for areas A, R-value R, and temperature difference ∆T . I assumed that the house had a
cathedral ceiling and the roof was insulated. (This is different than a traditional house in
which the attic would be basically at the outside temperature and the floor of the attic
would be insulated.) The heat loss was therefore through the walls, windows, roof, and
floor. I computed “loss factors” = A/R for these channels in column G. The rates of
energy loss are in column H. The total, summed at the bottom of column H, is about
11.5 kW. (If you assumed a traditional home with ceiling insulation, this would be a little
lower, about 11.3 kW.)

(b) This is simply the whole house loss rate (11.5 kW) times the number of hours in a day. I
found a total of about 280 kWh.

(c) I used the energy prices (and the conversion of 29 kWh/therm) to compute the costs: $68
for electricity1 and $17 for gas. It turns out that natural gas is cheaper. This is one reason
why many homes are heated with natural gas.

Here’s my spreadsheet:

1This is for an electric resistive heat not a heat pump. We’ll come back to heat pumps later. They totally change the

picture.
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