
Stat Mech (PHYS 370) Guide 8 Solutions Fall 2024 v1.0

Problems:

(1) (a) For a harmonic oscillator the partition function is

Z =
∑
s

e−βEs =

∞∑
n=0

e−βhν(n+
1
2 )

We’ll compute Z at T = 300 K first. At that temperature, and with the given frequency,
βhν ≃ 7.68, and

Z ≃ e−7.68/2 + e−(3/2) 7.68 + e−(5/2) 7.68 ≃ 0.0215

where the first term is dominant. Therefore it is not surprising that

P1 =
e−βhν(3/2)

Z
≃ 4.6× 10−4 and P2 ≃ 2.1× 10−7

while for the ground state

P0 ≃ e−7.68/2

Z
≃ 0.99954 ≃ 1

Just about all the H2O’s are not vibrating in this hinge mode at this temperature.
(b) At at the higher temperature T = 700 K all we have to do is recompute the same quantities.

The combination βhν ≃ 3.25 and Z ≃ 0.205. Likewise,

P0 ≃ e−3.25/2

Z
≃ 0.96, P1 ≃ 0.038, and P2 ≃ 0.001

so a bit under 4% of the water molecules will be excited in this mode.

(2) Some care is needed in reading his description. The description of the populations gives us a
relative probability. Calling the first excited state 1 and the ground state 0, we have - recalling
the degeneracy of 3 -

P (1)

P (0)
=

3

10
=

3e−βE(1)

e−βE(0)
=⇒ 1

10
= e−β∆E

where the difference in energy levels is ∆E = E(1)− E(0). Hence,

T =
∆E

k(ln 10)
≃ 2.4 K

which isn’t far off the temperature of the microwave background at 2.7 K.

(3) The relative abundance is determined by the Boltzmann weights, and the temperature, of
course. Calling neutrons “n” and protons “p”,

P (n)

P (p)
=

e−βE(n)

e−βE(p)
= e−β∆E .

We are given the difference in energy levels is ∆E = E(n)− E(p) = (2.3× 10−30)c2. Hence,

P (n)

P (p)
≃ 86

so there are 43 neutrons for every 50 protons. The mixture is 43/93 = 0.46 neutron and 50/93
= 0.54 proton.
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(4) I think we did this computation in class but if so it was awhile ago... The average energy or
expectation value is

Ē ≡ ⟨E⟩ =
∑
s

E(s)P (s) =
∑
s

E(s)
e−βE(s)

Z
.

We want to obtain this via a derivative, which we can since

− ∂

∂β
e−βE(s) = E(s)e−βE(s).

Thus,

⟨E⟩ = − 1

Z

∑
s

∂

∂β
e−βE(s) = − 1

Z

∂

∂β

∑
s

e−βE(s) = − 1

Z

∂

∂β
Z = − ∂

∂β
lnZ

as expected.

(5) Standard deviation and energy fluctuations
(a) The average is 3 eV so the deviations are -3 (two of these) 1 (two of these) and 4 eV.
(b) The average of the squares of the deviations is

36

5
= 7.2

The standard deviation is the square root of this so about 2.7, which agrees with the
deviations above.

(c) In general

σ2 =
1

N

∑
i

(∆Ei)
2 =

1

N

∑
i

(Ē − Ei)
2

=
1

N

∑
i

(Ē2 − 2ĒEi + E2
i )

2

=
1

N

∑
i

Ē2 − 2

N

∑
i

ĒEi +
1

N

∑
i

Ē2
i

= ⟨E⟩2 − 2 ⟨E⟩ ⟨E⟩+
〈
E2
〉
=
〈
E2
〉
− ⟨E⟩2

where I switched from the over-bar to the expectation value notation for averages for
clarity. This problem appears in statistics, quantum mechanics, and stat mech. Once you
have done this in one context, you have done them all.

(d) From the numbers above
〈
E2
〉
= 16.2 eV2 while the square of the average energy of 3 eV

is 9 eV2 so

σ2 =
〈
E2
〉
− ⟨E⟩2 = 16.2− 9 = 7.2 eV2

as above.

(6) A black hole model:
(a) The key part is to expand the square root for large-ish j,√

j(j + 1) = j

√
1 +

1

j
≃ j

(
1 +

1

2j

)
=

1

2
(2j + 1)

I used (1 + x)n ≃ 1 + nx in the middle step. This gives E(j) = ϵm in the notation of the
problem.
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(b) By definition

Z1 =
∑
j

dje
−βE(j) =

∞∑
j=1/2

(2j + 1)e−βϵ(2j+1) =

∞∑
m=2

me−βϵm.

as expected where m = 2j + 1.
(c) Letting x = e−βϵ we see that

x
d

dx

∞∑
m=2

xm =

∞∑
m=2

mxm

while
∞∑

m=2

xm = x2 + x3 + · · · = x2
(
1 + x+ x2 + . . .

)
=

x2

1− x
.

so we can differentiate to find

Z1 = x
d

dx

(
x2

1− x

)
=

2x

1− x
− x2(−1)

(1− x)2
=

2− e−βϵ

(eβϵ − 1)
2

as expected.
(d) To compare the two partition functions I plotted Z1 above and

Zexact =

∞∑
j=1/2

(2j + 1)e−βϵ
√

j(j+1)

as functions of kT/ϵ = 1/βϵ, the ”dimensionless temperature”. Here’s the plot:

The two partitions diverge when

kT

ϵ
≃ 0.2 =⇒ T =

0.1gℏ
kc

,

which is dependent on the acceleration. Near the horizon the acceleration is large so the
temperature is also large.

(e) With N indistinguishable particles of geometry the partition function is (approximately)

ZN =
ZN
1

N !
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as we saw in class. Thus,

ZN =
1

N !

(
2− e−βϵ

(eβϵ − 1)
2

)N

≃

((
2− e−βϵ

)
e

N (eβϵ − 1)
2

)N

(7) The partition function for this system is

Z =
ZN
1

N !
.

The Helmholtz free energy is then

F = −kT lnZ = −kT (N lnZ1 − lnN !)

or, with Stirling’s approximation,

F = −kT (N lnZ1 −N lnN +N) = −NkT

(
ln

Z1

N
+ 1

)
.

The chemical potential is then

µ =

(
∂F

∂N

)
T,V

= −kT

(
ln

Z1

N
+ 1

)
+NkT

N

Z1

Z1

N2
= −kT ln

Z1

N
.

(8) For the relativistic case: When the momentum is high we have

E =
√
(pc)2 +m2c4 = (pc)

√
1 +

m2c2

p2
≃ pc+

1

2

m2c3

p

where I have used the beginning of the binominal theorem, (1 + x)n ≃ 1 + nx, which works
well when x is small. In this case if mc/p < 1 then the approximation works well.

Using the relativistic energy E(n) = p(n)c and the de Broglie wavelength pn = hn/2L to
find E(n) = hnc/2L the single particle partition function in 1D is

Z1 =
∑
n

e−βE(n) =
∑
n

e−βhnc/2L ≃
∫ ∞

0

dn e−βhnc/2L =
2LkT

hc


