
PHYS 370 Guide 6 Solutions Fall 2024 v1.0

Solutions:

(1) Clearly heat flows from the kitchen at 25◦C to the ice.
(a) Melting into water at 0◦C requires Q = mℓ of heat. So

∆Smelt =
Q

Tc
=

mℓ

Tc
=

30 · 333
273

≃ 36.6 J/K

(b) As the melted ice warms,

∆Swarm =

∫ 298

273

CdT

T
= mc ln(298/273) ≃ 11.0 J/K

(c) In both processes, the kitchen looses heat at 298 so

∆Skitchen = −mℓ

TK
− mc∆T

TK
≃ −44.1 J/K

(d)

∆S = ∆Smelt +∆Swarm +∆Skitchen ≃ 3.5 J/K > 0

as expected by the second law for an irreversible process.

(2) Sunlight and life
(a) The heat is transferred via radiation from the Sun to the Earth. The amount of heat is

Qsun = 103 W/m
2 · 1 m2 · tsunlight ≃ 1.05× 1010 J

where the time is the amount of direct sunlight over the year. The assumption used here
is 8 hours per day (it cannot be 24 hours!). So the entropy loss by the sun is

∆Ssun =
−Qsun

Tsun
≃ −1.75× 106 J/K

while the entropy gained by the Earth is

∆Searth =
Qsun

Tearth
≃ 3.5× 107 J/K

So for this 1 m2 patch of grass the change of entropy is

∆S ≃ 3.3× 107 J/K

(b) Now in this patch of grass, organized things grow! To estimate the change in entropy let’s
assume that in one year a few kilograms of grass, weeds and other organisms grow. We
have carbon-based life here on Earth so this 5 kg of stuff represents about 400 moles of
mostly-carbon stuff. (The molar mass of carbon is mC = 12g.) The entropy of assembly
- a reduction in entropy due to the structured nature of organisms - then is roughly

∆Slife ∼ −Nk = −nR ≃ −3500 J/K

which is about 104 lower than the gain in entropy from the sunlight. So including life
would reduce the gain in entropy, but at a level too small to affect the above estimate.
Because of the number of orders of magnitude involved, variations in the estimate in this
part of the problem don’t affect the result - the gain in entropy from sunlight swamps the
local loss in entropy due to life.
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Some folks have observed that this may be the characteristic of life - taking in steady
stream of energy flux to locally reduce entropy. I don’t know enough chemistry to know
whether obviously-non-living reactions can do the same.

(3) Metallic CV ’s: For a molar heat capacity of

CV ≃ aT + bT 3

the molar entropy is

S =
Q

T
=

∫ Tf

0

CV

T
dT = aTF +

b

3
T 3
f

Using the given numbers for a and b,

S ≃ 0.0014 J/K or 9.8× 1019 in dimless units at 1 K

and

S ≃ 0.022 J/K or 1.6× 1021 in dimless units at 10 K.

At the lower 1 K temperature the result is essentially all due to the linear term. The cubic
term kicks in at 10 K. The dimensionless results are way lower that NA ∼ 1023 so at these low
temperatures most degrees of freedom much be frozen out. (More on this story in Chapter 7!)

(4) The thermo of erasure
(a) Each bit has two states so the multiplicity of one bit is 2. A byte contains 8 bits. It then

has 28 possible states. One gigabyte is 230 bytes and 233 bits. Thus, before it was erased,
the memory could have in any one of the

Ω = 22
33

possible microstates.

After erasing the memory is in only one of the these states, for example a random con-
figuration of on average 1/2 1’s and 1/2 0’s. This random state of N bits would have
multiplicity

Ω =

(
N
N
2

)
≃ NNe−N[

e−N/2
(
N
2

)N/2
]2 = · · · = 2N

where the dots represent some very nice cancelation. N = 233. The entropy associated to
the total multiplicity of the possible microstates is

S = k lnΩ = k233 ln 2 ≃ 8.2× 10−14 J/K.

(b) To dump this entropy into a room temperature environment, say 298 K, would mean
transferring at least

Q = T∆S ≃ (298 K)
(
k 233 ln 2

)
≃ 2.4× 10−11 J

which is tiny (but still way above the energy scale of atomic physics). There is much more
than 24 pJ of waste heat getting dumped by the memory (and computing) in modern
machines due to resistance in the circuitry. Also, short cuts of “erasing” are often used so
every bit of the memory may not have been reset.

(5) Spreadsheeting an Einstein solid: Here’s the spreadsheet for N = 50 (The N = 5000 plots are
similar for S and only show a short, steep section of the CV plot.)
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Einstein Solid N 50
q Omega S/k kT/e C/Nk

0 1 0 0
1 50 3.912 0.27969 0.12183
2 1275 7.1507 0.32834 0.45361
3 22100 10.003 0.36788 0.53618
4 292825 12.587 0.40294 0.59374
5 3162510 14.967 0.43524 0.63777
6 28989675 17.182 0.46566 0.67304
7 2.32E+08 19.262 0.49468 0.70212
8 1.65E+09 21.226 0.52263 0.7266
9 1.06E+10 23.089 0.54973 0.74752

10 6.28E+10 24.864 0.57614 0.76563
11 3.43E+11 26.56 0.60197 0.78146
12 1.74E+12 28.186 0.62732 0.79541
13 8.31E+12 29.748 0.65226 0.80781
14 3.74E+13 31.252 0.67684 0.81888
15 1.6E+14 32.703 0.70111 0.82883
16 6.48E+14 34.105 0.7251 0.83782
17 2.52E+15 35.461 0.74885 0.84597
18 9.36E+15 36.776 0.77238 0.8534
19 3.35E+16 38.051 0.79572 0.86018
20 1.16E+17 39.289 0.81888 0.86641
21 3.85E+17 40.493 0.84189 0.87213
22 1.24E+18 41.665 0.86475 0.87741
23 3.89E+18 42.806 0.88748 0.88229
24 1.18E+19 43.918 0.91009 0.88681
25 3.51E+19 45.004 0.93258 0.89101
26 1.01E+20 46.063 0.95498 0.89493
27 2.85E+20 47.098 0.97728 0.89858
28 7.83E+20 48.109 0.99949 0.90199
29 2.11E+21 49.099 1.02163 0.90518
30 5.54E+21 50.067 1.04368 0.90817
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I used these N = 50 results to compare to the plots in Fig 1.14. Now these results are
for CV not CP shown in the figure. However the leveling off at the value expected from the
equipartition theorem is clear for lead and aluminum. The increase in the heat capacities at
constant pressure are due to the differences between CV and CP , as we’re told in the caption. So
I’ll assume that the heat capacities level off CV at CV = Nk and compare them to dimensionless
maximum value, CV /Nk = 1, in the plots. Since the curves are all of the same functional form
and there is only one scale, ϵ, the values for ϵ can be obtained by matching a point like this:
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The spreadsheet plot reaches 1/2 its maximum of 1 at b = kT1/2/ϵ ≃ 0.34. The data of Al
reaches this point in Fig 1.14 at about T1/2 = 100 K. Thus,

ϵ ≃ k100

0.34
≃ 0.025 eV.

For lead the same procedure gives ϵ = 0.0063 eV. Since the N = 5000 curve is better at low
temperatures, I used the N = 5000 curve for diamond. Matching the 1/5 (of maximum) point
at kT/ϵ = 0.211 to the 1/5(maximum) at T = 280 K on the data plot for diamond gives ϵ ≃ 0.11
eV. (You can also get a similar result using extrapolation.) These results make physical sense

because ϵ is the basic unit of energy for an oscillator - think bond strength, or ω =
√

k/m.
Lead is relatively “floppy” (has a relatively small spring constant) compared to diamond and
so its ϵ is much smaller than diamond. Stiffer materials vibrate at higher temperatures.

Your results will differ but probably not by more than a factor of 2 or 3.

(6) For this one I worked from the earlier house model spreadsheet and added the entropy calcu-
lations. Keep in mind that the total change in entropy is the net change of the entropy change
due to the heat flow out of the house at the interior temperature and the entropy change from
the heat flow to the outside at the outside temperature. The entropy lost from the heat leaving
the interior is

∆SIN =
−Q

TIN
≃ −1× 109

291
≃ −3.42× 106 J/K.

Make sure you have the correct temperature! While the entropy created as the heat arrives in
the exterior is

∆SOUT =
Q

TOUT
=

1× 109

263
≃ 3.78× 106 J/K

So

∆S = ∆SIN +∆SOUT ≃ 3.61× 105 J/K > 0

This is greater than 0 as it must be. After the examples we have done, it is about a moose’s
entropy a day (!) which seems large to me.

(7) (2 pts.) The large N and q Einstein solid. The multiplicity is approximately

Ω ≃
(
q +N

q

)q (
q +N

N

)N

(a) The entropy is

S = k lnΩ ≃ kq ln

(
q +N

q

)
+ kN ln

(
q +N

N

)
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We can safely leave out the terms from the extra square roots from the Stirling’s approx-
imation since the log of these factors are small relative to the terms proportional to q and
N above.

(b) The inverse temperature is

1

T
=

∂S

∂U
=

∂q

∂U

∂S

∂q
=

1

ϵ

∂S

∂q

Prior to differentiating it may be helpful to write the q dependent terms in the entropy

S/k = q ln(q +N)− q ln q +N ln(q +N) + Junk

Differentiating and a bit of algebra yields

1

T
=

k

ϵ
ln

(
1 +

N

q

)
=

k

ϵ
ln

(
1 +

Nϵ

U

)
(c) Exponentiating, gathering terms in U , and solving finally gives

U =
Nϵ

eϵ/kT − 1

so now we can differentiate again to find

CV =
∂U

∂T
=

Nϵ2

kT 2

eϵ/kT(
eϵ/kT − 1

)2
(d) At high temperatures we can expand the exponents to find

CV ≃ Nϵ2

kT 2

1 + ϵ
kT[

ϵ
kT + 1

2

(
ϵ
kT

)2]2 ≃ Nk

after the dust clears. For the final approximation we only needed the leading order terms
from the expansions of the exponents. This is just what we we expect for a system with
f = 2 (from the equipartition theorem). Hooray! The high temperature limit makes sense!

(e) The curve is complicated enough so I plotted it
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By comparing this to the previous problem and its heat capacity, we see that the two plots
for CV differ at low temperatures. The new heat capacity has a much flatter approach to
T → 0. While no surprise (N = 50 and q = 100 are hardly “large”) we might worry that
the estimates for the ϵ’s would also change. But since I chose a “1/2” max value point for
matching the differences are small and the results (and methods) are essentially the same



6

as in the last problem; it is easy to see from this plot that the 1/2 max condition is met
at about 0.3, as before.

(f) To save some writing I am going to define a dimensionless inverse temperature

β =
ϵ

kT

Then,

CV

Nk
=

β2eβ

(eβ − 1)
2 .

To derive how CV approaches NK at high temperatures we need to expand and pick out
the leading order term in 1/T or β. Expanding then

CV

Nk
≃

β2
(
1 + β + 1

2β
2
)(

β + 1
2β

2 + 1
6β

3
)2 ≃

(
1 + β + 1

2β
2
)(

1 + 1
2β + 1

6β
2
)2

≃
(
1 + β +

1

2
β2

)(
1− β +

5

12
β2

)
≃ 1− 1

12
β2

=⇒ CV ≃ Nk

[
1− 1

12

( ϵ

kT

)2
]

where the 5/12 in the second line comes from the first and second order terms in the handy
relation (1 + x)n ≃ 1 + nx + n(n − 1)/2x2 where x is both β terms in the denominator.
This is what we wanted to show - the approach to the asymptotic value is as 1/T 2.
The expansion can also be done easily in Mathematica with the Series command.

(8) Thermodynamics of a simple rubber band model
(a) If we assume that the band can go only right (R) or left (L) then it is the analog of a

random walk (or another two-state system). The multiplicity is

Ω =

(
N

NR

)
=

N !

NR!(N −NR)!

where NR is the number of rightward directed links. The entropy is

S

k
= lnΩ ≃ N lnN −NR lnNR −NL lnNL

where NL is the number of leftward directed links. The total is N = NR +NL. Stirling’s
approximation was used in the second step.

(b) Each rightward link of length ℓ increases the length while each leftward directed link
reduces the length by −ℓNL. Thus,

L = ℓ (NR −NL) = ℓ (2NR −N) =⇒ NR =
1

2

(
L

ℓ
+N

)
(c) We are taking the force to be positive if the force pulls in (just the opposite convention

for springs). Working (ack the pun!) by analogy the work done

dW = FdL while in thermo dW = −PdV

Hence it looks like the −PdV term in the thermodynamic identity goes to FdL in this
system,

dU = TdS + FdL.
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(d) So for a const.-U process

0 = TdS + FdL =⇒ F = −T

(
∂S

∂L

)
U

Now evaluating the partial derivative, chain rule is helpful

∂S

∂L
=

∂NR

∂L

∂S

∂NR
=

1

2ℓ

∂S

∂NR

Carrying through with the partial derivative of S using the result from part (a),

F = −kT

2ℓ
ln

(
N −NR

NR

)
after some algebra. Expressing this in terms of L gives

F =
kT

2ℓ
ln

(
1 + L/ℓN

1− L/ℓN

)
(e) For a bunched up band, L is small relative to N and we can expand the log.

F ≃ kT

2ℓ
ln [(1 + L/ℓN)(1 + L/ℓN)] ≃ kT

2ℓ
ln

[
1 +

2L

ℓN

]
≃ kT

ℓ2N
L

which is a Hooke’s law expression with L for ‘x’ and ‘spring constant’ kT/ell2N . (Recall
the sign convention of positive for inward pulling.)

(f) At high temperatures and fixed tension, the spring constant increases causing the band to
contract. This makes sense in that at high temperatures the bands’ links with be randomly
oriented and thus the length will be shorter.

(g) For adiabatic processes, ∆S = 0. So as we stretch the bands the configuration entropy - the
one we have been working on in this solution - decreases. This reduction in configuration
entropy must be compensated by an increase in vibrational entropy and the temperature
must increase. You can observe this by rapidly stretching a rubber band and feeling the
temperature increase.

(9) Adding potential energy
(a) The energy U is the same as it was before plus the potential mgz for each particle or

Ug = Nmgz for the collection. Thus when calculating

µ =

(
∂U

∂N

)
S,V

we obtain the same result as before for an ideal gas [see equation (3.63)] plus mgz, as
expected.

(b) When the two gasses are in diffusive equilibrium then

∂S

∂N
is constant or µ(z) = µ(0)

when T is constant as we assumed in problem 1.16. Then we can pull out a bunch of
factors in the log - ‘Junk’ - and

lnN(z) + Junk +
mgz

kT
= lnN(0) + Junk.

Canceling the ‘Junk terms and exponentiating the equation gives the result

N(z) = N(0)e−mgz/kT

which is the same behavior that P (z) had in problem 1.16.
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(10) A big power plant
(a) Maximum efficiency is determined by the temperatures of the reservoirs,

e = 1− Tc

Th
= 1− 293

773
≃ 62%

This is high due to the large temperature difference.
(b) At the higher temperature

e = 1− Tc

Th
= 1− 293

873
≃ 66%.

The increase in production is (66/62 -1) of 1 GW or 0.069 GW. Running the unit conversion
(3.6× 106 J = 1 kWh) on this output over one year gives about $30 million.


